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Abstract: The performance of on-site wastewater treatment systems (OWTSs) can be improved by
altering digester design and by manipulating environmental variables that affect microbial com-
munity composition. Community composition can potentially be assessed using high-throughput
DNA sequencing, but the two most common methods of community DNA sequencing (16S and
shotgun sequencing) generally yield different taxonomic identification profiles and can perform
differently according to the sampled environment. To evaluate the use of these two approaches in
monitoring OWTS operation, we conducted a comparative parallel analysis using both 16S rDNA and
shotgun sequencing in a controlled field study. Results indicate that when examining microorganisms
above 0.1% relative abundance, 16S and shotgun sequencing produced similar results in terms of
individual sample species richness and between-sample community similarity. However, shotgun
sequencing provided comparatively higher taxonomic richness for the bacterial communities with
lower abundance in the OWTSs. In addition, 16S sequencing resolved only 48 out of 188 bacterial
communities identified by shotgun sequencing (using a 0.1% abundance cutoff). Three key bacterial
genera (Desulfomicrobium, Simplicispira, and Phenylobacterium) in anaerobic digestion processes were
differentially abundant for both sequencing methods. These data indicate that both sequencing
methods provide similar overall profiles for bacterial communities in anaerobic digestor systems.
However, shotgun sequencing provides significantly (p-value < 0.01) higher taxonomic richness
overall. Thus, shotgun sequencing provides a more robust taxonomic and functional profile that can
be used for the optimization of anaerobic digestor systems.

Keywords: shotgun sequencing; 16S sequencing; wastewater; microbial community composition;
anaerobic digestion; septic tanks

1. Introduction

The release of improperly-treated wastewater into the environment poses a risk to
human health and local ecosystems [1,2]. Wastewater from underperforming or failing
wastewater treatment systems can contribute to the spread of waterborne pathogens
through contamination of recreational or drinking water [3,4]. In addition to harmful
microorganisms, poorly treated wastewater contains nitrogenous and phosphorous com-
pounds [5] that can promote the growth of harmful algal blooms [6]. When access to large-
scale sewage systems is unavailable, on-site septic tanks are the most common wastewater
treatment method [7]. However, if the anaerobic digestion process within these tanks is too
slow, sediment accumulation can cause wastewater to bypass the system entirely [7].

Research to improve the digestion rate of these systems can involve experimental
comparison of designs and treatment strategies [8], isolation and study of key species in the
anaerobic digestion process [9], and predictive modelling of anaerobic digestion systems
based on known biological responses to physical and chemical variables such as tempera-
ture and pH [10]. However, the biochemical steps that make up the anaerobic digestion

Water 2023, 15, 271. https://doi.org/10.3390/w15020271 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15020271
https://doi.org/10.3390/w15020271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-3233-9952
https://orcid.org/0000-0003-3564-1695
https://doi.org/10.3390/w15020271
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15020271?type=check_update&version=1


Water 2023, 15, 271 2 of 12

process (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) are distributed across
complex syntrophic interactions [11], which need to be taken into consideration when
studying individual species and conditions [12] or when trying to predict the functions
of the whole microbial ecosystem [10]. Therefore, improving the function and design
of household OWTSs and larger anaerobic digestion systems depends on an improved
understanding of the ongoing syntrophic processes within those systems.

The two most commonly used DNA-based methods for examining microbial ecological
processes such as anaerobic digestion are whole-metagenome sequencing (commonly
referred to as shotgun sequencing) and 16S amplicon sequencing [13]. The results of these
two methods are usually consistent in terms of community similarity [14–16]. However,
shotgun and 16S sequencing typically differ in terms of alpha diversity measurements and
relative abundance measurements due to the identification of more low-abundance taxa
by shotgun sequencing [15,17]. Low-abundance identifications using shotgun sequencing
can provide a more comprehensive view of the microbiome than 16s sequencing, but
they rely on databases that may lack reference sequences from infrequently sequenced
environments [18]. For example, a 2017 analysis of Brazilian river basins using 16S and
shotgun sequencing revealed that insufficient reference sequence availability contributed
to more taxa being identified by 16S sequencing than shotgun sequencing, making 16S
sequencing a more suitable method at that time in that environment [16].

The 16S reference databases are easier to develop than shotgun sequencing databases
and have had more time to do so [16,19]. However, the analysis of specific amplicons
creates limitations that are not present when using shotgun sequencing. These limitations
include identical 16S rDNA sequences preventing species-level identification [20], varia-
tions in observed community composition based on which the 16S hypervariable region
was sequenced [14], and a reliance on known microbial functions to assess biochemical
processes within a microbiome [21]. For example, a 2019 analysis of wastewater effluent
pathogens found that taxonomic identification based on sequencing of the 16S V4 hyper-
variable region was unable to identify key pathogens within the Enterobacteriaceae family,
making 16S sequencing an unsuitable tool for assessing pathogens in this environment [22].
Additionally, the taxonomic results produced by these two sequencing methods can differ
according to errors that are unique to their library preparation processes [23] or errors
specific to the tools available for processing 16 S and shotgun data [24].

Therefore, the potential discrepancies between 16S and shotgun sequencing must be
examined in relation to specific environments to identify the research goals that can be
reliably met using those methods. These potential sources of error have not been assessed
in the context of OWTS wastewater microbiomes, nor have the analytical steps taken in
comparing the effects of OWTS designs on those microbiomes. In this study, wastewater
samples from septic tank OWTSs were sequenced using both 16S and shotgun sequencing
to assess the differences between OWTS microbial communities according to tank design
variables and to assess the differences in the results of these analyses between the two
sequencing methods.

2. Materials and Methods
2.1. Sampling Site Description

The examined OWTSs were all residential installations serving single households. Four
distinct system types were tested, each consisting of either a single-pass or recirculating
flow type and a conventional two-chambered design or a plug-flow-like design in which
waste first passed through an inner tube [11] (see Figure 1). These four system types were
labelled single-pass plug flow (S.P.), single-pass conventional (S.C.), recirculating plug
flow (R.P.), and recirculating conventional (R.C.). Conventional OWTSs include a holding
tank after the two-chambered main tank. All sampled OWTSs also included an aerobic
biofilter unit after the initial anaerobic unit. However, this secondary aerobic system was
not examined, as the focus of this study was the anaerobic digestion process. The detailed
procedure pertaining to sampling can be accessed through our previous publication [11].
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within the first chamber beneath the influent pipe (1), the tank site located within the second cham-
ber (2), and the effluent site (3) located within the effluent holding tank. (B) Plug flow type (Inner-
Tube™) OWTS design with the influent sampling site located at the opening of the inner tube (1), 

Figure 1. The location of sampling points and internal layouts of OWTSs sampled for metagenomic
analysis. (A) Conventional two-chambered OWTS design with the influent sampling site located
within the first chamber beneath the influent pipe (1), the tank site located within the second chamber
(2), and the effluent site (3) located within the effluent holding tank. (B) Plug flow type (InnerTube™)
OWTS design with the influent sampling site located at the opening of the inner tube (1), the tank site
located at the end of the flow tube (2), and the effluent site located at the effluent spray nozzle (3).

OWTSs with recirculating designs contained an inline valve to direct a portion of the
effluent from the aerobic biofilter back to the influent point of the anaerobic OWTS. The
degree to which each valve was open is listed as a percentage in the Supplementary Data.
The recirculating valves were set by our industrial partner (Waterloo Biofilter Systems Inc.,
Waterloo, ON, Canada) and could not be controlled as part of this study. The hydraulic
retention time of each tank was calculated using the system volume (L) divided by the
flow rate (L/day).

2.2. Sampling Procedure

Samples (50 mL each) were collected between September 2018 and January 2019
from OWTSs located across Southern and Central Ontario. Six OWTSs were sampled for
each design and flow combination, with the exception of the S.P. systems, for which five
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systems were sampled. Each system was sampled at three points (Figure 1). Temperature
measurements were also taken during sampling.

Wastewater samples were placed on ice and transported in coolers to McMaster
University. The location, temperature, and design variables of each wastewater sample are
listed in Supplementary Data.

2.3. DNA Extraction

After samples were received at McMaster University, they were vacuum-filtered
through 0.22 um sterile nitrocellulose filters (Milipore, Burlington, MA, USA) [25,26]. The
filters were then transferred to microcentrifuge tubes preloaded with 0.25 g mL of 0.1 mm
zirconium beads [27] (BioSpec Products, Bartlesville, OK, USA) and stored at −20 ◦C. DNA
was extracted from the filters using a Norgen Soil DNA Isolation Plus Kit (Norgen Biotek,
Thorold, ON, Canada). The manufacturer’s extraction procedure was followed unless
otherwise specified. After extraction and purification, the DNA was stored at −20 ◦C. DNA
was quantified using a NanoDro2000 (Thermo Fischer Scientific, Waltham, MA, USA) and
a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Shotgun Sequencing, Quality Control, and Classification

DNA was sequenced at the Farncombe Sequencing Institute at McMaster University
using an Illumina HiSeq 2500 platform. Paired-end libraries were prepared using an
NEBNext® Ultra™ II DNA library preparation kit for Illumina (New England Biolabs,
Ipswich, MA, USA) and TruSeq3 paired-end adapters. The read length was 150 bp, and
the fragment size was 500 bp. Read quality was assessed using the R package fastqcr [28].
FASTQ files were trimmed using Trimmomatic (version 0.39) (Bolger et al., 2014). The
Phred score cutoff for Trimmomatic was set to 33, and sequences were trimmed using
a sliding window with three leading and trailing base pairs, a width of 4 bases, and a
minimum quality score of 20. Trimmomatic also removed the TruSeq3 paired-end adapters.

All reverse reads were removed from the dataset due to the tendency for Illumina
sequencing to produce low-quality reverse reads [29], a lack of overlapping reads, and
the inability of DIAMOND-BLASTx to process paired-end reads [30]. After trimming, the
mean count of high-quality forward reads was 5.3 million (SD ± 1.6 million).

DNA reads were aligned against the NCBI non-redundant (nr) protein database using
DIAMOND-BLASTx [30]. The e-value cutoff was set at 1 × 10−5, and the maximum
number of target sequences to alignment reports was 25 per query. All other options for
DIAMOND-BLASTx were left as the default. The diamond alignment archive (.daa) output
was inputted into MEGAN6 (version 6.18.4) [31] for binning and classification. Sequences
were binned according to the MEGAN6 weighted lowest common ancestor algorithm. The
minimum quality threshold to assign sequences was 50, and the e-value threshold was 0.01.

2.5. 16S Amplification, Sequencing, Quality Control, and Classification

The 16S V4 hypervariable region was amplified using a two-stage PCR protocol [32].
The 1st PCR stage amplified the V4 hypervariable region, and the 2nd stage attached the
adapters for Illumina sequencing and indices for dual-index sample multiplexing [33].
Indices were taken from the Nextera XT Index Kit v2 (Illumina, San Diego, CA, USA). A
T100 Thermocycler (Bio-Rad Laboratories, Mississauga, ON, Canada) was used to perform
PCR reactions. The PCR template was diluted to 15 ng/uL using double-distilled water
and a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA, USA).

The resulting PCR products were separated by gel electrophoresis to confirm that
the correct size of amplicon was produced. Five uL of each product was pooled for
gel extraction. Target bands were extracted. Extraction and cleanup were performed in
triplicate. Pooled PCR products were run on 1.8% agarose gel for each extraction. The
gels were examined under 302 nm UV light to identify target bands. Target bands were
removed, immersed in a guanidinium thiocyanate solution, and dissolved at 50 ◦C.
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A NucleoSpin Gel and PCR cleanup kit (Macherey-Nagel GmbH) was used for PCR
cleanup. Spin columns were washed with ethanol solution three times and dried using a
heat block for 1 min at 70 ◦C. NucleoSpin buffer solution was used to elute DNA from each
column. Triplicate extractions were then pooled for sequencing. The quality of DNA isolation
was verified using a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA).

DNA amplicon samples were sequenced on an Illumina MiSeq platform (Illumina,
San Diego, CA, USA). Sequencing was performed using a paired-end 300 bp sequencing
configuration (REF). Adapters were trimmed using cutadapt (version 1.2.1) [34]. Sequence
quality trimming and filtering, error modelling, and sequence variant assignment were
performed using the DADA2 R package and the SILVA 132 SSU reference dataset [35].

2.6. Statistical Analysis

Shotgun sequencing identification with taxonomic levels labelled as “not ranked” by
the NCBI database were removed using the taxonomizr R package (version 0.8.0). The
DADA2 and MEGAN6 taxonomic labels were reformatted to match the standard taxonomic
ranks from kingdom to species to be compatible downstream with the phyloseq (version
1.32.0) R package [36]. From this step onward, the taxonomic identifications produced by
16S and shotgun sequencing were treated identically.

A total of 12 OWTSs were sequenced using shotgun sequencing, and 23 systems were
sequenced using 16S amplicon sequencing. Samples were matched between the available
16S and shotgun sequencing data. The final dataset included 36 metagenomes, representing
12 systems sampled at the influent, tank, and effluent points. These 12 systems represented
three systems from each OWTS type (S.P., S.C., R.P., and R.C.).

The community composition datasets produced by 16S and shotgun sequencing were
compared using only samples taken from the central portion of the system (see Figure 1)
and not the influent or effluent points. The effluent point was not examined because of
the inclusion of a holding tank in the conventional systems, which may have altered the
microbial community composition.

Species identifications produced by shotgun sequencing were binned into their respec-
tive genera to facilitate comparison to the 16S dataset. After genera binning, both datasets
were filtered to remove taxa representing less than 0.1% of the total microbial abundance.
This abundance filtering step was included to examine differences in low-abundance taxa
identified by 16S and shogun sequencing. This step was repeated using thresholds of
0.05% and 0.2% relative abundance to examine the consistency with which taxonomic
identifications responded to abundance filtering.

The observed species richness of 16S and shotgun sequencing taxonomic identifica-
tions were calculated at multiple stages of data treatment (raw, filtered, genera-binned,
and genera-binned then filtered) using the iNEXT R package [37] to examine differences in
microbial diversity according to the sequencing method and data treatment. The iNEXT
package also extrapolated true taxonomic richness from rarefaction curves.

To examine patterns of community differentiation, filtered and genera-binned taxo-
nomic data were normalized using DESeq2 (version 1.28.1) [38]. Phyloseq was then used
to create Bray–Curtis dissimilarity matrices [39]. These Bray–Curtis dissimilarity matrices
were used in PERMANOVA testing [40], which was performed using the VEGAN adonis2
function to determine the significance of sample clustering according to system design
(conventional or plug flow), flow type (single-pass or recirculating), tank volume, flow rate,
and temperature. The adonis2 function assessed variables non-sequentially. The results of
PERMANOVA analysis produced using 16S and shotgun sequencing data were compared
to identify discrepancies in the environmental and design variables that were found to
be significant.

The microbiomes observed using 16S and shotgun sequencing were also compared for
overlap in total identified taxa and differences in the core microbiome present across samples.

The same Bray–Curtis dissimilarity matrices used in the PERMANOVA testing were
used to create non-metric dimensional scaling (NMDS) ordinations [41,42] using the phy-



Water 2023, 15, 271 6 of 12

loseq ordinate function to visualize potential clustering patterns created by OWTS design
and flow type. The overall pattern of community dissimilarity produced using 16S and
shotgun sequencing was compared using Procrustes analysis to quantify the difference
between the microbial communities depicted by each sequencing method.

Raw taxonomic identifications produced using shotgun sequencing and 16S sequenc-
ing that were significantly differentially abundant (p > 0.05) according to the DESeq2 Wald
test were examined to determine the effect of OWTS design and flow type on specific taxa.
The results of differential abundance analysis produced using 16S and shotgun sequencing
were compared to assess the consistency with which taxa displayed differential abundance
according to system design and flow type. The formula used in DEseq2 to assess the effect
of flow type while controlling for design was (~ Design + Flow), and the DEseq2 formula
to assess the effect of design while controlling for flow type was (~ Flow + Design). The
functional significance of differentially abundant taxa was also compared between 16S and
shotgun sequencing results.

3. Results and Discussion
3.1. Taxonomic Diversity (or Richness) of OWTS Microbial Communities

Shotgun sequencing can detect more low-abundance taxa than 16S sequencing [15].
However, the differences between 16S and shotgun sequencing taxonomic identification
results also depend on DNA extraction efficiency and reference genome availability [16]. To
assess differences in the total identifications made by 16S and shotgun sequencing of OWTS
microbiomes, we compared the taxonomic richness depicted by each sequencing method.
We repeated this comparison to determine how the differences between 16S and shotgun
sequencing identifications are affected by data treatment steps such as binning species-level
taxonomic assignments into their respective genera and filtering out low-abundance (0.1%)
taxa. The number of identified taxa in each type of OWTS was also compared to identify
differences in the trends between system types depicted by 16S and shotgun sequencing.
When comparing the numbers of total observed taxa in each OWTS, single-pass plug-flow-
type reactors displayed the most variation in taxonomic richness between each system (see
Figure 2). The 16S and shotgun sequencing datasets included different identification counts
but identified similar patterns of relative abundance between each OWTS (see Figure 2). Once
the taxa were filtered to remove identifications below 0.1% relative abundance, the overall
numbers of taxa identified were similar. However, the pattern of relative taxonomic richness
between OWTS sequenced by shotgun sequencing was lost in the filtering step (see Figure 3).
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The total and average species and total taxa count using taxonomic relative abundance
cutoffs of 0.05%, 0.1%, and 0.2% are listed in Supplementary Data.

The shotgun sequencing taxonomic identification results from 12 OWTSs initially
included 23,819 distinct identifications with an average of 12,837 identifications per system.
There was a 22.6% increase between the average observed species richness and the average
true species richness predicted by the iNEXT package. After genera binning, the shotgun
sequencing data included 3045 distinct identifications with an average of 2505 identified
taxa per sample. After abundance filtering, the shotgun sequencing data included 121 distinct
identifications with an average of 120 identifications per sample. After abundance filtering
followed by genera binning, the shotgun sequencing data included 113 distinct identifications
with an average of 113 identifications per sample.

The 16S sequencing taxonomic identification results initially included 3365 distinct
ASVs, with an average of 550 distinct ASVs per sample. There was a 1.4% increase between
the average observed taxonomic richness and the average true taxonomic richness predicted
by the iNEXT package.

After genera binning, the 16S sequencing data included 809 distinct ASVs with an av-
erage of 277 distinct ASVs per sample. After abundance filtering, 16S sequencing included
149 distinct ASVs with an average of 88 distinct ASVs per sample. After genera-binning
followed by abundance filtering (0.1%), the 16S sequencing data included 123 distinct ASVs
with an average of 96 distinct ASVs per sample.

The numbers of taxa that we identified using 16S and shotgun sequencing were
different (shotgun total = 23,819; 16S total = 3365). However, when examining taxa with
relative abundances higher than 0.1%, the taxonomic richness measured by 16S sequencing
was close to the taxonomic richness measured by shotgun sequencing (shotgun total =
113; 16S total = 123). Between 16S and shotgun sequencing, were 188 taxa above 0.1%
relative abundance

3.2. Community Differentiation and Core Microbiome

Physiochemical variables such as system design and temperature can alter the micro-
bial community composition within OWTSs [43]. We used PERMANOVA testing to assess
the effects of these physicochemical parameters on community similarity between OWTSs.

When examining the effects of physiochemical variables on OWTS community com-
position, we did not identify any variables as being significant. However, future analysis of
this kind using a larger sample size may identify significant effects of environment and
tank design on community composition.

When examining the patterns of community differentiation between OWTSs, non-
metric dimensional scaling determined that single-pass plug-flow systems displayed the



Water 2023, 15, 271 8 of 12

most intergroup and intragroup variation of genus-level community dissimilarity (see
Figure 4). The second most variable system type was the single-pass conventional system
(see Figure 1). Compared to other systems, the large variation of plug flow single-pass
systems indicates that the plug flow design without recirculated waste may significantly
affect the anaerobic digestion microbial community. Future ordination-based research on
the effect of OWTS design and flow type would probably benefit from a larger sample size
to supplement quantitative PERMANOVA testing.
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of on-site wastewater treatment system microbial communities that were examined using 16S and
shotgun sequencing. Procrustes analysis of the ordination points produced a sum of squares of 0.0982
and a Procrustes correlation of 0.950.

When comparing the patterns of community differentiation between 16S and shotgun
sequencing, Procrustes analysis indicates that the NMDS ordinations using 16S and shotgun se-
quencing yielded very similar patterns of community differentiation (sum of squares = 0.0982;
Procrustes correlation = 0.950). Therefore, either 16S or shotgun sequencing can be used
when the goal of sequencing is to examine the whole community between sites with similar
OSWT designs.

Whereas 16S and shotgun sequencing indicated similar patterns of community differ-
entiation, there was little overlap in the specific identifications. Among the 188 taxa with
greater than 0.1% relative abundance, only 48 were shared between the 16S and shotgun
sequencing datasets. The OWTS core microbiome observed using shotgun sequencing
contained 111 taxa, while the core microbiome observed using 16S sequencing contained
24 taxa, all of which were also included in the core microbiome observed using shot-
gun sequencing. Both core microbiomes included genera such as Trichococcus, Bacteroides,
Acinetobacter, and Pseudomonas [44], which have been previously reported as being in high
abundance within sewage systems, although their relative abundances were inconsistent
(see Supplementary Data for full core microbiomes with relative abundances).

The genera binning of low-abundance shotgun sequencing identifications may have
led to taxa in the shotgun sequencing dataset increasing in relative abundance compared to
16S sequencing. Future analysis of the differences between 16S and shotgun sequencing
taxonomic identifications may benefit from a more detailed breakdown of how individual
taxa respond to genera binning and abundance filtering.

3.3. Differential Abundance

There are likely many unknown biochemical interactions that influence the perfor-
mance of anaerobic digestion systems [45]. However, taxa with known effects on the
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hydrolytic, acidogenic, acetogenic, or methanogenic stages of anaerobic digestion can
consistently impact the rate of waste removal [46]. Taxa that consistently correlate with
changes in any aspect of the anaerobic digestion process represent a potential tool for
altering the digestor microbial community [47,48].

To examine the response of specific taxa to tank design and flow type, we used DESeq2
to identify taxa with average relative abundances that were significantly different between
tank designs and flow types.

When comparing plug flow to conventional system designs, we identified two sig-
nificantly differentially abundant taxa using shotgun sequencing and five significantly
differentially abundant taxa using 16S amplicon sequencing (see Supplementary Data
for complete list). We only identified one genus (Desulfomicrobium, which was enriched
in conventional systems) as significantly (shotgun p = 2.2 × 10−4; 16S p = 5.05 × 10−18)
differentially abundant according to both 16S and shotgun sequencing comparing plug
flow to conventional system designs. The genus Desulfomicrobium (enriched in conventional
systems) contains sulfur-reducing bacteria, which use oxidized sulfur compounds and
elemental sulfur as electron acceptors [49,50].

When comparing single-pass systems to recirculating systems, we identified seven
significantly differentially abundant taxa using shotgun sequencing, and we identified
13 significantly differentially abundant taxa using 16S sequencing (see Supplementary Data
for complete list). When comparing single-pass and recirculating flow types, we identi-
fied two taxa as significantly differentially abundant according to both 16S and shotgun
sequencing, namely Phenylobacterium (shotgun p = 1.15 × 10−4; 16S p = 2.47 × 10−4) and
Simplicispira (shotgun p = 1.15 × 10−4; 16S p = 6.97 × 10−4).

Bacteria in the Phenylobacterium genus (enriched in single-pass systems) can utilize
heterocyclic phenyl compounds such as those found in artificial herbicides and surfac-
tants as carbon sources [51]. The Phenylobacterium genus is also associated with cellulose
metabolism [52,53]. Bacteria in the Simplicispira genus (enriched in single-pass systems) can
perform denitrification [54]. Phenylobacterium, Desulfomicrobium, and Simplicispira improve
the function of anaerobic digestion systems [50,52,54,55].

Given the lack of overlapping differential abundance results between 16S and shotgun
sequencing, verification of the taxonomic differential abundances indicating that Desul-
fomicrobium, Phenylobacterium, and Simplicispira responded to tank design and flow type is
necessary to determine whether OWTS design can reliably influence the relative abundance
of these potentially useful taxa. Further analysis is needed to assess whether other key taxa
in the anaerobic digestion process can be reliably examined for differential abundance.

4. Conclusions

In conclusion, the findings of this project provide insight into the effects of OWTS
design on community variation and information on the research objectives that can be
met using both 16S and shotgun sequencing. The results of this wastewater metagenomic
analysis are consistent with previous research that compared 16S and shotgun sequenc-
ing [14,15,56–59]. Consistency with previous results in well-studied environments such
as the human gut microbiome indicates that the research goals of assessing taxonomic
richness, community differentiation, core metagenome content, and differential abundance
were not impeded by factors specific to OWTSs. With potential complications ruled out,
the increased taxonomic and functional information available through whole-metagenome
shotgun sequencing makes it an optimal tool for wastewater metagenomic analysis.

Results produced consistently using 16S and shotgun sequencing indicate that:

• The OWTSs designed with a recirculating flow system and plug-flow-type design
contained the most variable taxonomic richness.

• Single-pass plug-flow-type OWTSs contained the most variable microbial communities
between OWTSs.

• Desulfomicrobium was enriched in conventional OWTSs, whereas Simplicispira and
Phenylobacterium were both enriched in single-pass OWTSs.
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