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Abstract: Using data sourced from 15 periglacial debris flow gullies in the Parlung Zangbo Basin
of southeast Tibet, the importance of 26 potential indicators to the development of debris flows
was analyzed quantitatively. Three machine learning approaches combined with the borderline
resampling technique were introduced for predicting debris flow occurrences, and several scenarios
were tested and compared. The results indicated that temperature and precipitation, as well as
vegetation coverage, were closely related to the development of periglacial debris flow in the study
area. Based on seven selected indicators, the Random Forest-based model, with its weighted recall
rate and Area Under the ROC Curve (AUC) greater than 0.76 and 0.77, respectively, performed the
best in predicting debris flow events. Scenario tests indicated that the resampling was necessary to the
improvement of model performance in the context of data scarcity. The new understandings obtained
may enrich existing knowledge of the effects of main factors on periglacial debris flow development,
and the modeling method could be promoted as a prediction scheme of regional precipitation-related
debris flow for further research.

Keywords: periglacial debris flow; southeast Tibet; small sample imbalanced data; prediction model;
random forest

1. Introduction

The term ‘periglacial debris flow’ here refers to a special torrent containing a large
amount of sediment and rocks formed by the mechanisms such as ice avalanches, rock
avalanches, snowmelt, permafrost degradation, and glacier lake outbursts in the margin of
modern glaciers and snow-covered areas. As an important type of mountain disaster in
high-latitude and high-altitude areas, the periglacial debris flow presents great destructive
power because of its huge scale, sudden outbreak, and rapid process, and it is widely
distributed in, e.g., Switzerland, France, Italy, Russia, Canada, the USA and China. In
recent decades, with the increase in extreme weather events caused by global warming,
periglacial debris flow events have become more and more frequent, which has attracted
extensive attention from academia and society [1–4].

As one of the most sensitive areas to global climate change on the earth [5], periglacial
debris flow events in southeast Tibet have increased significantly in recent decades [6].
Simultaneously, with the increase in human activities, there are more and more reports
of debris flow blocking traffic, inundating houses, and causing casualties, which has
brought great trouble to the production and life of local people [3,7,8]. As a result, relevant
prevention work is becoming a focus of public attention.

It is difficult to implement engineering measures to control periglacial debris flows be-
cause of the harsh environment at high-altitude areas. Monitoring and early warning have
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become the main means of corresponding disaster prevention and mitigation. Therefore,
it is crucial to clarify the initial conditions and formation mechanism of the debris flow
process. Previous studies have shown that the formation and development of periglacial
debris flow not only is related to general precipitation and topographic factors but also
is significantly affected by temperature changes [1,6]. Because of the phenomenon of ice
segregation, the ice-filled frozen rock joint is widely developed in the glacier area [9]. When
the temperature rises and the ice and snow melt, the originally stable rock mass may fail
and collapse with a massive magnitude caused by the mechanisms of unloading and brittle
fracture [10]. For the permafrost, the so-called thaw consolidation effect caused by the
temperature rise will increase the pore water pressure of the soil and then trigger landslides
and debris flows [11].

The loose materials of periglacial debris flows mainly come from ice avalanche, rock
avalanche and freeze–thaw erosion in high-altitude areas. In many cases, these materials
have high potential energy and large volume [2–4]. Under the erosion and infiltration
of snowmelt water, they are easy to roll off the hillside, causing vibration liquefaction
and saturation liquefaction [12]. Therefore, unlike commonly reported rainfall-related
debris flow events [13–15], periglacial debris flows may erupt even without significant
precipitation [16]. Apparently, the compound action of temperature and precipitation is a
catalyst for stimulating the transformation of these loose materials to debris flows. Even
worse, greater uncertainty in the occurrence and propagation of debris flows has resulted
from the effects of material accumulation and scale upgrades as materials roll downslope,
in which the destruction and formation of cascade barrier dams continues [3].

Accordingly, it is evident that the formation mechanism of periglacial debris flows
is more complicated than the common type of debris flows triggered by a rainfall–runoff
process. Although previous case studies have provided some qualitative knowledge
and techniques, the results from mechanism analysis based on energy conservation and
mechanical balance are not universal and remain hard to popularize. In addition, due to the
difficulty of observation in high-latitude and high-altitude areas, the empirical relationships
between periglacial debris flows and potential influencing factors are also insufficient.
Therefore, how to quantitatively identify the main impact factors of regional debris flow
development under the constraints of poor mechanism knowledge and insufficient data
and then establish a feasible event-based prediction model is not only the need of disaster
prevention and mitigation but also of great scientific research significance.

Machine learning, here refers to a method of data analysis whereby rule-structured
classifiers for predicting the classes of newly sampled cases are obtained from a “training
set” of pre-classified cases [17], has become a research hotspot in academia in recent years.
As a kind of general theory and technology in big data analysis, machine learning has
performed outstandingly in many fields. In the field of mountain disasters, Costache [18]
compared the application performance of different machine learning models and their
hybrid algorithms in a risk assessment of mountain torrents in typical watersheds in
Romania, and the results showed that the model with hybrid algorithms had the best
accuracy (AUC > 0.87). Zhou et al. [19] divided the step-like landslide displacement in
the Three Gorges Reservoir Area into trend term and periodic term, and they believed
that using the particle swarm optimization–support vector machine (PSO–SVM) model
better represented the relationship between reservoir water-level fluctuations and periodic
displacement than the traditional method. Liang et al. [13] used Bayesian network (BN),
SVM, and artificial neural network to assess the hazard pattern of debris flow in mainland
China and found that the BN method provided the best detection accuracy. Focusing
on the post-fire debris flow event in California (USA), some scholars built multi-element
index systems from the aspects of rainfall, terrain, vegetation, soil erodibility, and disaster
degree, and used machine learning algorithms, such as logistic regression, decision tree,
and naive Bayes, to establish classification models to estimate the occurrence rate of debris
flow [14,15,20]. The AUC of relevant models could reach more than 0.7.
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It is true that the machine learning algorithms have achieved many successes in
the above areas. However, most of the cases come from the risk or hazard assessment of
mountain disasters, whereas real-time prediction of disaster-prone events is rarely involved.
In most cases, the applied algorithm requires a large-scale data set to obtain more reliable
results, such as lower risk of overfitting and higher AUC [21,22]. In addition, for the
prediction of debris flow with strong uncertainty, the imbalance between positive and
negative samples, i.e., the debris flow events occurred or not, is quite common. Although
the influence can be reduced by resampling or weight adjustment, in theory [23–25], few
relevant successful cases have been reported.

Accordingly, based on the highly available remote sensing data and the real-time
temperature and precipitation information, this study took the imbalanced small sample
data of typical periglacial debris flow gullies in the Parlung Zangbo Basin of southeast
Tibet as an example. Then, we (1) established a comprehensive index system using analysis
methods such as field survey, geostatistical analysis, and geographic information system
(GIS)-based map algebraic calculation; (2) analyzed the main indicators of regional debris
flow development quantitatively utilizing correlation analysis, recursive feature elimination
based on support vector machine (SVM-RFE) and GainRatio to select the monitoring and
early warning indicators; (3) integrated the intelligent resampling technique to optimize
the data samples; and finally (4) built the classification models for comparative tests and
prediction scheme optimization.

2. Materials and Methods
2.1. Study Area

The Parlung Zangbo River is located northeast of the Yarlung Zangbo River between
the Eastern Himalayas and the Nyainqentanglha Mountains. It is a tributary of the Yarlung
Zangbo River with the largest discharge. There are steep slopes, deeply incised valleys,
and developed faults in this area. The Parlong Zangbo River originates from the Azar
Glacier in the south of Lake Ranwu, which is about 4900 m.a.s.l. It flows from southeast to
northwest and then enters the Yarlung Zangbo River at an altitude of about 1540 m. The
relative elevation difference in the basin is between 1500 and 4000 m.

Affected by the warm moist flow from the Bay of Bengal, the basin has abundant
precipitation and contrasting seasons of rain and drought. The average annual precipitation
is nearly 900 mm, mainly from May to October [26]. The annual average temperature is
between 10 and 12 ◦C, and the distribution of vertical temperature gradient is obvious.
Generally, the climate in the low-altitude valley is warm and humid, where lush forests,
agriculture and animal husbandry economy have developed. In contrast, the high-altitude
area of the basin is occupied by a typical frigid alpine climate, where the marine glaciers
and their heritage (i.e., ice lakes) are widely developed [27]. Specially, this high-altitude
area is characterized by severe cold and freezing weathering, and consequently broken
surface materials, collapse, landslide, and other gravity processes are distributed widely. In
short, it is a typical monsoon-type periglacial debris flow disaster-prone area in China, and
it is reported that 67 debris flow gullies have been identified in the Ranwu–Peilong section
only before 1999 [28].

According to literature investigation, field investigation and observation, a certain
number of debris flow records have accumulated in the Parlung Zangbo basin since the
1950s [29]. However, considering that global warming has caused significant changes in
the local debris flow development environment [6], applicability of the early part of these
data is limited. Thus, we selected 23 debris flow events that have occurred in 15 debris
flow gullies in the Ranwu–Peilong section between 2012 and 2020 as the research objects
(Figure 1, Table 1). The gullies are characterized by a total area of 1–28 km2, with their
outlets elevated at 2400–3800 m and having an over 30◦ average slope. The bedrock of
these gullies is composed of granite gneiss, slate and quartzite, and the low-altitude part of
the gullies is basically a forest covered area [7]. These established the general geographical
features of the regional periglacial debris flow gullies.
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Figure 1. Debris flow gullies and precipitation stations in the Ranwu–Peilong section of the Parlung
Zangbo Basin.

Table 1. Debris flow events recorded in the study area from 2012 to 2020.

Gully
No. Gully Area

(km2)
Event
No. Date Time Possible

Causes
Monitoring

Station

1 Bitong 24
DF1 2016-09-05 06:30 Snowmelt, Precipitation PEILONG

DF2 2018-07-11 03:00 Snowmelt, Precipitation GUXIANG

2 Chaobu 16 DF3 2017-08-03 17:00 Ice and Snow melt GUXIANG

3 Chidan 28 DF4 2016-09-05 11:00 Snowmelt, Precipitation PEILONG

4 Dada 3 DF5 2020-07-10 16:10 Snowmelt, Precipitation TIANMO

5
East
Lapu 4

DF6 * 2013-07-05 21:00 Snowmelt, Precipitation
MIDUI/

SONGZONGDF7 * 2014-07-24 20:00 Snowmelt, Precipitation

DF8 2018-05-22 17:00 Snowmelt, Precipitation

6 Guxiang 25 DF9 2020-07-09 21:00 Ice and Snow melt GUXIANG-2

7 Jiaolong 22 DF10 2016-09-05 —— Snowmelt, Precipitation PEILONG

8 Jiurong 7

DF11 * 2014-08.18 23:00 Snowmelt, Precipitation

SONGZONG
DF12 * 2014-08-23 02:00 Snowmelt, Precipitation

DF13 * 2015-08-04 22:30 Snowmelt, Precipitation

DF14 * 2015-08-20 07:40 Snowmelt, Precipitation
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Table 1. Cont.

Gully
No. Gully Area

(km2)
Event
No. Date Time Possible

Causes
Monitoring

Station

9 Midui 1 DF15 * 2015-08-19 23:30 Snowmelt, Precipitation MIDUI/
SONGZONG

10 Motuo 3 DF16 * 2015-08-19 22:30 Snowmelt, Precipitation BOMI/
SONGZONG

11 Rongqian 5 DF17 * 2015-08-19 18:30 Snowmelt, Precipitation BOMI/
SONGZONG

12 Shalong 15 DF18 * 2015-08-19 21:00 Snowmelt, Precipitation SONGZONG

13 Tianmo 18 DF19 2018-07-11 03:00 Snowmelt, Precipitation GUXIANG

14
West

Jiazong 2

DF20 * 2012-09-22 09:00 Snowmelt, Precipitation

MIDUIDF21 * 2013-07-05 21:00 Snowmelt, Precipitation

DF22 * 2013-07-31 18:00 Snowmelt, Precipitation

15 Zhuonong 5 DF23 * 2015-08-19 19:20 Snowmelt, Precipitation BOMI/
SONGZONG

Note: Data from Deng et al. [7], Zeng et al. [30], Li et al. [31], and field observation; * refers to the events used for
training and validation.

2.2. Method

The quantitative analysis methods used in this paper mainly include Pearson cor-
relation analysis, Borderline Synthetic Minority Over-Sampling Technique (Borderline
SMOTE), Random Forest (RF), and Support Vector Machine (SVM). Because these methods
have many separate applications reported [13–15,32], in this study, we provided only the
necessary introductions to the main machine learning algorithms.

2.2.1. Borderline SMOTE

In this study, we summarized the prediction of debris flow occurrence into a bivariate
classification problem, that is, the events with or without debris flow. Data from 23 debris
flow events in 15 debris flow gullies were collected in the study area. Excluding the 9 events
used for testing after 2015, only 14 events relevant to 8 gullies could be used for training
and validation (Table 1). According to the monitoring results of the other gullies during
a debris flow event period, we expanded the training data to 165 samples, of which 16
were positive samples of debris flow (12 events plus two events used twice by using two
different but adjacent precipitation stations), and 149 were negative samples of non-debris
flow (Figure 2). The ratio of positive and negative samples was close to 1:10. Hence, it was a
typical imbalanced small sample data set. If these data were trained directly without special
processing, it could be found that even if all positive samples were judged to be negative,
the accuracy of the model, i.e., the ratio of correctly judged samples to the whole sample
set here, still reached 91%, which was not the desired result. Therefore, we introduced a
resampling technique for such data sets.

Commonly used resampling techniques include over-sampling and under-sampling.
They can achieve the purpose of balancing data by directly copying minority class samples
or subtracting redundant information from some of the majority class samples. Obviously,
the over-sampling makes the decision boundary more specific and easily leads to over-
fitting, whereas the under-sampling directly reduces the potentially useful information.
To eliminate these adverse effects, Chawla [23] proposed the Synthetic Minority Over-
Sampling Technique (SMOTE); the fundamental idea of this technique is to extract several
of the nearest congener samples b around the selected minority class center sample a and
then interpolate any points on the ab line as the new synthetic samples.
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Technically, SMOTE can alleviate the overfitting phenomenon caused by ordinary
oversampling to a certain extent, but treating all minority samples equally also causes
problems, such as high variance (overgeneralization) or data overlap of the new data sets.
In addition, the classification idea of SVM tells us that the samples located at the decision
boundary often play a decisive role in correct classification [33], and the expansion of
these samples is usually more valuable. Accordingly, Hui [34] proposed an improved
version of SMOTE (i.e., Borderline SMOTE), which can determine the decision boundary
based on the proximity relationship between each minority sample and the surrounding
majority samples. Then, only the minority samples near the boundary (i.e., the danger
zone) can be interpolated linearly, such that the new data set can be more prominent in the
decision boundary.

The method can be divided into two types (i.e., Borderline SMOTE-1 and Border-
line SMOTE-2). The difference between these two types is that the Borderline SMOTE-1
performs ordinary SMOTE interpolation on the minority samples of danger zone after
the decision boundary has been determined, whereas the Borderline SMOTE-2’s minority
center samples will be connected with the neighboring majority samples for interpolating
new samples. Theoretically, Borderline SMOTE-1 is more helpful to highlight the decision
boundary. In this study, we used Borderline SMOTE-1 to interpolate the 16 positive samples
from the 165 samples of the training set, to make the ratio of positive and negative samples
1:1. Then, a training set of 298 samples was obtained (Figure 2). The specific algorithm was
implemented in Python.

2.2.2. Random Forest (RF)

The RF, a representative method of ensemble learning [35], was selected as one of the
basic classifiers to avoid possible overfitting phenomenon. In essence, it is a collection
of weak classifiers containing multiple decision tree structures. For classification, the
algorithm generates a result through the “voting” of each decision tree [36]. RF can be
regarded as an application extension of the information entropy theory. The construction
of a decision tree (i.e., the basic unit of RF) follows the basic principle of rapidly reducing
system entropy [37].

For a sample set, the Decision Tree model can take the following steps: First, the total
value of information entropy of each feature will be calculated according to the probability
that the attributes (such as high, medium, or low) of different input features (such as
temperature, precipitation intensity, or slope) appear in each output category (e.g., the event
occurs/does not occur). Second, based on the principle of rapidly reducing information
entropy, the input feature with the most reduced information entropy is selected as the root
node to classify the samples according to attribute differences of different features. If the
output category corresponding to these samples is pure or single (e.g., debris flows occur
in all samples with precipitation intensity exceeding 15 mm/h), the sample set under this
attribute will not be subdivided downward as a leaf node. On the contrary, for the samples
in non-leaf nodes, repeat these two steps until all the leaf nodes are generated.

Because the samples are inevitably mixed with noise data, the overfitting phenomenon
may occur after the samples are completely subdivided into the final leaf nodes, which
affects the generalization performance of the model [38]. Therefore, in the modeling process,
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the splitting scale of a decision tree generally can be controlled within a certain range based
on specific principles or standards, such as setting a GainRatio rate or Gini coefficient. The
RF resamples the number and feature of samples before building the decision tree, which
means that each time, only part of the data in the total set is taken to build the tree [35]. In
this way, many decision trees can be obtained according to the different samples collected.
Because only part of the data in the total set is extracted each time, the interference of noisy
data can be effectively reduced. Therefore, the probability of overfitting in the RF model is
theoretically lower [35,39].

We used the RF plug-in in WEKA software to train, validate, and test the debris flow
prediction model. Generally, it is believed that the two most important hyperparameters
of RF modeling are the number of decision trees and the maximum number of features
selected per sampling [40,41], i.e., numiterations and numfeatures in WEKA, respectively.
The Gridsearch method was used to adjust the hyperparameters, firstly. However, it
was found that for some algorithms, there was still the possibility of overfitting, or the
given results consumed unnecessary computing power. In view of these situations, the
hyperparameters were adjusted manually based on the results of Gridsearch so as to
reduce calculation consumption while ensuring the accuracy. Finally, we determined that
the numiterations was 70 and the numfeatures was 3. In addition, considering that the
GainRatio can be used to reflect the relative importance of each feature, the GainRatio
method was used to investigate the contribution of each indicator to the occurrence of
debris flow in the preliminary indicator selection phase.

2.2.3. Support Vector Machine (SVM)

SVM is originally formulated as a binary classifier that obtains the optimal hyperplane
by setting the maximum interval between the two classes of samples [33]. When using some
specific modes, such as decomposing the multiclass datasets into multiple binary subsets,
SVM can also be used to deal with multiclass problems. Because the setting of maximum
interval requires only a small number of samples (i.e., the support vectors) that are closest
to the hyperplane, this method is relatively friendly to small sample data sets [21]. The
maximum interval can be classified into two types, i.e., the soft interval and the hard
interval. The hyperplanes of the hard margin strictly distinguish all samples, which is
suitable for linearly separable data sets. The soft margin means that a slack variable is
added to select the optimal hyperplane on the premise of pursuing the maximum interval
width. It is suitable for a data set that has a few outliers but is still linearly separable in
general. When the data set is linearly non-separable, SVM introduces the kernel functions
to map the samples into high-dimensional space, transform it into a linearly separable data
set, and then finish the classification work.

The objective function of SVM not only has a loss function that reflects the accuracy
of the fitting but also includes a regularization term that expresses the complexity of the
model [25,33]. As a result, the optimization goal is not only to reduce the empirical risk
but also to consider the structural risk of the model to avoid generating complex models
that produce the overfitting phenomena due to the pursuit of local optima [42]. Thus, the
generalization ability of the SVM model can be improved. The hyperparameters that need
to be paid attention to in the actual operation of SVM are the C (penalty-factor) in the loss
function term and the σ2 in the kernel function (usually a Gaussian kernel function). The
higher the C value is set, the greater the weight of the loss function term in the objective
function, which will seek to further reduce the empirical risk, and then the model will be
more prone to overfitting. Otherwise, the weight of the regularization term in the objective
function is increased in a disguised way, and the generalization ability of the model will be
strengthened, but there may be underfitting for the model classification. The higher the σ2

value in the kernel function, the smoother the generated function, the more samples can
become the support vectors, and the more likely the final model is to be underfitted.

This study used the LibSVM plug-in in WEKA to train, validate, and test the debris
flow prediction model. According to the results of Gridsearch and manual tests, we
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decided to use the SVM model with radial basis kernel function for prediction, where
gamma (corresponding to 1/2σ2) = 0.0001, and cost (corresponding to C) = 1. Using the
weights generated by SVM for each feature in the process of solving the maximum interval,
the relative importance of each feature could be calculated, i.e., the so-called SVM–RFE
algorithm. This algorithm was employed to investigate the contribution of each indicator
to the occurrence of debris flow. The linear SVM classifier (LibLINEAR plug-in in WEKA)
was also introduced into the modeling to compare the performance of linear and nonlinear
classifiers intuitively.

2.3. Data and Indicators
2.3.1. Data Sources

In this study, remote sensing and meteorological data with high availability were
collected as the main information sources, mainly involving precipitation, temperature,
landform, geology, vegetation, and snow cover (Table 2).

Table 2. Data types and sources.

Type Content Sources

Precipitation

Hourly data of the stations of PEIlONG, BOMI, GUXIANG,
SONGZONG, MIDUI on the day and the adjacent days of

debris flow events in 2012–2018, and daily data of the 10 days
before the event day; hourly data of GUXIANG-2 and

TIANMO stations on the day and the adjacent days of debris
flow events in 2020, and daily data of the 7 days before the

event day

Data from 2012 to 2018 collected from the Bomi Geologic
Hazard Observation Station of the Institute of Mountain

Hazards and Environment, CAS; data of 2020 sourced from
the field observation

Temperature
Daily maximum, minimum, and average data of Bomi station
in 2012–2020 and Tianmo station in 2020 on the event day and

the 15 days before the event day

Data of the Bomi station collected from the China
Meteorological Data Service Centre; data of the Tianmo

station sourced from the field observation

Landform DEM of the Parlong Zangbo Basin SRTM 90 m DEM and ASTER 30 m GDEMv2

Geology National 1:2.5 million geological map of China National Geological Archives Data Center, China

Vegetation Cover NDVI of the study area in typical months from 2012 to 2020 MODIS 500 m monthly synthetic product

Snow Cover Snow cover products from 2012 to 2015 Maximum_Snow_Extent MOD_Grid_Snow_500 m products
of MOD10A2

2.3.2. Basic Indicators

- Meteorology

In view of the natural relationships between the development of periglacial debris flow
and the changes in precipitation and temperature, many scholars have explored the indica-
tive factors of debris flow events according to these two factors. The precipitation indicators
included antecedent precipitation, precipitation intensity, and precipitation duration, and
the temperature indicators included accumulated temperature and average temperature.
Based on outcomes from previous studies and the convenience of data collection [29,43–45],
we selected 14 potential indicators, including accumulated effective precipitation over
3/5/10 days before the event (A3/A5/A10), maximum and average precipitation intensity
of the event day (before the event, of course, Ia/Im), precipitation duration (D), temperature
rise rate before the flood season (March to July normally, Tr), coefficient of variation of the
daily temperature range over 5/10/15 days before the event (Cv

5/Cv
10/Cv

15), antecedent
three-day effective accumulated temperature (greater than 0 ◦C, Ta), and the average daily
temperature over 5/10/15 days before the event (T5/T10/T15).

The antecedent accumulated effective precipitation (A3/A5/A10) was calculated based
on the Antecedent Precipitation Index (API, formula 1, Deng et al. [7]).

r0 = kr1 + k2r2 + k3r3 + . . . +knrn (1)
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where r0 is the antecedent accumulated effective precipitation (mm) of the event
day (day 0); k is a constant reflecting surface runoff, which is related to soil texture and
infiltration capacity; and rn is the maximum regional precipitation (mm) on the nth day
before day 0.

It has been reported that the moraine soil in the study area was coarse in general [46],
which was consistent with results from the field investigation of this research (Figure 3).
Accordingly, it was considered that the gully soil of the study area had good permeability,
and the two parameters (i.e., n and k) of the formula were set as 3 and 0.5 (A3), respectively.
In addition, the scenarios of n = 5/k = 0.6 (A5) and n = 10/k = 0.7 (A10) were set to
understand the influence of different parameter settings on the prediction of debris flow
events (Table 3).

Table 3. Precipitation indicators data of related stations in training/validation phase (2012–2015).

No.
Precipita-

tion
Station

Year Date Event
No. *

D
(h)

I a
(mm/h)

I m
(mm/h)

A 3
(mm)

A 5
(mm)

A 10
(mm)

1

BOMI

2012 09-21 1 2 0.8 1.0 10.0 14.2 21.3

2 2012 09-22 1 1 1.0 1.0 5.8 9.4 16.2

3 2012 09-22 2 3 2.0 5.0 5.8 9.4 16.2

4 2012 09-22 3 13 1.4 4.0 5.8 9.4 16.2

5 2013 07-05 1 2 0.8 1.0 0.1 0.3 2.8

6 2013 07-05 2 9 2.1 4.5 0.1 0.3 2.8

7 2014 07-23 1 4 1.9 4.5 2.9 3.7 6.9

8 2014 07-24 1 1 1.5 1.5 5.7 7.2 10.7

9 2014 07-24 2 4 1.0 2.0 5.7 7.2 10.7

10 2014 07-24 3 4 1.8 3.5 5.7 7.2 10.7

11 2014 07-25 1 3 0.8 1.5 6.5 8.8 12.6

12 2014 08-18 1 1 1.0 1.0 4.4 8.5 14.7

13 2014 08-22 1 3 0.8 1.0 4.5 5.8 10.4

14 2014 08-22 2 1 1.0 1.0 4.5 5.8 10.4

15 2014 08-22 3 3 0.7 1.0 4.5 5.8 10.4

16 2014 08-22 4 2 1.3 1.5 4.5 5.8 10.4

17 2014 08-22 5 2 1.8 2.0 4.5 5.8 10.4

18 2014 08-23 1 14 1.0 3.5 7.3 9.4 14.1

19

SONGZONG

2012 09-21 1 3 1.2 1.5 10.8 15.5 22.5

20 2012 09-21 2 4 1.9 2.5 10.8 15.5 22.5

21 2012 09-22 1 11 2.9 7.0 12.5 17.7 25.8

22 2012 09-23 1 10 1.6 2.5 28.4 36.7 49.0

23 2013 07-05 1 5 1.3 3.0 0.8 0.9 2.8

24 2013 07-05 2 1 1.5 1.5 0.8 0.9 2.8

25 2013 07-06 1 4 1.8 3.0 6.4 7.7 10.3

26 2014 07-23 1 1 1.5 1.5 0.4 0.6 2.4

27 2014 07-24 1 3 1.0 1.5 0.9 1.2 2.7

28 2014 07-24 2 2 3.0 2.5 0.9 1.2 2.7

29 2014 08-18 1 2 5.0 2.5 2.7 6.4 11.7

30 2014 08-22 1 4 0.6 2.5 3.9 5.3 9.4
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Table 3. Cont.

No.
Precipita-

tion
Station

Year Date Event
No. *

D
(h)

I a
(mm/h)

I m
(mm/h)

A 3
(mm)

A 5
(mm)

A 10
(mm)

31 2014 08-23 1 9 2.4 5.0 8.6 11.5 16.2

32 2015 08-03 1 2 4.0 2.5 0.0 0.0 0.2

33 2015 08-04 1 3 3.2 6.0 6.5 7.8 9.1

34 2015 08-04 2 2 3.8 5.0 6.5 7.8 9.1

35 2015 08-17 1 2 1.0 1.0 1.0 1.3 2.1

36 2015 08-17 2 3 1.2 1.5 1.0 1.3 2.1

37 2015 08-17 3 4 0.6 1.0 1.0 1.3 2.1

38 2015 08-18 1 1 1.0 1.0 7.0 8.6 10.3

39 2015 08-19 1 9 1.1 2.0 11.4 14.7 18.3

40 2015 08-19 2 10 2.5 6.0 11.4 14.7 18.3

41

MIDUI

2012 09-22 1 17 1.3 3.0 3.9 5.9 10.3

42 2012 09-22 2 13 1.2 3.0 3.9 5.9 10.3

43 2012 09-23 1 1 1.5 1.5 15.6 19.9 26.3

44 2012 09-23 2 9 1.5 5.5 15.6 19.9 26.3

45 2013 07-04 1 4 1.8 2.5 0.0 0.0 1.4

46 2013 07-05 1 2 1.5 1.5 2.8 3.3 4.8

47 2014 07-23 1 1 1.0 1.0 1.6 2.3 3.7

48 2014 07-23 2 2 1.0 1.0 1.6 2.3 3.7

49 2014 07-23 3 2 1.3 1.5 1.6 2.3 3.7

50 2014 07-24 1 6 2.1 3.5 3.4 4.7 6.4

51 2014 08-22 1 4 0.8 1.0 0.9 2.1 5.4

52 2014 08-23 1 9 1.7 2.5 3.1 4.5 7.3

53 2014 08-24 1 8 1.6 3.5 8.6 11.2 15.1

Note: * means event number on that day.

Considering that the debris flow events in the study area mainly occurred from July to
September, the event may have been related to the amount of ice and snow melting from
March or April every year. Therefore, we selected the daily average temperature and days
from March to July of each year to construct the scatter diagram and used the slope of
the linear trend equation of the scatter diagram to reflect the temperature rise rate in this
period (Figure 4) and to obtain the indicator of the temperature rise rate before the flood
season (Tr).
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Figure 3. Grain size characteristics of samples from typical debris flow gullies in field investigation.
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Assuming that the more severe the temperature change before the event, the more
conducive it would be to freeze–thaw erosion and loose material accumulation, we added
the coefficient of variation of the daily temperature range over 5/10/15 days before the
event (Cv

5/Cv
10/Cv

15), which were calculated by the coefficient of variation of the differ-
ence between daily maximum temperature and minimum temperature over 5/10/15 days
(Table 4). To further investigate the influence of short-term temperature change on the
development of periglacial debris flow, the indicators of antecedent three-day effective
accumulated temperature (greater than 0 ◦C, Ta) and the average of daily temperature over
5/10/15 days before the event (T5/T10/T15) were also calculated.
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Figure 4. Scatter plot between daily average temperature and day sequence from March to July of
each year (missing data for April 2012 and May 2014).

Table 4. Temperature indicators data of BOMI station in training and validation phase in 2012–2015
(unit: ◦C).

Year Date Cv
5 Cv

10 Cv
15 T5 T10 T15 T a

2012 09-22 0.29 0.37 0.37 14.1 13.7 14.4 43.3

2012 09-21 0.30 0.38 0.38 13.8 13.8 14.6 44.0

2012 09-23 0.40 0.44 0.41 13.9 13.4 14.1 39.6

2013 07-06 0.11 0.26 0.29 18.7 17.5 17.5 56.8

2013 07-04 0.14 0.33 0.30 17.9 16.8 17.5 55.8

2013 07-05 0.11 0.29 0.30 18.5 17.2 17.6 56.4
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Table 4. Cont.

Year Date Cv
5 Cv

10 Cv
15 T5 T10 T15 Ta

2013 07-31 0.26 0.30 0.33 18.5 18.0 17.8 54.3

2014 07-23 0.23 0.34 0.29 18.1 17.2 17.6 56.6

2014 07-25 0.23 0.24 0.30 18.2 17.2 17.4 53.6

2014 07-24 0.20 0.36 0.30 18.4 17.1 17.5 55.1

2014 08-18 0.55 0.39 0.32 14.6 16.3 17.2 42.0

2014 08-22 0.26 0.42 0.35 16.3 15.6 16.5 48.9

2014 08-23 0.30 0.41 0.35 16.0 15.3 16.2 45.8

2014 08-24 0.35 0.42 0.36 15.6 15.0 16.0 44.2

2015 08-04 0.15 0.19 0.25 17.3 17.2 16.6 54.6

2015 08-03 0.14 0.19 0.25 17.0 16.8 16.5 53.4

2015 08-17 0.31 0.37 0.31 18.8 17.9 17.9 54.2

2015 08-18 0.46 0.41 0.38 18.0 18.0 17.7 50.6

2015 08-19 0.46 0.49 0.43 17.0 17.9 17.6 47.8

2015 08-20 0.38 0.53 0.48 15.9 17.5 17.3 44.4

- Topography

Topographic relief has had a great influence on runoff generation and flow confluence
as well as on the storage and release of gravitational potential energy from loose materi-
als. Hence, it is one of the preconditions for the development of periglacial debris flow.
In this study, we selected five indicators, including watershed height difference (Hd), gully
gradient of mainstream (Gg), concave or convex characteristic from longitudinal profile (P),
watershed average slope (Sa), and slope aspect (As), to reflect the influences of topographic
factors (Table 5).

In practice, the longitudinal profile of the gully mainstream was extracted first using
the three-dimensional analyst function in GIS. Then, we obtained Hd by calculating the
difference between the outlet elevation and maximum elevation; calculated Gg from the
ratio of Hd to the projection length of the longitudinal profile by arctangent function
transformation; characterized P by a quantitative method (Formular 2); and obtained Sa
by calculating the average slope using the zonal statistical function of GIS. The As was
summarized based on several main slope aspects of each watershed.

Table 5. Topographic and geological characteristics of the eight debris flow gullies in the training set.

Gully Hd (m) Sa (◦) Gg (◦) As P (%) F L

Zhuonong 1832.62 32 11.4 East–Northwest −65.5 0.33 Extremely hard

West Jiazong 1858.96 37 34.0 South–Southwest −12.6 0.00 Extremely hard

Shalong 1508.94 32 13.4 Southwest–West −3.8 0.31 Secondary
hard

Rongqian 1993.82 32 29.4 South–Southwest −4.9 0.10 Extremely hard

Motuo 1510.14 27 28.6 East–Southeast −2.2 0.25 Extremely hard

Midui 1262.14 34 31.8 East–Northeast 4.2 0.33 Secondary
hard

Jiurong 1751.91 36 23.5 West–Northwest −28.0 0.21 Secondary
hard

East Lapu 1563.89 36 30.1 South–Southwest 3.1 0.10 Extremely hard
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P = (a1 − a2) / a2 (2)

where P is the concave or convex characteristic of a longitudinal profile (%), and a positive
value means that the profile is mainly convex, whereas a negative value is opposite; a1 is
the area of the profile; and a2 is the triangle area enclosed by the three vertices of the profile.

- Geology

Geological indicators included lithologic hardness (L) and fault buffer (F, Table 5).
The indicator of L, mainly hard and sub-hard, was qualitatively classified based on field
investigation and the 1:2.5 million national geological map. The study area had many faults
according to the map, among which the most famous one named Jiali-Ranwu fault was
distributed in the south of the area, and the rest were mostly unproved faults. According to
the fault data provided by the map, we scored five buffers (1 km, 2 km, 3 km, 5 km, and 10
km) according to the distance to the fault (Figure 5), and then, the average value of each
gully watershed was extracted and normalized using the zonal statistics function of GIS to
obtain the F value.
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- Underlying surface

Snow melting is one of the basic reasons for the formation of periglacial debris flow [1,10];
thus, the change of snow cover is an important consideration in the underlying surface
conditions. In contrast, the influence of vegetation on periglacial debris flow development
is more complicated. On the one hand, vegetation can enhance the strength of soil by root
system [47], and the hydrological effect of vegetation, such as intercepting rainfall and
extracting soil moisture, is also conducive to the stability of a slope [48]. On the other
hand, the surcharge load caused by plant weight and the transmission of drag force from
wind reduce the slope stability [49,50]. Therefore, vegetation can promote or inhibit the
formation of debris flows by increasing or reducing the supply of loose materials to a
certain extent.
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For the study area, vegetation can hardly affect the initiation of loose materials in
the glacier area. However, the forests in the low-altitude valley may play an important
role on the development of periglacial debris flow. Hence, the effects of vegetation and
snow cover would be focused on this part, including four indicators: antecedent spatial
scale Normalized Difference Vegetation Index (NDVIs), antecedent temporal scale NDVI
(NDVIt), average maximum snow cover rate (MSCa), and antecedent snow cover decrease
rate (ASCd). Among them, we calculated the antecedent NDVI indicators, basically, the
vegetation coverage of each gully watershed in the month before the debris flow events
in 2012–2020, based on the monthly synthetic product of MODIS 500 m NDVI (Table 6).
Considering that both interannual and regional differences on vegetation coverage were
significant, the NDVIt and NDVIs were obtained by normalizing the annual and regional
sequences, respectively, to reflect the impact of this factor comprehensively.

Table 6. NDVI changes of 15 debris flow gullies in the study area from 2012 to 2020.

Gully

NDVI

Training/Validation Phase Testing Phase

2012-08 2013-06 2014-07 2015-07 2016-08 2017-07 2018-04 2018-06 2020-07

Tianmo 0.12 0.18 0.20 0.70 0.40 0.51

Chidan 0.23 0.37 0.31 0.75 0.69

Jiaolong 0.12 0.16 0.17 0.51 0.37

Chaobu 0.13 0.20 0.52 0.83 0.64

Bitong 0.12 0.18 0.20 0.51 0.44 0.29 0.39

Dada 0.16 0.19 0.43 0.61 0.39

Guxiang 0.12 0.17 0.19 0.42 0.30 0.28

Zhuonong 0.24 0.48 0.31 0.69

West
Jiazong 0.16 0.42 0.28 0.43

Shalong 0.18 0.27 0.23 0.38

Rongqian 0.24 0.34 0.22 0.51

Motuo 0.29 0.47 0.38 0.62

Midui 0.06 0.11 0.08 0.16

Jiurong 0.34 0.41 0.42 0.57 0.22

East Lapu 0.26 0.30 0.23 0.32 0.04

Based on the products of MOD10A2 from 2012 to 2015, we calculated the proportion of
snow and cloud cover area of each watershed at training and validation phase, respectively.
The layers with more than 5% cloud were removed in this process, and the proportion of
the largest snow coverage area before the debris flow events was selected as the maximum
snow coverage rate of the current year. According to the difference between this maximum
rate and the latest snow coverage rate before the event, the ASCd could be calculated, and
the MSCa could also be obtained based on the average statistics of this maximum rate from
2012 to 2015 (Table 7).
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Table 7. Snow cover conditions of the eight debris flow gullies at training and validation phase in
2012–2015 (unit: %).

Gully
ASCd

MSCa
2012 2013 2014 2015

Zhuonong 89.2 93.6 86.0 93.0 86.5

West Jiazong 84.3 91.6 100.0 80.0 98.5

Shalong 43.8 100.0 80.1 94.5 93.1

Rongqian 93.7 100.0 83.9 79.5 77.5

Motuo 90.9 100.0 86.3 100.0 100.0

Midui 80.0 90.0 80.0 100.0 100.0

Jiurong 100.0 100.0 82.3 100.0 92.4

East Lapu 91.4 91.4 100.0 96.0 90.9

Based on the above-mentioned 25 indicators and the watershed area (A) of each gully,
a total of 26 preliminary indicators were selected and normalized for subsequent analysis.

3. Results and Discussion
3.1. Selection of Prediction Indicators

To avoid the possible interference from over-resampling, 165 events data without
resampling were used here for further indicator selection. Based on the principle of
reducing the indicators as much as possible and high operability, different methods such as
Pearson correlation and SVM-RFE were employed to determine the final indicators to be
included in the classification model.

First, we used Pearson correlation analysis to eliminate the variables with obvious
false correlation; that is, the correlation that cannot reflect the true relationship between the
two variables, even if it is statistically significant. The results indicated that 13 indicators
related to vegetation, temperature, and precipitation were significant with the development
of periglacial debris flow in the study area (Table 8 left). Most of them presented a positive
correlation except for the temperature rise rate before the flood season (Tr). As mentioned
before, periglacial debris flows usually occur with the increase in temperature [6]. However,
the relationship between Tr and debris flow events seemed to contradict this cognition:
that is, the faster the warming, the fewer debris flow events. Further analysis showed that
Tr was mainly related to the initial temperature in March of each year. The higher the initial
temperature level, the more limited the space for subsequent warming, and the slower
the warming rate (Figure 6), whereas a higher initial temperature may indeed lead to the
increase in snow melting rate and the occurrence of periglacial debris flow. Therefore, for
the indicator of Tr, its correlation with debris flow development cannot reflect the actual
relationship between temperature rise rate and regional debris flow occurrence; thus, the
indicator needed to be eliminated.
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Figure 6. Relationship between Tr and the average temperature of March from 2012 to 2015 (with the
Standard Error of Mean on daily average temperature of each March).

Furthermore, we employed SVM-RFE and the GainRatio method to investigate the
importance of the remaining 25 indicators in debris flow development, in which the
10-fold cross-validation was used in SVM-RFE. The results showed that although the
importance or correlation ranking of each indicator from the three methods was quite
different, the top indicators were highly similar, mainly the temporal sequences related to
vegetation, precipitation, and temperature. Conversely, the indicators reflecting the spatial
heterogeneity of landform, geology, and watershed characteristics ranked lower in general,
which might have been related to the range of selected sample data.

Statistically speaking, the method of sample expansion in this study limits the per-
formance of indicators reflecting spatial heterogeneity to a certain extent. The data from
165 events collected here included 16 events with debris flow and 149 events without debris
flow. The 16 events with debris flow were obtained based on eight gullies monitored by the
stations of Bomi, Songzong, and Midui from 2012 to 2015 (Table 1), while the 149 events
without debris flow were expanded from the same eight gullies on different dates. Taking
the debris flow event on 23 August 2014 in Jiurong gully as an example, on the event day,
if no debris flow was recorded in the other seven gullies, the seven gullies on 23 August
2014 would be registered as non-debris flow events. In addition, if no debris flow was
recorded in the other seven gullies on the day of 22 August 2014 or 24 August 2014, the
seven gullies on that day would also be registered as non-debris flow events. In this way,
many gullies have experienced almost the same frequency of debris flow and non-debris
flow events, and the difference of watershed indicators, such as the mainstream slope,
among these eight debris flow gullies is much smaller than that between debris flow gullies
and non-debris flow gullies [51,52]. Thus, it is difficult to find a significant correlation
between the indicators reflecting spatial heterogeneity and debris flow events in such a
data set.

According to the results from the three assessment methods (Table 8), indicators closely
related to the development of periglacial debris flow were NDVIt, D, Im, Ia, Cv

15, Cv
10,

Cv
5, T15, T10, A10, A5, and A3. Because the indicators in Im/Ia, Cv

15/Cv
10/Cv

5, T15/T10,
and A10/A5/A3 presented repeatability to some extent, we selected the indicator with the
highest comprehensive ranking of each category as an input of the classification model.
Considering that the comprehensive ranking of Sa was the highest among all spatial related
indicators, the final seven indicators were D, Im, Cv

15, T10, A3, NDVIt, and Sa.
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Table 8. Assessment methods of indicator selection and related ranking.

Rank Correlation Analysis SVM-RFE GainRatio

Coefficient Indicator Average Merit Indicator Score Indicator

1 0.42 ** NDVIt 23 ± 2.7 D 0.47 Cv
10

2 −0.36 ** Tr 22.5 ± 3.0 T10 0.47 Cv15

3 0.34 ** D 21.4 ± 2.6 A5 0.26 Cv
5

4 0.30 ** Cv
15 21.2 ± 1.5 T15 0.24 A3

5 0.27 ** T10 20.3 ± 4.1 Cv15 0.24 Im
6 0.26 ** Im 20.3 ± 1.1 A10 0.16 NDVIt
7 0.25 ** A3 19.8 ± 1.9 Im 0.11 T10
8 0.24 ** Cv

5 19.3 ± 2.1 Cv
10 0.11 T15

9 0.24 ** Cv
10 18.4 ± 1.4 NDVIt 0.11 D

10 0.23 ** A5 16.9 ± 5.2 Ia 0.06 Ia
11 0.22 ** Ia 15.1 ± 2.7 A3 0 A10
12 0.21 ** T15 14.1 ± 0.3 Sa 0 T5
13 0.19 * A10 12.4 ± 1.0 Hd 0 A5
14 0.11 Sa 8.8 ± 3.2 ASCd 0 MSCa
15 0.08 T5 8.8 ± 4.3 Cv

5 0 ASCd
16 0.06 ASCd 8.3 ± 2.8 T5 0 F
17 −0.06 L 8.1 ± 4.7 MSCa 0 P
18 0.039 A 6.8 ± 3.6 Gg 0 As
19 0.03 As 6.7 ± 1.9 As 0 NDVIs
20 −0.03 F 6.4 ± 2.65 P 0 Gg
21 −0.02 Ta 6.3 ± 3.55 NDVIs 0 A
22 −0.02 Hd 6.2 ± 3.25 Ta 0 Hd
23 0.02 P 5.7 ± 3.44 L 0 L
24 0.01 MSCa 4.1 ± 2.74 F 0 Sa
25 0.01 Gg 4.1 ± 3.05 A 0 Ta
26 0.01 NDVIs

Note: ** and * are the significance of 0.01 and 0.05, respectively.

3.2. Modeling and Comparative Analysis
3.2.1. Training and Validation

As mentioned in Section 2.2.1, after the indicator selection work, Borderline SMOTE-1
was used to obtained a balanced training set, and the data were imported into the RF, SVM
and Linear SVM (LSVM) models as the inputs, respectively. We employed the 10-fold cross-
validation to train and validate the binary classification process on whether the debris flow
occurred. Simultaneously, the precision rate, recall rate, Matthews Correlation Coefficient
(MCC), Receiver Operating Characteristic Curve (ROC) and other model assessment indices
were employed to evaluate the performance of each classification model. The calculation
formulas of the main assessment indices are as follows:

TPR or Recall = TP/(TP + FN) (3)

FPR = FP/(FP + TN) (4)

Precision = TP/(TP + FP) (5)

F-Measure = 2·Precision·Recall/(Precision + Recall) (6)

MCC = (TP·TN − FP·FN)/sqrt [(TP + FP)(TP + FN)(TN + FP)(TN + FN) (7)

All these indices are based on a fundamental concept named confusion matrix (Table 9),
which is a form of contingency table showing the differences between the true and predicted
classes for a set of labeled examples [53]. In the confusion matrix, TP and TN are the number
of true positives and true negatives, respectively, indicating that the predicted values are
the same as the true values, and the predicted values are positive and negative examples,
respectively; FN and FP are the number of false negatives and false positives, respectively,
indicating that the predicted values are opposite to the true values, and the predicted values
are negative and positive, respectively.

The assessment indices can evaluate models from different aspects. The true positive
rate (TPR) or recall rate reflects the ratio of correctly classified positive cases to the total
number of positive cases [54]; the false positive rate (FPR) represents the ratio of misclassi-
fied negative cases to the total number of negative cases, i.e., the false alarm rate in early
warning system. Precision refers to the ratio of true positive cases to all cases classified
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as positive. The F-Measure is the harmonic weighted average of precision rate and recall
rate, reflecting the comprehensive situation of the two indices [54]. The MCC describes
the correlation between the prediction set and the observation set, with a value range of
−1 to 1, and it is regarded as one of the most adaptable comprehensive evaluation indices,
which was applicable to imbalanced data sets [55]; and the AUC is the area under the
ROC curve [53], reflecting the probability that a positive sample is correctly classified. A
value of 1 meant that all positive samples can be correctly classified, and a value of 0.5
indicates that the performance of the classifier was no different from random classification.
Except for the FPR, the higher the value of the assessment indices, the better the model
classification performance.

Table 9. A typical confusion matrix.

True Class
Predicted Class

+ −

+ TP FN
– FP TN

Note: + and − are positive and negative cases, respectively.

The results showed that the RF-based model outperformed the SVM and LSVM-based
model (Table 10). The values of recall rate, F-Measure, MCC, AUC, and other major
assessment indices of the RF model in the training and validation phase all exceeded 0.95,
and the prediction performance on positive and negative events was equivalent. Although
the values of main assessment indices of the SVM model were also above 0.92, the recall
rate of the negative events was 8% lower than that of positive events, the weighted FPR of
the SVM model was more than three times higher than that of the RF model, and the MCC
was also 10.3% lower than that of the RF model. As a typical linear classifier, LSVM lagged
behind the SVM and RF-based model in almost all the assessment indices, reflecting the
complexity of periglacial debris flow prediction.

Further analysis of the confusion matrix showed that the SVM model had 17 false
predictions of negative events, which was much higher than that of the RF model, and
the number of false predictions of positive events was also higher than that of the RF
model (Table 11). In short, although the overall prediction accuracy of the two models
in the training and validation phase could reach a high level, the RF model was the
preferred solution.

Table 10. Comparison of the results from different models on periglacial debris flow prediction.

Phase Model Class TPR FPR Precision F-Measure MCC AUC

Training
and

Validation

RF
No 0.966 0.013 0.986 0.976

0.953 0.997Yes 0.987 0.034 0.967 0.977
WA 0.977 0.023 0.977 0.977

SVM
No 0.886 0.034 0.964 0.923

0.855 0.926Yes 0.966 0.114 0.894 0.929
WA 0.926 0.074 0.929 0.926

LSVM
No 0.765 0.342 0.691 0.726

0.425 0.711Yes 0.658 0.235 0.737 0.695
WA 0.711 0.289 0.714 0.711

Testing

RF
No 0.750 0.222 0.750 0.750

0.528 0.778Yes 0.778 0.250 0.778 0.778
WA 0.765 0.237 0.765 0.765

SVM
No 0.500 0.222 0.667 0.571

0.290 0.639Yes 0.778 0.500 0.636 0.700
WA 0.647 0.369 0.651 0.639

LSVM
No 0.375 0.111 0.750 0.500

0.311 0.632Yes 0.889 0.625 0.615 0.727
WA 0.647 0.383 0.679 0.620

Note: “Yes” for debris flow events and “No” for non-debris flow events; WA represents weighted average.
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Table 11. Comparison of results from different models on the confusion matrix.

Phase
Model RF SVM LSVM

Class No Yes No Yes No Yes

Training and
Validation

No 144 5 132 17 114 35
Yes 2 147 5 144 51 98

Testing No 6 2 4 4 3 5
Yes 2 7 2 7 1 8

3.2.2. Testing

According to the RF, SVM and LSVM models established by the training and validation
results, 17 events in 2016–2020 were imported into the model for testing (Table 12). The
results showed that the MCC and AUC of the RF model were 82% and 22% higher than
those of the SVM model, respectively (Table 10). Combined with the confusion matrix of
the test set (Table 11), it can be found that the prediction performance of both models on
debris flow events is good, and the recall rate can reach more than 0.77. The disadvantage
of SVM is reflected in the prediction of non-debris flow events: the recall rate is only 0.5,
which is much lower than that of RF (0.75).

Compared with the performance in the training and validation phase, the LSVM-
based model performed significantly better in this phase, and some assessment indices
were even higher than that from the RF or SVM model. However, this is mainly because
the model predicted 13 of the 17 events as debris flow, which improved the recall rate of
debris flow events (0.889) but also enlarged the false alarm rate (0.625) simultaneously
(Table 10). The LSVM has no kernel function processing procedure, so it is only applicable
to the linearly separable datasets [21,33]. For the complex data set in this case, the classifier
is not competent for this prediction task.

If we focus on the prediction results of each event (Table 12), it can be found that
the outputs of the RF and SVM models are more sensitive to the precipitation indicators,
especially A3 (0.79 ** for RF and 0.573 * for SVM on Pearson correlation coefficient, the same
below) and Im (0.587 * for RF and 0.726 ** for SVM). In addition, the response of SVM to
temperature indicator is also outstanding, especially for Cv

15 (0.787 **). Taking the outputs
as the dependent variable and the seven indicators as the independent variable for stepwise
regression, the results showed that the goodness of fit from the SVM model was higher than
that from the RF model (Table 13). Although the processing mechanism of nonparametric
models (such as SVM and RF) does not depend on the correlation between the input and
output, the prediction result of SVM in this case seems to be closer to the linear relationships
between the indicators and the events, even with the support of kernel functions.
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Table 12. Prediction results of different models on the 17 events of the testing set.

No. Gully Date Station A3 D Im NDVIt Sa Cv
15 T10 Debris

Flow
RF SVM

1 Chidan 2016-09-05 PEILONG 21.75 15.00 4.70 0.69 30.70 0.43 16.80 Yes
√ √

2 Jiaolong 2016-09-05 PEILONG 21.75 15.00 4.70 0.37 36.20 0.43 16.80 Yes
√ √

3 Bitong 2016-09-05 PEILONG 21.75 15.00 4.70 0.44 34.50 0.43 16.80 Yes
√ √

4 Chaobu 2017-08-03 GUXIANG 3.10 1.00 0.20 0.64 35.00 0.17 18.30 Yes
√

×

5 Chaobu 2017-08-02 GUXIANG 0.09 6.00 1.60 0.64 35.00 0.17 18.40 No
√ √

6 Guxiang 2017-08-03 GUXIANG 3.10 1.00 0.20 0.30 35.60 0.17 18.30 No
√ √

7 East
Lapu

2018-05-22 SONGZONG 0.00 0.00 0.00 0.04 36.00 0.21 14.00 Yes × ×

8 East
Lapu

2018-05-21 SONGZONG 0.00 0.00 0.00 0.01 36.00 0.21 13.10 No
√ √

9 Jiurong 2018-05-22 SONGZONG 0.00 0.00 0.00 0.22 36.00 0.21 14.00 No
√ √

10 Tianmo 2018-07-11 GUXIANG 12.94 10.00 3.10 0.40 37.70 0.24 18.20 Yes
√ √

11 Bitong 2018-07-11 GUXIANG 12.94 10.00 3.10 0.29 34.50 0.24 18.20 Yes
√ √

12 Guxiang 2018-07-11 GUXIANG 12.94 10.00 3.10 0.28 35.60 0.24 18.20 No × ×

13 Dada 2020-07-09 TIANMO 0.65 2.35 6.00 0.39 33.00 0.37 16.26 No
√

×

14 Dada 2020-07-10 TIANMO 6.50 3.00 7.60 0.39 33.00 0.35 16.19 Yes
√ √

15 Tianmo 2020-07-10 TIANMO 6.50 3.00 7.60 0.51 37.70 0.35 16.19 No × ×

16 Guxiang 2020-07-08 GUXIANG-2 0.20 0.00 0.00 0.39 35.60 0.37 15.98 No
√

×

17 Guxiang 2020-07-09 GUXIANG-2 0.35 3.80 2.33 0.39 35.60 0.37 16.26 Yes ×
√

Table 13. Main model parameters of the stepwise regression analysis based on test set.

Dependent Variable Independent Variable Standardized Coefficients t-Value p-Value F-Value Adjusted R2

RF outputs A3 0.790 4.986 0.000 24.862 0.599

SVM outputs Cv
15 0.818 5.891 0.000 19.167

0.694T10 0.338 2.433 0.029

The key of success classification for SVM is to find the support vectors. Borderline
SMOTE highlights the decision boundary through interpolation, so it is more conducive to
the classification of the SVM model, theoretically [19,56]. Actually, the optimal hyperparam-
eter value of gamma given by Gridsearch was 0.001. Under this condition, the weighted
recall rate, MCC, and AUC of SVM were 0.977, 0.953, and 0.977, respectively, which was
basically as good as those of the RF model. However, the model classified 16 of the 17 test
events into non-debris flow events, resulting in the recall rate of debris flow events being
only 0.11, i.e., the overfitting occurred. This indicates that the SVM algorithm is still prone
to overfitting even if the Borderline SMOTE is applied, whereas the RF shows better ro-
bustness at this point, partly because it is relatively less sensitive to the hyperparameter
setting [57].
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Some scholars believed that the ensemble learning-based RF model was insensitive
to the lack of input data [58]. In other words, even if there was no process of indicator
selection, theoretically, the model established by all indicators had a higher probability of
making an effective prediction, even in the absence of some input indicators in the testing
phase. In this study, we also tested the RF model built by 26 full indicators. The results
showed that the performance of the full indicator model was basically the same as that
of the simplified model in the phases of training, validation, and testing, presenting no
advantage in prediction accuracy. Moreover, full indicator modeling would have increased
the amount of calculation and affected the speed of model construction and response.
Considering the performance of the model and the cost of data collection and processing,
the early warning efficiency of the simplified model was obviously higher.

Another thing worth noting is that although the RF model shows acceptable accuracy
in this phase, there are still some shortcomings. First, the prediction effect for debris flow
events without precipitation is still poor, such as the seventh event in Table 12. Second, the
model takes the indicators reflecting spatial heterogeneity into account, but the influences of
these indicators are limited in prediction. For example, the Dada gully and adjacent Tianmo
gully share the same precipitation station; thus, most monitoring data are identical except
the NDVIt and Sa. However, for the events on 10 July 2020, the model cannot distinguish
whether debris flow occurred in these two gullies only based on the data difference of this
degree (Table 12). Therefore, the model proposed in this paper is still a regional prediction
model, and its spatial resolution cannot be accurate to specific gullies at present.

3.2.3. Comparison
I-D Model and I-D-A Model

The rainfall indicator method is currently the most widely used debris flow monitoring
and early warning method in the world. Its representative method is the power law
equation (I-D method) proposed by Caine [59]. This method assumes that the critical
rainfall intensity for debris flow is nonlinear with the rainfall duration. As the rainfall
duration increases, the critical rainfall intensity decreases accordingly. The traditional I-D
method does not consider the impact of antecedent rainfall, so its prediction accuracy may
be poor for watersheds with better vegetation coverage and greater water storage potential.
Fortunately, the so-called I-A method based on the relationships between antecedent
effective rainfall and rain intensity can make up for this shortcoming [7]. However, some
scholars have pointed out that the warning effect of the I-D method is better than that of
the I-A method for sandy soil areas with strong infiltration capacity [60].

The proposed RF model, i.e., the original model here, is essentially an event-based
prediction model for periglacial debris flow. By introducing the antecedent effective cumu-
lative precipitation (A3) of each event, the model can simultaneously consider the effects of
antecedent precipitation (A3), precipitation duration (D), and precipitation intensity (Im)
on the development of debris flow. Therefore, it is actually an I-D-A model. Herein, we
tested and compared the performance of the original model and the RF model without
A3, i.e., the I-D model in this paper. The results showed that the advantage of the I-D-A
model in the training and validation phase was not obvious, and the difference between
them was less than 3% in MCC, which was the assessment index with the largest difference.
On the contrary, in the testing phase, the classification accuracy of the I-D-A model was
significantly higher than that of the I-D model, and the difference between them in MCC
was more than two-fold. Without the support of A3, the false alarm rate for both positive
and negative samples increased (Table 14). Considering that this result is obtained even
in the area with good infiltration condition, which is reported as more suitable for the I-D
model [60], it is believed that the antecedent precipitation index is of great significance to
improve the performance of debris flow prediction model, at least in this case.
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Resampling Model and Non-Resampling Model

Previous studies have found that because of the modeling idea and model structure,
some machine learning algorithms are inherently capable of dealing with the imbalanced
data sets to some extent [19,59]. For this type of algorithm, such as the RF, even if the
original data are not resampled, a satisfactory classification result may be obtained. Herein,
we tested the RF model with the original non-resampled data. The results showed that the
resampling processing in this case was essential to improve the performance of the model.
In the training and validation phase, although the recall rate of the debris flow event was
only 0.625, the weighted recall rate exceeded 0.94 because of the larger weights on the
non-debris flow event. This resulted in the model predictions being more biased toward
non-debris flow events during the testing phase (Table 15). Compared with the original
model that had been resampled, the MCC of the non-resampled model had dropped by
32% in the training and validation phase, and the drop in the testing phase had reached
83%. The negative effect brought by the imbalanced data set was very significant.

SMOTE Model and Borderline SMOTE Model

The SMOTE is an intelligent oversampling algorithm commonly used in the current
academic community, and the Borderline SMOTE, as an improved version of SMOTE,
theoretically has a higher interpolation efficiency at the classification boundary. Using the
SMOTE from WEKA to expand the original 16 debris flow events by eight times, the ratio
of debris flow events to non-debris flow events was close to 1:1. We tested the RF model
built by this data set and compared it with the original model using Borderline SMOTE.
The results showed that in the training and validation phase, the SMOTE-based model
had almost the same performance as the original model (Table 14). In the testing phase,
however, the SMOTE-based model has a significantly lower recall rate for debris flow
events (Table 15), and its MCC was only 38% of the original model. The use of Borderline
SMOTE modeling is of practical significance for the improvement of prediction accuracy in
this case.

Based on the results of the three tests, it can be found that the situation with/without
the A3 test and the SMOTE/Borderline SMOTE test is similar; that is, the original model
presents obvious advantages only in the testing phase. This is partly due to the lack of data
in the testing set. However, it should also be noted that in each test, the assessment indices
of the original model were ahead of the other models in all phases (Table 14), indicating
that these two measures did improve the model prediction performance. On the contrary,
the result of whether to resample the test is quite different from that of the other two tests.
Regardless of the training and validation phase or the testing phase, the performance of the
model using the resampling technique (whether ordinary SMOTE or Borderline SMOTE) is
much better than that of the model without resampling, which indicates that the technique
is necessary for preprocessing the original small and imbalanced data set.
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Table 14. Comparison of prediction performance of RF models in different conditions.

Phase Model Class TPR FPR MCC ROC

Training and
Validation

Original
No 0.966 0.013

0.953 0.997Yes 0.987 0.034
WA 0.977 0.023

Without A3

No 0.946 0.020
0.927 0.995Yes 0.980 0.054

WA 0.963 0.037

Non-resample
No 0.980 0.375

0.664 0.947Yes 0.625 0.020
WA 0.945 0.341

SMOTE
No 0.966 0.028

0.939 0.995Yes 0.972 0.034
WA 0.969 0.031

Testing

Original
No 0.750 0.222

0.528 0.778Yes 0.778 0.250
WA 0.765 0.237

Without A3

No 0.500 0.333
0.169 0.736Yes 0.667 0.500

WA 0.588 0.422

Non-resample
No 0.750 0.667

0.091 0.729Yes 0.333 0.250
WA 0.529 0.446

SMOTE
No 0.750 0.556

0.203 0.750Yes 0.444 0.250
WA 0.588 0.394

Note: “Yes” for debris flow events and “No” for non-debris flow events; WA represents weighted average.

Table 15. Confusion matrix of prediction results of RF models in different conditions.

Model
Phase Training & Validation Testing

Class No Yes No Yes

Original No 144 5 6 2
Yes 2 147 2 7

Without A3
No 141 8 4 4
Yes 3 146 3 6

Non-resample No 146 3 6 2
Yes 6 10 6 3

SMOTE
No 144 5 6 2
Yes 4 140 5 4

4. Conclusions

Taking 15 typical periglacial debris flow gullies in the Parlung Zangbo Basin of south-
east Tibet as an example, this study preliminarily explored how to establish a periglacial
debris flow prediction model with acceptable accuracy and certain promotion value under
the constraints of insufficient mechanism knowledge and imbalanced small sample data.
Through field investigation and geostatistical analysis, a comprehensive index system
covering 26 indicators from vegetation, meteorology, geology, and geomorphology was
constructed firstly, and then seven of the indicators were selected as the recommended
monitoring and early warning indicators, which were used as the inputs of the classification
model after resampling. In addition, several comparative tests were also carried out for
understanding the performance of the established model, and the following conclusions
were drawn.

For the periglacial debris flow gully in the Peilong–Ranwu section of the Parlung
Zangbo Basin, various temperature and precipitation indicators, as well as vegetation
coverage, were closely related to the development of debris flow. Seven indicators,
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i.e., (1) precipitation duration (D), (2) maximum precipitation intensity (Im), (3) coeffi-
cient of variation of the daily temperature range (Cv

15), (4) antecedent temperature (T10),
(5) antecedent accumulated precipitation (A3), (6) antecedent NDVI (NDVIt), and (7) aver-
age slope (Sa), were recommended as the monitoring and early warning indicators.

Based on these seven indicators, we constructed the periglacial debris flow prediction
model using the Borderline SMOTE and RF classification algorithm. The main assessment
indices, such as the weighted recall ratio, MCC, and AUC, exceeded 0.95 in the training and
validation phase, and most of them exceeded 0.7 in the testing phase, showing acceptable
accuracy under the limited sample data. Therefore, it is considered that the proposed
workflow and model, as a prediction scheme of regional precipitation-related periglacial
debris flow, have a certain promotion value for further research.

The performance of the SVM-based prediction scheme in this case is also acceptable.
However, compared with the RF scheme, the SVM scheme has a lower recall rate on non-
debris flow events, which means that this scheme may lead to a higher false alarm rate.
In addition, the SVM-based classification model may still have overfitting phenomenon
under the interpolation of Borderline SMOTE, while the RF based on ensemble learning
idea shows better robustness; that is, the model presents more stable performance under
the condition of imbalanced small sample data interpolation.

For imbalanced small sample data sets, resampling is necessary to improve the classifi-
cation accuracy of the model. In this case, the prediction results from the RF model without
resampling were more biased toward non-debris flow events, because the non-debris flow
events accounted for the majority of the data set. Compared with the RF model with resam-
pling, the prediction accuracy of the model without resampling had dropped significantly,
which could reach 83%.

The test results indicated that considering the antecedent accumulated precipitation
in a precipitation event helped to improve the model prediction accuracy, even for an
area with strong permeable sandy soil. Similarly, as an improved version of SMOTE, the
application of Borderline SMOTE was also of positive significance to the improvement of
model performance.
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