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Abstract: Using low permeability soils in landfill liners is a guaranteed leachate control and prevents
leakage which causes environmental pollution. In this matter, the application of new technologies
such as nano provides more capable filters that are used for reducing leachate pollutants and modify-
ing the geotechnical properties of liners. The presented study attempted to conduct experimental
research on nanoclay–nanofiber composite usage to control landfill liner permeability and observe
its impact on the geotechnical characteristics of liners which provide a strong barrel for leachate
leakage prevention and increase the liner durability for crack generations. In this regard, a total of
120 different geotechnical experiments were performed on mixed improved fine-grained soil samples
which were categorized into four groups including nanoclay additives, nanofiber additives, nanocom-
posite additives, and control samples (without additives). According to the experimental results,
permeability decreased, and geotechnical properties (e.g., Atterberg limits, unconfined compressive
strength, cohesion, and friction) were increased with increasing nanocomposite content in the soil.

Keywords: nanoclay; nanofiber; environments; landfill liners; permeability

1. Introduction

Landfilling is the final destination for solid waste and the main disposal method for
controlling waste worldwide [1]. Landfills are used for waste management aims, such
as storage, consolidation, and transfer, or processing of waste that is generated in cities,
industries, medical sites, or chemical factories [2–4]. In the meantime, municipal landfills
are the most extensive sanitary landfill type in the world which have a strong impact
on environments and ecosystems [5,6]. Landfills have the potential to cause large-scale
environmental pollution such as the contamination of groundwater and/or aquifers and/or
soil contamination by leachate. Leachate contaminations lead to huge damage to different
ecosystems and species [7]. Control of leachate generation and isolation in landfills is a
great duty of liners and has an important impact on the environment and human health.
Therefore, in a landfill’s liner design, there was an attempt to use fine-grained soil with
low permeability to prevent leachate immigration and groundwater contamination [8].
Clayey soils are widely used in landfill liners due to their low permeability and suitable
geo-engineering characteristics [9]. Clayey soil (especially bentonite or montmorillonite)
properties are directly related to their clay type, cation exchange capacity, dissolution
precipitation, redox reactions, and chemical components which lead to increased durability
and reduced permeability against leachate [10,11]. Clayey soils have received success
in landfill liner designs with scientific and practical implementations. In general, the
materials used in the liners must have very low permeability and high capacity to absorb
pollutants, good flexibility against changes in humidity, settlements for landfill, and also
these materials must have sufficient strength against forces and loads, which is mainly
satisfied by clayey soils [12]. In several cases where the local clay used as a material in these
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coatings is not of sufficient quality and the transportation of clay with suitable conditions
is costly, improving soil conditions by adding suitable additives or synthesizing existing
materials is cost-effective and changes some properties, such as reducing the permeability
coefficient and eliminating some problems in the soil [13]. Therefore, several scholars
provide alternative procedures that help to improve the geo-engineering features as well as
environmental properties [14–17].

Hermann et al. [18] investigated the hydraulic conductivity of fine-grained volcanic
ash mixed with bentonite to control sewage sludge in Sweden. According to the results of
the study, it appeared that the hydraulic conductivity of the volcanic ash mixture regarding
the control of sewage sludge was reduced from 1.0 × 10−4 m/s to 1.7 × 10−11. Kananizadeh
et al. [19] performed experimental assessments on Kahrizak Landfill’s dense clay liner in
Tehran to analyze the permeability and swelling variations based on different amounts of
nanoclay additives. The results of the study indicate that by adding 4% nanoclay, the perme-
ability of soil changed from 3.66 × 10−9 to 7.74 × 10−11 in normal conditions. This variation
was from 3.66 × 10−9 to 7.9 × 10−10 for the acidic condition and was from 3.25 × 10−9 to
5.24 × 10−10 for the alkali condition. Concerning this research, it can be mentioned that
using nanoclay has a good impact on permeability. Debnath et al. [20] conducted a review
study on nanomaterial and nanofiber applications in different aspects of the engineering
field. The authors stated that in geotechnology, the application of nanomaterials and
nanofibers provides a strong impact on improvements in the geotechnical characteristics of
soils. Li et al. [21] examined the effect of leachate contamination on dense clay’s mechanical
properties which was utilized on clayey soils taken from a Wuhan metro site in China.
Samples were used in different geotechnical tests with nanoclay additives after preparation
in standard density tests with 95% density and 19.5% moisture. From the results of the
assessment, it appeared that the nanoclays caused some improvements in clayey soil, such
as hydraulic conductivity, density, durability, Atterberg limit, and unconfined compressive
strength (UCS). Bahari et al. [22] used nanoclay to modify the soil structures for agricul-
ture in Abbandan. Experiments were conducted on submerged mixed fine-grained soils
with nanoclay additives. According to the results, soil permeability was reduced from
1.58 × 10−4 to 2.88 × 10−5 by adding 0.5% nanomontmorionite. Jafari and Abbasian [23,24]
conducted studies on soil permeability reduction by using different amounts of nanoclay
(montmorillonite) for leachate control generated from industrial facilities. Based on this
research, it was shown that the permeability was reduced with the increase in nanomont-
morionite rate. Derakhshani and Naghizadeh [25] state that the application of nanofibers
(as inexpensive and non-toxic materials) can improve the geotechnical features of soils.

Almasri et al. [26] evaluated the performance of clay-based nanocomposite fiber
prepared using a simple wet-moisture synthesis method. The researchers assessed the
impact of groundwater contamination with arsenic and the role of the prepared nanocom-
posite in the inhibition and uptake of arsenic (AsIII). Using pure montmorillonite and
hydroxypyrene nanofiber led to an increased adsorption capacity of arsenic-contaminated
groundwater. Dlamini et al. [27], by preparing mixed fibrous cellulose-based cellulosic
composites, tried to analyze the performance of the water treatment of effluents. The
researchers used clay-based nanofibers as ultrafiltration (UF) membranes to purify salt
and distill salt water. To purify water from salt-containing effluents, used nanofiltration
(NF) membranes conducting fiber-based nanocomposites (illite and montmorillonite) were
mixed with soils. Qasaimeh et al. [28] investigated the effects of nanobentonite additives to
reduce the environmental impact on fine soils. Referring to the results of the study, it can
be stated that nanoclay 0.6% increased the soil strength up to 315 kPa and the potential for
swelling was significantly reduced. Mehrabi et al. [29] conducted an experimental study
on nanofiber’s impact on material strength. Results of the study showed that nanofibers
can improve the UCS and density significantly and it reduced permeability and porosity.

The presented article relying on the literature review results has tried to develop a
new experimental method base on nanoclay–nanofiber composite application in landfill
liners to reduce the permeability and improve the geo-engineering of fine-grained soil.
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Most researchers are focused on nanoclay or nanofibers’ effects on soils individually.
The presented study tries to consider both impacts on the geotechnical aspect of landfill
liner design.

2. Materials and Methods
2.1. Landfill Leachate

The study was performed on nanoclay–nanofiber composite application to improve
the landfill liner performance against leachate leakage. The used study was obtained
from the Tabriz Landfill site (Tabriz landfill site is +10 km from Spiran road, northwest
of Tabriz) located in northwestern Iran. The leachate samples were taken and isolated in
order to prevent changes in the leachate, then samples were transferred to the laboratory
and chemical tests were performed on them. Table 1 illustrates the results of the chemical
analysis for the studied leachate. To estimate the chemical composition of the Tabriz landfill
leachate, several standard chemical laboratory tests were performed on the leachate samples
that were taken from the landfill site, such as pH [30], thermometer, total dissolved solids or
TDS meter, atomic absorption spectroscopy [31], high-performance liquid chromatography
(HPLC), and X-ray fluorescence [32]. Additionally, the fine-grained soil samples were
taken from the landfill site as well, which is used for mixed filter design. The soil samples
were isolated as well and transferred into the geotechnical laboratory to conduct various
geoengineering tests. These samples were divided into four different groups with each
group having a specific mixture prepared for certain tests.

Table 1. Chemical composition of the Tabriz landfill leachate.

Samples 1 2 3 4 5 6 7 8 9

pH 7.22 7.13 7.20 7.22 7.17 7.22 7.13 7.13 7.13
T (◦C) 118.1 17.7 18.3 18.0 17.2 17.8 17.7 18.1 18.3
TDS
(ppm) 496.12 498.33 492.25 489.36 496.11 490.45 486.70 450.12 476.42

As (pmm) 12.2 7.3 9.9 5.7 9.6 6.3 10.7 9.6 12.2
Cd (ppm) 1.10 1.14 1.06 1.03 0.98 1.17 1.02 0.97 0.97
Co (ppm) 47.6 45.4 47.3 45.6 47.3 45.5 47.3 47.3 45.6
Cr (ppm) 63.14 71.1 75.63 79.64 63.35 17.17 66.38 65.97 71.49
Cu (ppm) 96.83 96.85 97.10 96.37 97.45 96.17 96.75 97.58 96.19
Mn (ppm) 91.3 102.7 95.5 97.3 95.6 91.3 91.7 95.5 97.3
Ni (ppm) 87.30 87.42 85.96 87.74 87.35 86.91 87.50 87.63 87.33
Pb (ppm) 192.1 189.7 196.3 190.0 196.4 196.4 192.5 231.9 238.0
Zn (ppm) 234.7 248.2 239.7 237.0 237.0 235.4 239.1 231.9 238.0
Hg (ppm) 7.47 6.03 7.17 7.41 7.10 6.65 6.85 7.10 6.36
Ca (ppm) 65.71 67.77 65.63 97.12 65.45 97.36 65.22 67.47 65.60
Na (ppm) 15.9 12.5 15.4 14.9 15.2 12.9 17.2 14.9 12.5
Mg (ppm) 15.23 15.03 14.56 17.73 14.81 15.20 14.65 17.71 15.02
HCO3

−

(ppm) 25.41 27.33 25.45 27.12 25.63 27.92 25.40 25.45 27.12

Cl−

(ppm) 6.39 6.35 7.10 6.89 6.33 7.17 6.63 7.25 6.32

NO3
−

(ppm) 17.20 16.96 17.15 17.12 16.85 17.20 16.74 15.56 17.31

SO4
2−

(ppm)
18.85 18.63 18.74 18.52 18.25 19.12 18.78 18.45 19.02

2.2. Experimental Procedures

The samples soils taken from the Tabriz landfill site were prepared and categorized
in the geotechnical laboratory in order to perform various geo-engineering tests which
concluded particle size, hydrometry, permeability, Atterberg limits, UCS, and direct-shear
tests. In this regard, the samples were prepared and we waited for 1, 7, 14, and 28 days
before the testing stage. The tests were repeated for all groups 3 times and the average
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of the measurements was reported as the main value. This repetition helped to reduce
technical and human errors during the tests. Some of these tests were conducted on the
main soils (without any operations) such as particle size and hydrometry with a 1-day
waiting duration. Figure 1 presents the grain size analysis result of the studied soil. Figure 2
provides the plasticity chart [33] for the main soil samples. According to this figure, the
studied soil is classified as CL based on the unified soil classification system (USCS). CL
stands for clayey soil with low plasticity.
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After providing the basic tests on main soils, which were conducted based on the
American Society for Testing and Materials (ASTM) instructions [34–36], the samples were
divided into four groups: concluded nanoclay additives, nanofiber additives, nanocom-
posite additives, and control samples (without additives), which reached a total of 120 soil
samples. Each additive group was mixed with 3%, 6%, and 9% weight (%w) nanoparticles
and prepared based on 1, 7, 14, and 28 days of waiting before testing. The aim of these
preparations was investigating possible changes over time during periods of 1, 7, 14, and
28 days in isolated storage cells. If any changes were observed over time in the soil samples,
it should be recorded. Each tests had specific preparation method that were recommended
by ASTM and were described in their standards properly [33]. The control samples were
used for observational purposes and each group was measured regarding the control group.

2.3. Nanoparticles Specifications

The nanoparticles used in this research are divided into nanoclay and nanofibers.
Montmorillonite-type nanoclay was utilized in this study and the specification of the
nanoclay is presented in Table 2. Nanomontmorillonite was chosen due to its high specific
surface, special absorption ability, and compatibility with the environment. Additionally,
the nanofibers used in this study are cellulose nanofibers (CNF), which were synthesized
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in the laboratory using the electrospinning method. Electrospinning is a fiber production
method that uses electric force to draw charged threads of polymer solutions or polymer
melts up to fiber diameters in the order of some hundred nanometers. Electrospinning
shares characteristics of both electrospraying and the conventional solution dry spinning of
fibers. The presented study used the dual-pump electrospinning machine from Fanavaran
Nano-megyas to synthesize nanofibers. This device has a 60–50/V AC 240–100 H input
power, 1000 watt 4 amp heater, and a HMI panel for ventilation. These materials were
mixed with the tested soil in an ultrasonic mixer with a rotor speed of 25 rpm, for 24 h and
were isolated in a dry state for 72 h. After these preparation steps, they were used in tests
and sample preparations. Table 3 provides the CNF nanofiber specification used in this
task. Figure 3 provides a view of the nanoclay and nanofiber that were used in this study.
Nanomontmorillonite additives were prepared from Temad Kala/Nano Sadra Company
with IDs Closite 15A/MJ-48 and synthesized cellulose nanofibers were also provided from
Nanosani Service Company with IDs NS-CNF-001.

Table 2. Physical-chemical properties of the nano montmorillonite.

Parameter Unit Value

Physical properties

Clay type - Montmorillonite
Particle size mn 1–2
Density g/cm3 0.5–0.7
Specific surface area m2/g 220–270
Electrical resistivity MV −25
Inter-particles distance A◦ 60
Ion exchange coefficient meg/100 g 48
Color - Pale yellow
Moisture % 1–2

Chemical properties

Na2O % 0.98
MgO % 3.29
Al2O3 % 19.60
SiO2 % 50.95
K2O % 0.68
CaO % 1.97
TiO2 % 0.62
Fe2O3 % 5.62
LOI % 15.45

Table 3. The index properties of the CNF nanofiber.

Parameter Unit Value

Fiber type - Carbon nanofiber
Solids w% Aqueous gel (3.0) + dry powder (98)
Fiber dimensions nm 50
Surface property m2/g (BET) 31–33 (Hydrophilic)
Density g/cm3 Aqueous gel (1.0) + dry powder (1.5)
Fiber length A◦ 4.5
Specific surface area m2/g 149.5
Electrical resistivity MV −253
Color - Pale yellow
Moisture % 1
Yield of fibrillation % 91.25
Transmittance at 600 nm % 65
Water Retention g/g 4.8
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2.4. Permeability Analysis

The permeability tests were performed on selected samples from the mentioned groups
based on ASTM instructions [37]. In this regard, the samples after preparations were filled
with compacted soil mixed with nanofiber and nanoclay particles. The cell was installed in
a standard constant-head permeability test device, and to avoid the washed-away problem,
porous papers were used at the top and bottom of the cell. Additionally, cleaned gravel
was used in the top of the cell in a thin layer in order to prevent swelling and help the flow
of leachate in the cell. Figure 4 illustrates the scheme of the permeability tests conducted
on the different group of mixtures. The leachate was collected in the output point after
passing through the filters and samples which were used for the calculation of permeability
by using the following equation [33]:

k =
QL

At(h 1 − h2)
(1)

where k is permeability (cm/s), Q is the total discharge (cm3/s), L is the distance between
the manometers (cm), A is surface area (cm2), t is the elapsed time (s), and h1 − h2 are the
leachate head in cell columns. The results of the permeability variations were controled by
the observational group and reported accordingly.
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2.5. Geotechnical Investigations

To investigate the geo-engineering characteristics of the studied soil in both improved
(with additives) and non-improved (without additives) cases, comprehensive experiments
were conducted on selected samples. Each test was repeated three times and the average
value was considered as the main parameter. In this regard, the Atterberg limits [36],
unconfined compressive strength, UCS [38], and direct-shear [39] tests were conducted on
samples according to the ASTM regulations [40]. Atterberg limits were used to investigate
the plasticity of the soil behavior analysis and estimate the modifications on liquid and
plastic limits of the soil with respect to the controlling samples. The UCS and direct-
shear tests were used to investigate the soil strength parameters. The geo-engineering
characteristics after estimation for each group, and the variation of the measured parameters
(e.g., UCS, cohesion, c, friction, ϕ) were obtained and presented.

3. Results and Discussion

For the preparation of nanoclay–nanofiber-composite-added samples, the selected
samples are divided into groups where each group had a specific amount of nanoclay (3%w,
6%w, and 9%w), nanofiber (3%w, 6%w, and 9%w) and composite (3%w, 6%w, and 9%w).
The samples of the group during the preparation stage were mixed using a ultrasonic
homogenizer sonicator cell disruptor mixer to reach the homogeny mixtures. After the
preparation stage, samples were tested and results were reported. There were several types
of geotechnical experiments conducted on specimens that represented the permeability
and geo-engineering characteristics. Figure 5 shows the permeability results of different
groups of samples. According to this figure, permeability was reduced by using nanoclay
particles from 4.25 × 10−6 cm/s to 5.25 × 10−8 cm/s with an increasing nanoclay quantity
from 0% to 9%. This amount for nanofiber became 3.24 × 10−8 cm/s which was less than
nanoclay additives. This event indicated that the nanoclay is more suitable for permeability
reduction on landfill liners individually, but paying attention to the changes in the curve
of composite samples reveals an interesting point. The nanoclay–nanofiber composite
reached 6.34 × 10−9 cm/s permeability. Therefore, the application of the composite form
of the nanoparticles is more appropriate than using them separately. This reduction in
permeability can be attributed to the optimal design of the landfill liners. Figures 5–11
provide the main compression which is targeted in this study. The aim of the study is
understanding the variations of nanoclay, nanofiber, and composite (clay-fiber) for the
controlling of permeability, plasticity as well as UCS, C, and internal friction. The first
group represented the soil physical properties and the second group was responsible for
the strength properties.

The Atterberg limits are a basic measure of the critical water contents of fine-grained
soil which represents the plastic behavior of the soil. Improving this behavior can increase
the durability of the soil structures. Figures 6–8 show the Atterberg limit results mea-
sured for different groups of the samples which are modified via nanoclay, nanofiber, and
nanoclay–nanofiber composite. Each group was mixed with 3%, 6%, and 9% of sample
weight (%w) additive. According to these figures, the concluded Atterberg limits show
the different path of variations in liquid limit (LL), plastic limit (PL), and plasticity index
(PI). Generally, the Atterberg limits were increased with the increasing in the nanoparticle
additives, but these increases occurred with different slope angles. The nanoclay–nanofiber
composites increased with a lower slope compared to nanoclays. The nanofibers acted
independently of nanoclays and it can be mentioned that the nanoclays are normative
responsible for the plastic behavior of the soil. Based on the results of the study, LL was
changed from 37 in the control group to 54 for the 28-day mixed nanoclay. It happened for
nanofiber and composite becoming 67 and 75, respectively. PL and PI also increased with
nanoparticle additives. In the nanoclay group, PL and PI changed from 20.67 and 16.33 to
29.67 and 25.34. This variation for the nanofiber group was up to 35.67 and 31.34; for the
composite group it was 45 and 30.
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The UCS and direct-shear were used to investigate the strength parameter variations
of mixed soils. The UCS, c and ϕ are the index strength parameters that represent the
mechanical properties of the fine-grained soil regarding durability. These mechanical prop-
erties were estimated for studied samples in different groups and presented in Figures 9–11.
According to Figure 9, the UCS measured for the main soil (control group) was 120 kPa
which became 188 kPa in the nanoclay group; 200 kPa in the nanofiber group, and 216 kPa
in the nanoclay–nanofiber composite after a 28-day waiting period. These changes indi-
cated that using the nanofiber mixture increased the UCS more than the nanoclay mixture
and the composite mixture showed improvement. Therefore, the UCS is modified using a
nanofiber mixture in samples, but the composite mixture reaches the highest rate of UCS.
It can be concluded that nanoclay–nanofiber composite application significantly improve
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UCS and the durability of the soil. Figures 10 and 11 show the c and ϕ changes in the
nanoclay, nanofiber, and composite groups. As seen in this figure, the variation of the
various mixtures in the ϕ does not show a visible change, but c has shown an increase
with the increase in waiting time and additives. In the nanoclay group, the c has reached
185 kPa to 270 kPa. In the nanofiber group, it reached 275, and in the composite group, it hit
288 kPa. Regarding the obtained results, the nanoclay–nanofiber composite has provided
good improvements in soil durability which can be considered an appropriate alternative
to modify landfill liners.
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k is the permeability coefficient which decreased, because nanomaterials such as
montmorillonite clay is a fine-grained soil with a low permeability capability. Adding such
materials with low to good permeability will naturally reduce soil permeability. On the
other hand, due to the nano size of these materials, they enter easily into the interparticle
spaces in the soil and this action will further reduce the permeability of the soil. On the
other hand, with the entry of these particles into the interparticle spaces according to their
characteristics, they cause the increase in soil fertility and structural strength. This strength
works to increase soil resistance against loading or cutting. Therefore, it is reasonable to
expect that by adding nanomaterials, soil resistance will also improve.

4. Conclusions

The presented study attempted to provide extensive experimental research on nanoclay–
nanofiber composite application to geotechnical improvements and permeability for landfill
liners and its impact on leachate prevention. In this regard, a total of 120 samples were
taken from the Tabriz landfill site (northwest of Iran) and prepared for various geotechnical
tests to conclude particle size, hydrometry, permeability, Atterberg limits, UCS, and direct-
shear. The samples were prepared and we waited for 1, 7, 14, and 28 days before the testing
stage. All tests were performed based on ASTM regulations and repeated three times
(to reduce human and device error) which represents average values. The taken samples
were divided into four groups after preparations: concluded nanoclay additives, nanofiber
additives, nanocomposite additives, and control samples (without additives) with 3%w,
6%w, and 9%w mixtures. Based on the results of the study, the following are presented:

1. The studied soil is classified as CL class based on USCS which is estimated using
particle size and hydrometry tests. CL stands for clayey soil with low plasticity.

2. Regarding permeability tests, the results indicated that additives such as nanoclay,
nanofiber, and nanocomposite (nanoclay–nanofiber) reduce permeability. Nanoclay re-
duces the permeability from 4.25 × 10−6 cm/s to 5.25 × 10−8 cm/s. Nanofiber reduces
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the main value to 3.24 × 10−8 cm/s and nanocomposite reduces it to 6.34 × 10−9 cm/s.
Therefore, this estimation application of nanoclay–nanofiber composite shows signifi-
cant work on permeability reduction.

3. Measured Atterberg limits for different groups showed that the plasticity increased
with an increasing in the nanoparticle additives, but it increased more rapidly for LL
than PI or PL. Nanoclays were recognized as responsible for the plastic behavior of
the soil.

4. UCS and c increase when increasing the type and amount of additives in soil, while ϕ

has not shown the significant action of variations. Results show that the nanoclay–
nanofiber composite has provided good improvements in soil durability, with in-
creased UCS from 120 kPa to 220 kPa after a 28-day waiting period. It increased c
from 185 kPa to 288 kPa as well.

5. Considering the results of the study it appeared that the nanoclay–nanofiber composite
had a good impact on leachate control by reducing permeability and increasing soil
durability and mechanical properties which can now be attributed to the optimal
design of the landfill liners.
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