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Abstract: Optimizing pump operation in water networks can effectively reduce the cost of energy. To
this end, the literature provides many methodologies, generally based on an optimization problem,
that provide the optimal operation of the pumps. However, a persistent shortcoming in the literature
is the lack of further analysis to assess if the obtained solutions are feasible from the technical point
of view. This paper first showed that some of these available methodologies identify solutions that
are technically unfeasible because they induce tank overflow or continuous pump switching, and
consequently, proposed a novel approach to avoiding such unfeasible solutions. This consisted
in comparing the number of time-steps performed by the hydraulic simulator with the predicted
value, calculated as the ratio between the simulation duration and the hydraulic time-step. Finally,
we developed a new model which couples Epanet 2.0 with Pikaia Genetic Algorithm using the
energy cost as an objective function. The proposed method, being easily exportable into existing
methodologies to overcome the limitations thereof, thus represents a substantial contribution to the
field of pump scheduling for optimal operation of water distribution networks. The new method,
tested on two case studies in the literature, proved its reliability in both cases, returning technically
feasible solutions.

Keywords: efficiency of water systems; water resources management; energy efficiency; pump scheduling

1. Introduction

With the worldwide growth in population and urban development and the ever-
increasing price of energy in recent years, conserving energy has risen to the top among the
major concerns in efficient water systems management. Given that their operations require
huge amounts of energy, water systems account for 3–4% of the total electrical power
consumption [1], with the energy consumed in particular by water pumps representing
about 90% to 95% of the total energy consumed. Due to the daytime variation in energy
tariffs, many authors have sought to solve the optimization problem by focusing on pump
scheduling in order to reduce pumping-related energy costs [2–4].

Given the complexity of a WDN, the many constraints imposed and the non-linearity
of the problem, determining the pump operation that minimizes energy costs is a non-
trivial problem, requiring often complex mathematical models to identify the optimal
solution. The initial approaches for optimizing the pump scheduling program were based
on conventional optimization methods, such as linear and nonlinear programming [5,6]
and dynamic programming [7,8]. Subsequently, several optimization algorithms were
developed to solve more complex engineering problems.

Many authors have used genetic algorithms (GAs) to solve the pump scheduling
problem [9–14]. GAs are reliable search methods that seek to mathematically reproduce the
mechanism of natural selection and population genetics, based on the biological processes
of survival and adaptation [15,16]. GAs improve an initial population of strings represent-
ing a set of possible solutions generated randomly, wherein repeatedly applying genetic
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operator searches yields efficient solutions to the problem at hand. Those with higher
objective function (or fitness function) values are retained, whereas those with lower values
are discarded. GAs offer the main advantages of using population evolving solutions and
identifying several solutions from which the decisionmaker can choose, as opposed to
a single solution. The main disadvantage lies in the high computational requirements to
reach the optimal or near-optimal solution.

With regard to other approaches, Georgescu and Georgescu [17] used the HBMOA
(honey bees mating optimization algorithm) to minimize the electrical energy consumed,
achieving outcomes showing a reduction of 32% as compared to the measured data. Abdel-
salam and Gabbar [18] achieved better results in terms of convergence and energy costs
using the artificial electric field algorithm (AEFA) rather than GAs for three WDNs. They
proposed a multi-term objective function in which energy cost and pump maintenance
were optimized. Because the maintenance costs are difficult to quantify, they are usually
measured using a surrogate objective as an additional constraint, e.g., the number of pump
switches [11,19,20].

In recent years, researchers have coupled energy price with leakage reduction in
the optimization problem [14,21]. Dai and Viet [22] focused on a scheduling program
for variable speed pumps aimed at reducing the energy cost in case of a storage tank
being present, and if not present, controlling the pressure within the water distribution
network (WDN). The results obtained with variable speed pumps, as compared to fixed
speed pumps, showed reductions in both energy costs and water losses [23]. Recently,
Moazeni and Khazaei [24] demonstrated improved energy management by optimizing
pump scheduling operation and installing PATs in the network areas characterized by
higher pressure.

Optimizing pump scheduling also has an impact on water quality: the shorter tank
filling cycle leads to a decrease in water age and an increase in the chlorine concentration
within and near the tank, whereas the opposite effects occur in other parts of the net-
work [25]. To take into account this management issue, Choi [26] proposed a multi-objective
optimization problem for the WDN design, including pump cost, system robustness and
residual chlorine. Other authors have focused on the coupled control of pump and renew-
able energy source, especially with a photovoltaic (PV) system [27,28]. Given the known
fact that the energy produced by PV systems cannot be guaranteed at all times, this kind of
operation has therefore found wide interest in agriculture, which remains unconstrained
by stringent requirements related to time of irrigation [29,30]. Because of the economic and
environmental costs involved in tank construction, the PV-produced energy is commonly
used directly for pumping operations in irrigation systems [31,32].

Despite the literature offering many methodologies, none go so far as to demonstrate or
validate the feasibility of the optimal solution identified. Thus, this paper firstly highlighted
this shortcoming in existing pump scheduling methodologies, and briefly discussed the
problem that may cause technically unfeasible solutions. When reducing the hydraulic
time step, the obtained optimal pump schedules give different outcomes, resulting in tank
overflow or continuous pump switching. Consequently, the research objective of this paper
was to mitigate the shortcoming and avoiding unfeasible solutions by means of a novel
approach based on checking the number of hydraulic time-steps in the hydraulic simulator
against the predicted value. If the predicted number of hydraulic time-steps differ to that
obtained with a hydraulic simulator, pump switching or tank overflow occurs during the
simulation and a penalty is added to the objective function. A new model based on the
proposed approach was then developed by coupling Epanet 2.0 [33] with Pikaia Genetic
Algorithm [34]. The model was further validated using two case studies, showing that
no change occurred with the reduction in hydraulic time-steps, thereby confirming its
ability to avoid the limitations of existing methodologies. The proposed novel method
offers proven reliability and is easily exportable into other existing models in order to avoid
technically unfeasible solutions.
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2. Overview of Pump Scheduling Methodologies

Minimizing pumping costs in a water distribution network is a non-trivial optimiza-
tion problem. Usually, a pump scheduling methodology combines a hydraulic model to
simulate the water network and an optimization algorithm to find the minimum cost solu-
tion corresponding to specific values of the decision variables, subject to some constraints.
Since it is an optimization problem, the objective function(s), constraint equation(s) and
decision variable(s) have to be defined.

2.1. Objective Function

An objective function must take into account the costs for operating pumps. In broad
terms, such costs can be subdivided into energy costs and maintenance costs. In the single
objective optimization formulation (the most popular approach), the objective function
only considers the cost of energy related to the pumping station’s operating power. Total
energy cost (TEC) is usually given by the cost of energy used by the pump [2,3,35], in which
the penalty (PEN) is added:

TEC =
Np

∑
p=1

T

∑
t=0

γ·Ct·Qp,t·Hp,t

ηp,t
∆th + PEN (1)

where p is the pump, t is the time (hour), Np is the number of pumps, ∆th is the time-step
(hour) of hydraulic simulation, T is the period of hydraulic simulation (hour), γ is the water
specific weight (kN/m3), Ct is the unit energy cost (€, $, £/kWh) at time t, Qp,t is the flow
(m3/s) of the pump p, at time t, Hp,t is the head (m) of pump p, at time t, ηp,t is the efficiency
(dimensional) of the pump p, at time t. Finally, PEN is 0 if all constraints are satisfied, and
a very large value (in €, $ or £) if one of the constraints is violated.

2.2. Constraints

In order to obtain compliant pump schedules, the optimization algorithm must satisfy
the system constraints. These include hydraulic constraints representing conservation
of mass and energy, minimum and maximum values of the tank water level, minimum
pressure requirements at demand nodes, and a balance between supply and demand from
tanks. While the hydraulic simulator implicitly handles some of these constraints, those
concerning tank levels need to be explicitly set. The main constraint requires the water level
in each tank k at time t (Hk,t) of the system where Nk tanks are present, to be maintained
between the allowable minimum Hk

min and maximum Hk
max at every time instant t. This

means that the following two Equations (2) and (3) must be satisfied:

Hk,t ≥ Hmin
k ∀ k = 1, . . . , Nk (2)

Hk,t ≤ Hmax
k ∀ k = 1, . . . , Nk (3)

Another constraint is to ensure that the initial water level (Hk,0 at t = 0) for each tank k
is reached or exceeded in the tank at the end of the calculation period (t = T):

Hk,T ≥ Hk,0 ∀ k = 1, . . . , Nk (4)

Finally, users must be supplied water at adequate pressures. Therefore, the minimum
pressure constraint at the nodes has to be considered, in particular for pumps which directly
supply water into the network:

Hn,t ≥ Hmin
n ∀ n = 1, . . . , Nn (5)

where Hn,t is the head at node n at time t, Nn the number of nodes and Hn
min the minimum

head required at node n.
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2.3. Decision Variables

The methodologies available in the literature differ from each other in the optimization
algorithm and the decision variables used, whereas the objective function and constraints
are substantially the ones mentioned above. Rather than discussing the differences between
optimization algorithms, this paper analyzed the decision variables used for the different
methodologies applying the following two possible approaches:

1. Pattern-based approach (PBA): on/off pump statuses during predefined equal time
intervals manage the pumps [36–42];

2. Triggering-based approach (TBA): the pumps are managed by means of start/end
operational times in terms of the length of time of pump operation [43,44], directly in
terms of start/end run times [2], or by linking pump control to time constant trigger
level [10,45] or time variable trigger level [46].

In PBAs, the decision variables can assume the value 0 or 1 for each predefined
time interval. Such approaches are the most frequently used, also because they can be
easily implemented within an optimization algorithm. However, they require a large
number of decision variables (NDVs) as compared to the TBA, in particular for WDNs with
many pumps.

In TBAs, the decision variables typically are real numbers representing start time,
operation duration (OD), on-trigger tank level, and so on. Such approaches reduce the
number of variables, but finding suitable solutions by means of optimization algorithms
can become increasingly complex. Nevertheless, both approaches may return unfeasible
solutions resulting from unrealistic operational conditions being simulated, as discussed in
the next section.

3. Detecting Technically Feasible Solutions: The Problem

This section discusses the two methodologies for which the literature provides the
data required to reproduce the optimal solutions detected by their respective authors, also
identifying the issue of concern: the said methodologies thus exemplify all the available
methodologies that are similarly prone to presenting the same issue.

3.1. Pattern-Based Approach

Savic et al. [39] developed a pump scheduling methodology using GA as optimization
algorithm and assigning an operation pattern to each pump. In addition to a pattern
time-step equal to 1 h, with decision variables assuming the value 0 or 1 for each pattern
time-step for each pump, these authors also considered constraint Equations (2)–(4) on
the water level in the tank as well as a constraint on the flow that each combination of the
pumps can deliver, which is a function of the pump characteristics and the tank water level.
They applied the methodology to the case study first analyzed by [47], and subsequently
modified by [39], by doubling the original base demand. The WDN is a version of the
network usually called Anytown, which consists of 37 pipes, 19 nodes, 1 tank (node 21) and
1 source (node 20). Four pumps are installed at the source, as shown in the network model
in Figure 1. The tank elevation and diameter are 215 ft and 40 ft, respectively, with the tank
level being the variable between the minimum of 7 ft and the maximum of 35 ft. The energy
cost is 0.0244 $/kWh from 00:00 to 07:00 h and 0.1194 $/kWh from 07:00 to 24:00 h. Each
pump has its head-discharge curve and efficiency curve. The hydraulic time-step (∆th) is
assumed equal to 1 h.

Given this scenario, the best solution was found by assuming the number of maximum
total switches is equal to 8, identifies all pumps being switched-on at 00:00 h and running
as follows: Pump 38 runs continuously over 24 h; Pump 39 runs continuously for 20 h;
Pump 40 runs continuously for 8 h; and Pump 41 runs discontinuously for two hours, from
00:00 to 01:00 h and from 20:00 to 21:00 h. The resulting total cost is $1262.75.
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operation pattern determined to be the optimal solution, actually failing to bring about 
the expected system behavior. From an analytical perspective, the constraint Equation (3) 
is not satisfied, which would cause the overflow of water from the tank. 

Figure 1. Anytown water distribution network model [39].

Figure 2 shows the total flow delivered by the pumps, i.e., the flow through conduit 1
(Q1_35) and the water level in the Tank 21 (H21_35). The number 35 in the name of the
variables indicates that the maximum allowable tank water level is equal to 35 ft. Total flow
varies between 3475 and 7836 CFS and the tank level varies between 7 and 35 ft, thus all
constraints are satisfied: the water level is greater than (or equal to) the minimum (7 ft),
lower than (or equal to) the maximum (35 ft), and the final value (13.1 ft) is greater than the
initial value (7 ft).
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Figure 2. Results of the pump scheduling model by [39] for Anytown network.

In order to assess the effectiveness and reliability of the solution, the optimal pattern
resulting from the optimization algorithm was assigned to a new WDN having the same
characteristics as the original one except for the maximum tank water level, which is
assumed equal to 80 ft. This constraint, using the optimization algorithm-derived pattern,
was satisfied (maximum level in the tank was 35 ft), as plotted in Figure 2. In theory, the
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operation of the system should remain unaltered by this change since it only affects the
maximum allowable water level of the tank. Nevertheless, in actual fact the change is
found to significantly alter system operation: Figure 2 shows the flow through conduit 1
(Q1_80) and the water level in the Tank 21 (H21_80) being significantly different from the
original values (Q1_35 and H21_35). In particular, the tank water level far exceeds the real
maximum allowable level (35 ft), reaching the value of 76.1 ft. This example shows the
operation pattern determined to be the optimal solution, actually failing to bring about the
expected system behavior. From an analytical perspective, the constraint Equation (3) is
not satisfied, which would cause the overflow of water from the tank.

3.2. Triggering Based Approach

Marchi et al. [10] developed a pump-scheduling methodology linking Epanet2 [33]
with an evolutionary algorithm, and managing operation of pumps by means of Epanet2
rule-based controls. Such controls allow for simultaneously taking into account several
conditions (e.g., time of day and tank level) for pump switch-on and switch-off. These
authors also introduced a modification in the original Epanet2 libraries in order to better
manage rule-based controls and solve the issue arising in calculating energy consumption
when rule-based controls are used.

The methodology was applied to the network first introduced by [48]. As plotted in
Figure 3, the network consists of 15 pipes and 13 nodes, 2 tanks (T5 and T6) and 1 source
(R1) with three pumps installed: two in parallel (PMP1 and PMP2), and a single pump
(PMP6). Tank T5 has: elevation of 80 m, diameter of 25 m, minimum and maximum water
levels respectively equal to 0 and 5 m; tank T6 has: elevation of 85 m, diameter of 25 m,
minimum and maximum water levels respectively equal to 0 and 10 m.
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Figure 3. Van Zyl water distribution network model [48].

The energy cost is 0.0244 £/kWh from 00:00 to 07:00 h and 0.1194 £/kWh from 07:00
to 24:00 h. Each pump has its own head-discharge curve and efficiency curve. Additional
information about system characteristics can be found in the original paper [48].

The methodology proposed five solutions, according to the dependence between
pump operation and tank water level. Analyzed here below is the solution called Case 2, in
which pump PMP1 operates as a function of tank T5 water level, whereas pumps PMP2
and PMP6 operate as a function of tank T6 water level. The hydraulic time-step used in the
model was set equal to 1 h, resulting in a total cost of 337.66 £/day. Figure 4 shows the flow
delivered by each pump (Q_PMP1, Q_PMP2 and Q_PMP6) and the water level of tanks T5
and T6 (H_T5 and H_T6).
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Figure 4. Results of the pump scheduling methodology by [10] for Van Zyl network, hydraulic
time-step 1 h.

The pumps operate for 8, 17 and 14 h, respectively. The water level in tank T5 varies
between 0.40 m and 4.99 m, and the value at the end of simulation coincides with the initial
value (4.50 m). For tank T6, the water level varies between 4.18 and 9.52 m, which was also
the final value. This value is slightly greater than the initial value (9.50 m).

In order to assess the effectiveness and reliability of the optimal solution, the same
rule-based controls were assigned to a new network file, which corresponds to the original
model except for the hydraulic time-step, which was set to 10 s instead of 1 h. Reducing
the hydraulic time-step enables checking whether or not the operation predicted by the
methodology implemented with a larger time-step (1 h) is stable. The resulting system
operation may actually differ from the one predicted using a 1-h time-step, in particular
when pumps are present in the WDN. A more accurate simulation can be carried out using
a smaller hydraulic time-step, albeit at the cost of greater computational effort.

The simulation shows (Figure 5) that in the time interval from 15:00 to 17:00 h, PMP2 is
the only operating pump, with a continuously varying pumped flow. That occurs because
the level of tank T5 reaches the maximum (5.0 m) and Epanet2 automatically closes the
pipe supplying tank T5, being unable to simulate a tank overflow. Consequently, the flow
continuously switches between a high value (i.e., the flow required to supply tank T5 and
satisfy nodal demands) and a low value (i.e., the flow required to satisfy nodal demands).
In real operation, the tank T5 would overflow, since pump PMP2 operates according to
trigger-based rules at tank T6. It was found that the optimal operation of pump PMP2
provides for 5.3 m at tank T6 as on-trigger level and 5.5 m as off-trigger level. Because at
15:00 h the water level at tank T6 is 5.42 m and reduces progressively thereafter, pump
PMP2 continues operating, and stops only at 20:57 h, when the increasing water level
reaches 5.3 m.

The simulation carried out with a reduced hydraulic time-step demonstrates the
trigger levels identified as the optimal solution by [10], actually failing to ensure the
expected system behavior. As for [39], the constraint Equation (3) not being satisfied would,
practically, cause tank T5 to overflow.
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4. An Approach to Identify Technically Feasible Solutions

The previous section showed the hydraulic simulation being incapable of simulating
the actual operation of the network, whether using a pattern-based approach or a triggering-
based approach. The constraint equations were not satisfied, causing in particular, tank
overflow. Obviously, that depends on the hydraulic simulation model: significantly re-
ducing the hydraulic time-step (i.e., from 1 h to 1 s) would yield reliable results from the
optimization algorithms. However, such an approach is impractical, because it would
result in unacceptable computational times.

To avoid such discrepancies, the proposed approach consists in calculating the actual
number of time-steps during the simulation and comparing it with the predicted value. In
an extended period simulation (EPS), both the simulation duration and the hydraulic time-
step (∆th) may be set by the user in Epanet2. Once the hydraulic time-step is set, the total
number of time-steps in EPS usually corresponds to the ratio between the total duration of
simulation and the hydraulic time-step. Nevertheless, time-steps shorter than the hydraulic
time-step will occur automatically (thus increasing the number of total time-steps) upon
one of the following occurrences (cases): (a) the next output reporting time period arises;
(b) a tank becomes empty or full, (c) the next time pattern period arises; and (d) a simple
control or rule-based control is activated.

Case (a) can be simply avoided by setting the reporting time-step equal to the hydraulic
time-step. Cases (c) and (d) can be easily predicted, because both the operation pattern and
the control rules are known a priori. It follows that the hydraulic time-step becomes shorter
than the value fixed at the start of the simulation if a tank becomes empty or full. Epanet2
enables determining when the tank empties out or overflows if the simulation runs with
a large hydraulic time-step (e.g., 1 h). However, the results of such additional time-steps do
not appear in the software output, thus requiring the use of the Epanet Toolkit.

As discussed in the next section, a pump scheduling methodology that monitors the
actual number of time-steps was developed, wherein only technically feasible solutions
can be selected.

5. Overview of the Proposed Pump Scheduling Model

A pump-scheduling model which combines Pikaia genetic algorithm [34] as the opti-
mization algorithm and Epanet2 [33] as a hydraulic simulator was developed to implement
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the proposed methodology and avoid technically unfeasible solutions. Epanet2 was used
to load input data, assess the feasibility of the potential solutions generated by the GA
and estimate any penalties for constraints violation. The decision variables comprised
switch-on time and OD for each pump. The maximum number of switches was imposed.

For any water distribution network where demand patterns, initial tank levels, and
electricity tariffs are specified, the goal is to find the best pump schedule such that the total
costs are minimized while ensuring adequate network service. The model considered only
the pump energy costs, and not maintenance costs. The per-unit energy price is based on
electricity tariffs (variable during a scheduling period), generally divided into expensive
peak and cheaper off-peak electricity rates. The actual amount of energy consumed by
a pump depends on several parameters, including flow running the pump, head supplied
by the pump, and pump efficiency. These parameters were calculated by Epanet2 for any
assigned pump schedule.

5.1. Decision Variables

For each pump, the initial status (IS) was set on closed and the decision variables were
the switch-on times and the OD for each switch. As an example, let x1 be a non-negative
real number representing the dimensionless switch-on time of a pump 0 ≤ x1 ≤ 1. The
daily time in which the pump switches on (SonT) can be defined as:

SonT = x1·SD (6)

in which SD is the simulation duration.
A scheduling time-step ∆ts can also be defined, i.e., the time resolution based on

which the pump operating times are set. The scheduling time-step should not be confused
with the hydraulic simulation time-step, as will be further discussed. By assuming a daily
simulation (i.e., SD = 24 h = 1440 min), the switch-on time becomes:

SonT = ∆ts·int
(

x1·
1440
∆ts

)
(7)

if ∆ts is expressed in minutes. Similarly, the pump OD can be calculated as:

OD = ∆ts·int
(

x2·
1440
∆ts

)
(8)

x2 being a non-negative real number 0 ≤ x2 ≤ 1, with the resulting switch-off time:

if SonT + OD ≤ 1440 then So f f T = SonT + OD and IS = Closed

if SonT + OD > 1440 then So f f T = SonT + OD− 1440 and IS = Open
(9)

In a problem with Np pumps and Ns switches for each pump, the NDV is:

NDV = 2·Np·Ns (10)

5.2. Objective Function and Constraints

The objective function must take into account the pump operation costs. Since only
the cost of energy for pumping is considered, the objective function is given by Equation (1).
The constraint equations referring to the water level in the tank also corresponded to
previously given Equations (2)–(5).

5.3. Hydraulic Solver and Pumping Operation Model

Epanet 2.0 was used for data input and as a hydraulic solver within the optimization
algorithm. The Epanet Toolkit dll was used to incorporate the Epanet functions into the
optimization algorithm. Simple control rules were used to assign switch-on and switch-off
times of pumps.
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Because a single simple control commands switch-on or switch-off time of a pump,
for each pump and for each switch, two simple controls are required. Consequently, the
proposed model uses a couple of simple controls, one containing SonT and the other SoffT,
both calculated according to Equations (7) and (9). By varying the decision variables (SonT
and OD), the optimization algorithm minimizes the cost of energy of the pumps.

5.4. Penalty for Technically Unfeasible Solutions

As discussed above, the Epanet Toolkit allows for the monitoring of the number
of time-steps when Epanet2 is used as hydraulic simulator. If no additional time-steps
occur, or they occur at switch-on or switch-off times commanded by controls, the software
continues the calculation of the objective function. Otherwise, a penalty is added to the
objective function upon the emptying/overflowing of a tank. This approach enables the
actual operation to be reliably simulated without reducing the hydraulic time-step, thus
without increasing the computational times.

5.5. Optimization Algorithm

The optimization algorithm uses Pikaia Genetic Algorithm [34]. Pikaia is a flexible
and easy to use genetic algorithm written in Fortran 77 and available in the public domain.
As with all GAs, the Pikaia genetic algorithm is based on the search for an optimum using
Darwinian evolutionary theory. Although its application has been more frequent in astro-
physics, it is adaptable for use in a wide variety of modeling applications. The algorithm is
based on six steps: initial population generation, fitness evaluation, selection, crossover,
mutation, replacement and evaluation. Internally, the algorithm seeks to maximizes a user-
specified function f (x) by varying the decision variables. These are randomly generated in
the bounded space [0, 1]; therefore, the input parameters must be rescaled.

6. Case Studies and Discussion

The proposed model was applied to the two aforementioned case studies: the Anytown
network with the methodologies developed by [39]; and the Van Zyl network with the
methodology developed by [10].

For the Anytown WDN consisting of 37 pipes, 19 nodes, 1 tank (node 21), and 1 source
(node 20) having four pumps installed (Figure 1), the proposed approach was returned as
optimal pump scheduling with 16 simple controls, commanding switch-on and switch-off
of the pumps. The solution cost, totaling $1110.32, is cheaper than the original solution
found by [39].

Figure 6 shows the total flow delivered by the pumps, i.e., the flow through conduit 1
(Q1_35), ranging between 3416 CFS and 7836 CFS, and the water level in the Tank 21
(H21_35), which ranges between 7 and 34.6 ft. All constraints were respected: the water
level did not reach minimum or maximum levels, and the final value (14.0 ft) was greater
than the initial value (7 ft).

The effectiveness and reliability of the solution were tested by setting the maximum
tank water level to 80 ft. The results are plotted in Figure 6 in terms of total flow through
conduit 1 (Q1_80) and the water level in tank 21 (H21_80), which overlaps the curve
obtained for 35 ft the maximum allowable level.

For this case study, the proposed approach effectively averts the problem highlighted
in Section 3: modifying the maximum level of the tank induced no change in the overall
behavior of the system avoiding the overflow of the tank. Therefore, the solution identified
as optimal with the proposed approach is cheaper and actually technically feasible as
compared to the original solution obtained by [39], which induces tank overflow. Using an
Intel Core i5 @2.7GHz personal computer, the model generated a solution after approxi-
mately 34 s; yielding the cheapest solution mentioned above after approximately 3.2 h, and
a solution with a 5% higher cost after approximately 20 min.

As for the Van Zyl proposed WDN consisting of 15 pipes and 13 nodes, 2 tanks and
1 source, with two pumps installed in parallel, and a single pump (Figure 3), the model
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returned 12 simple controls, with a solution cost of £341.09—more expensive than the
original solution by [10]. In the optimal solution, pumps PMP1 and PMP2 operate for 14 h,
pump PMP6 for 15 h. Figure 7 shows the tank T5 water level varying between 0.43 and
4.72 m, with the value at the end of simulation (4.56 m) being slightly greater than the
initial value (4.50 m). The water level in the tank T6 starts from 9.50 m, with a minimum of
4.12 m and a maximum of 9.51 m, this value being attained at the end of the simulation; all
constraints were thus satisfied.
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In order to test the feasibility of proposed approach, the hydraulic time-step was
reduced from 1 h to 10 s. The results of flow discharge ran through the pumps (Q_PMP1,
Q_PMP2 and Q_PMP6) and water levels in the tanks (H_T5 and H_T6) coincided with
that obtained considering a time-step of 1 h (Figure 8) therefore showing the reliability of
the solution.

Additionally, the proposed approach in this case study averts the problem discussed
in Section 3 wherein reducing the hydraulic time-step induced no difference. The model re-
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turned a feasible solution, as opposed to that obtained by [10], which induced tank overflow.
Using, an Intel Core i5 @2.7GHz personal computer the model generated a solution after
approximately 9 s; it yielded the cheapest solution mentioned above after approximately
13.8 h, and a solution with a 5% higher cost after approximately 5 min.
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7. Conclusions

This paper has shown that the solutions identified as optimal by two existing pump
scheduling methodologies in the literature are unfeasible and fail to satisfy the imposed
constraints. The analysis of these two prior methodologies further showed that the pump-
ing operation identified as “optimal” by the optimization algorithm would, in the real
environment, induce tank overflow or continuous pump switching (turning on/off). Such
discrepancies could be avoided by reducing the hydraulic time-step of the numerical model,
albeit at the cost of increased computational effort, involving high or even unacceptable
calculation times.

Consequently, the paper developed a novel method that avoids technically unfeasible
solutions and requires limited computational effort. It can also be easily implemented in
existing methodologies available in the literature. The proposed method compares the
actual number of time-steps performed by the hydraulic simulator with the predicted value,
calculated as the ratio between the simulation duration and the hydraulic time-step. If
the actual and predicted number of time-steps coincide, all constraints are satisfied, and
a technically feasible solution is identified. Accordingly, additional time-steps indicate
emptying and/or overflowing of tank, thus identifying solutions not complying with all
the constraints. This approach advantageously enables operating with large hydraulic
time-steps, thereby supporting reduced computational time-steps.

The effectiveness of the proposed methodology was assessed via a pump-scheduling
model developed combining the Pikaia genetic algorithm as an optimization algorithm,
and Epanet2 as a hydraulic simulator. In implementing the novel method, the model also
adds a penalty to the objective function when the actual number of time-steps is greater
than the number predicted. The feasibility of the pump scheduling using the proposed
approach was tested for two case studies by reducing the time-step and by increasing
the maximum tank level. As opposed to methods used in the literature, the same results
were obtained, showing that the developed model effectively averts the problem of tank
overflow and continuous pump-switching. In conclusion, the proposed methodology was
proven to be reliable, and capable of simulating the actual operation of the system.
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