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Abstract: A combination of geographic information system (GIS) and spatial multicriteria decision
making (MCDA) in mine water inrush risk evaluation is widely used, but the randomness in the
process of index weight determination and the risk-coping attitude of decision makers are not
considered in the decision making process. Therefore, this paper proposes a probability-based roof
water inrush risk evaluation method (GIS-MCDA) by combining the Monte Carlo analytic hierarchy
process (MAHP) and ordered weighted averaging (OWA) operator. This method uses MAHP to
determine the weight of the evaluation indicators, reducing the randomness of the analytic hierarchy
process (AHP) to determine the weight of the evaluation indicators using the OWA operator to
quantify the five risk-coping attitudes of decision makers and incorporate the risk attitude of decision
makers into the evaluation process. Taking the Liangshuijing Coal Mine in northern Shaanxi as an
example, the application of the GIS-MCDA method showed that the method makes the risk results
of roof water inrush more objective and comprehensive and reduces or avoids the risk of decision
making due to human subjective tendency change.

Keywords: risk assessment of roof water inrush; Monte Carlo analytic hierarchy process; risk-coping
attitude; decision makers; Liangshuijing Coal Mine

1. Introduction

With the depletion of coal resources in the east, the northwest mining area has become
the main coal-producing area in China [1-4]. Roof flood is the main mine geological disaster
faced by the northwest mining area, which restricts the safe and efficient mining of coal
resources. There have been numerous roof water inrush accidents in recent years, resulting
in numerous casualties and significant economic losses. On 5 July 2021, a roof water inrush
and quicksand accident occurred at the 30,108 working face of the Haojialiang Coal Mine
in Yulin, Shaanxi Province, which killed five people and had a direct economic loss of
RMB 13.828 million. On 14 August 2021, a roof water collapse accident occurred at the
Qinghai Caidaer Coal Mine, resulting in 20 deaths and a direct economic loss of RMB
53.9102 million. Therefore, objectively assessing the risk of roof water inrush is significant
for preventing and controlling roof water damage, developing preventive and control
measures in advance, and ensuring mine safety [3,4].

There are many fields of study in which multicriteria decision making (MCDA) has
been applied such as engineering, economics, disaster assessment, and others [5-9]. Roof
water inrush is a complex geological disaster under the action of multiple factors and has
strong spatiality, so GIS-MCDA can be effectively applied to the risk evaluation of roof
water inrush [10-15]. In recent years, the GIS-MCDA method has been widely used in mine
water inrush risk evaluation [16-23]. To evaluate the working face water inrush risk from
roofs and floors, Wu Qiang proposed three methods: three-map double prediction method;
the water-rich index method; and vulnerability index method [17,24-30]. Combining
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the improved analytic hierarchy process and entropy weight method, Gao et al. [31] put
forward a water inrush risk assessment method for the work face after water drainage
measures. Li et al. [18] established a more accurate floor water inrush risk assessment
model based on an improved analytic hierarchy process and logic regression method.
Cheng et al. [19] suggests a method of assessing roof water inrush in multi-coal seam
mining and Liu et al. [32] proposed a separate layer water inrush risk assessment model.

The traditional GIS-MCDA method has been widely applied to the field of mine
water inrush risk assessment, but it has strong randomness and uncertainty in the decision
making process, which leads to strong uncertainty in the evaluation results. For example, if
different evaluation methods are used in the same mining area, different evaluation results
can be obtained [18,33-35]. Evaluation results are uncertain because of the uncertainty in
the decision-making process. Many factors contribute to uncertainty including the original
data errors, processing methods, the number of evaluation criteria, and weighting. Among
them, the weight of the evaluation criteria is the most influential factor, which causes the
evaluation results to be controversial and uncertain [36,37]. AHP is often used to calculate
the index weight in all kinds of roof water inrush risk assessment methods, but it has
been criticized for not adequately handling the uncertainties and imprecisions inherent
in pairwise comparisons [38—42]. Based on the analytic hierarchy process, calculation
methods such as the improved analytic hierarchy process, fuzzy analytic hierarchy process,
combined weighting of the analytic hierarchy process, and entropy weight method can
be derived. These methods play an improved role in dealing with the uncertainty of the
evaluation criteria weight, but do not completely eliminate the uncertainty of the evaluation
of the criteria weight determination [43—47]. Therefore, a reasonable determination of the
evaluation criteria weight is significant to eliminate the uncertainty of the evaluation results.

In addition, none of the existing roof water inrush risk assessment methods have
considered the impact of the decision makers’ risk-coping attitudes on roof water inrush.
However, accident statistics show that the decision makers’ risk-coping attitude has a
significant impact on roof water inrush [48-57]. For example, a water seepage accident
that occurred in Fengyuan Coal Mine in April 2021 caused 21 deaths. The cause of the
accident was that the work of detecting and releasing water was not strictly implemented
in the early stage. In November 2020, the Yuanjiangshan Coal Mine flooding accident
caused five deaths and was caused by cross-border mining. The reason for such accidents
is that the decision makers were optimistic about the roof water inrush and did not take
risk-coping measures. The risk-coping attitude of decision makers plays an important role
in the occurrence of roof water inrush accidents. Therefore, when making decisions on
roof inrush risk assessment, the decision makers’ risk-coping attitudes should be taken
into consideration.

In this paper, the Monte Carlo analytic hierarchy process (MAHP) and ordered
weighted averaging (OWA) operator were combined, and a probability-based roof water
inrush risk evaluation method (GIS-MCDA) was proposed. This method used MAHP to
calculate the criteria weights. The MAHP method integrates the Monte Carlo simulation
with probability distribution and solves the index weight uncertainty very well. Based on
the OWA operator, the paper explores the influence of the risk-coping attitude of decision
makers on the evaluation results of roof water inrush risk by incorporating the risk-coping
attitude of decision makers into the decision-making process. The GIS-MCDA method was
applied to the Liangshuijing Coal Mine in northern Shaanxi as an example.

2. Study Area

Liangshuijing Coal Mine is located in Shaanxi Province, about 16 km away from
Shenmu County. Figure 1 shows the geographical location of the coal mine. The mine is
10.89 km long from north to south, 10.15 km wide from east to west, and covers an area
of 68.9 km?. The mining area is located in the northwest inland, belongs to the temperate
semi-arid continental climate and has an average annual precipitation of 435.7 mm and a
mean annual evaporation of 1774.1 mm.
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Figure 1. Geographical location of the mining area.

The 472 coal seam is the main coal seam in the mining area, with a thickness of
3.40—4.20 m, a buried depth of 13.45-160.92 m, and a mining elevation of 1120-1080 m.

The geological structure in the mining area is simple, and folds, faults, and magmatism
are not developed. The stratum is gentle, the dip angle is less than 1°, and only the
undulating anticline structure with very wide and gentle amplitude is developed.

From old to new, the mine’s strata are: Upper Triassic Yongping Formation (T3y), Mid-
dle Jurassic Yan’an Formation (Joy), Zhiluo Formation (J,,), Upper Neogene Xintong Baode
Formation (N,P), Quaternary Middle Pleistocene Lishi Formation (Q,1), Upper Pleistocene
Salawusu Formation (Q3®), and Holocene Aeolian Sand (Q4¢°!). The stratigraphic profile is
shown in Figure 2.

The weathered bedrock aquifer at the top of the Yan’an Formation is the main water-
filled aquifer during coal mining, which has strong water richness. The thickness of the
weathered bedrock aquifer is 7-41 m, the average thickness is 24 m, the average unit water
inflow(q) is 0.034 L/s-m, and the average permeability coefficient(k) is 0.16 m/d.

The distance between the 42 coal and weathered bedrock aquifer is 2.84-80.1 m,
with an average of 47.5 m. After 42 coal mining, the average height of the water flowing
fractured zone is 51.72 m. The height of the water flowing fractured zone is greater than
the distance between coal seam and aquifer, which can easily connect to the aquifer and
affect coal mining.
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Figure 2. Hydrogeological profile of the study area.

3. Probabilistic Spatial Multicriteria Analysis Method

This article integrated the MAHP and OWA method to construct a probabilistic spatial
multicriteria decision framework for the roof water inrush risk evaluation (Figure 3).
Among them, MAHP was used to determine the criteria weights for the evaluations, which
eliminates uncertainty in the process of determining the criteria weights. As a decision
rule, the ordered weighted averaging method (OWA) can quantify the decision makers’
risk-coping attitude and assemble the criteria attribute values and criteria weights into a
comprehensive evaluation result.

Evaluation index map

Monte Carlo I:>
Analytic Hierarchy Process :>

Probability distribution function

Figure 3. Probabilistic spatial multicriteria decision framework.
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3.1. Monte Carlo Analytical Hierarchy Process (MAHP)

Satyr proposed the analytic hierarchy process (AHP), which is widely used in various
fields. However, traditional AHP still has the following deficiencies [41,42,58-61]:

(1) Experts are required to use an accurate numerical value to describe the relative impor-
tance between criteria, but it is often difficult to give a precise numerical description.

(2) The unbalanced criterion judgment scale is used to quantify the relative importance
of the criteria.

(3) When the relative importance of multiple criteria is very close, it is impossible to
determine which criterion is the most important.

(4) The various possibilities of the relative importance of each element criterion in the
pairwise judgment matrix are not fully examined.

Regarding the above deficiencies, the method of fuzzy mathematics can solve the
above deficiencies of (1) and (2), while the Monte Carlo analytical hierarchy process used
in this paper can solve all of the above problems [41,42,58-61].

MAHP integrates Monte Carlo simulation and the analytic hierarchy process. MAHP
uses probability distribution to describe the distribution of elements in the pairwise judgment
matrix, combining Monte Carlo to further explore the criteria weight uncertainty [62-65].
Figure 4 shows the process of calculating the criteria weight by the Monte Carlo analytical

hierarchy process [66].

Step 1 : Create an NxN random
pairwise comparison matrix A

]

.| Step 2 : Calculate the normalized
7 matrix A ., of A

J

Step 3 : Calculate the maximum eigenvalue(Amax)
of and its associated eigenvector(W)

|

Step 4 : Calculate the consistency ratio of
eigenvector(W)

Is CR<0.1 ?

Step4:m=m+1

Yes Step 5:

Is CR<0.1 ?

Figure 4. Flowchart for calculating the weights of the evaluation criteria by the Monte Carlo analytical
hierarchy process.
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Using MAHP to calculate the weight of evaluation criteria is as follows [59-61]:
Step 1: Use Monte Carlo to randomly generate N x N judgment matrix A (PCAM),
and its element a;; represents the pairwise comparison between the decision criteria.

A:[ai]-] i,j:l,Z,...,n (1)

Consider the element 4;; as a continuous random variable and use the Beta-PERT
probability distribution to describe the continuous random variable. The Beta-PERT proba-
bility distribution has a small amount of data and can better fit the uniform distribution
and normal distribution, so it is very suitable for describing expert scoring in the decision
making process [60,61,65,66].

Beta-PERT distribution:

xv~1 (lfx)w*1

0<x<TL,0w>0

f(x) = { B(v,w) 2)
0 other
In Equation (2), B(v,w) is a standard Beta function, and its expression is:
1
B(v,w) = /tvfl(l — Hwldt 3)
0
_ (Xmean — Xmin 2Xmode — ¥min — xmax] @)
Xmax — X¥min Xmode — ¥mean
w— v[xmax - xmean] ®)

Xmean — Xmin
Xmean = (1/(A +2))(*min + AXmode + Xmax) (6)

In Equations (3)—(6), Xmin, ¥max, ¥modes X¥mean are the minimum value, maximum value,
most probable value, and average value, respectively. The default value A is 4.
Step 2: Determine the normalized matrix Aporm of the judgment matrix A. The element

ajj of Aporm is calculated as:
- n
al]:al]/zal] 11]21,2,...,7’l (7)
i=1

Step 3: Calculate the maximum eigenvalue Amax and the corresponding largest eigen-
vector W of the normalized matrix Anorm:

AnormW = /\maxw (8)
n _
L aj
j=1 ..
Wi:ﬁl,]zl,z,...,n (9)
Y Y aj
i=1j=1
Step 4: Consistency check.
N Amax — 11
Cl= 1 (10)

The consistency ratio CR is calculated as follows:

e

R=—
¢ RI

(11)

In Equation (11), RI is the average random consistency index [38].
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When CR is less than 0.1, the judgment matrix passes the consistency check and meets
the requirements; when CR is greater than 0.1, return to step 1.
Step 5: Repeat steps 1-4 until the M group of criteria weights are obtained.

3.2. Ordered Weighted Averaging (OWA)

Ordered weighted averaging is a kind of aggregation method of multicriteria decision
information proposed by Yager in 1988. The calculation equation of the ordered weighting
method is shown in Equation (12) [67-69].

n ST T
OwA = Y 551 (12)
j=1 ]gl Ujv;

Among them, OWA is the roof water inrush risk evaluation score; z;; > zjp > ... > z;,
is the queue reordered by size after normalizing the evaluation criteria attribute value a;;
uj is the weight of the criteria; v; is the order weight, which has nothing to do with a;; but is
only related to the sorting position of the criteria, v; is assigned to z;1, v; is assigned to zjp,
and so on, v, is assigned to zj,,.

There are two types of weights in ordered weighted averaging: the criteria weight,
wy, Wy, ..., wy (0< wj<1, ) w]-), which represents the relative importance between the
evaluation criteria; and the order weight, v, v5, ..., vn (0 < v <1, X)), which represents
the decision maker’s attitude to the roof water inrush risk [70,71].

Figure 5 presents the flowchart of the ordered weighted averaging for spatial multicri-
teria decisions, and the calculation process is as follows:

Risk assessment of roof water inrush under different risk management attitudes of decision makers ‘

{Overlmrden] [ Aquifuge ]

failure height

b [

\
1
1
1
1
1
1
1
1
1
1
1
1

o e
\ [FO.S]-[Neutmllty} )

Figure 5. Ordered weighted averaging flowchart.
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Step 1: Standardization of the evaluation criteria

To eliminate the conflict between different dimensions of evaluation criteria, it is
necessary to standardize the attribute values of the evaluation criteria. In this paper,
the range transformation method was used to standardize the spatial criteria, and the
calculation equations are as follows:

{Ill']‘ — min{aij}

= (13)

— maxya;i¢ — ajj

a;j = { ZJ} 2 (14)
j

where min{a;;} and max{a;} are the minimum and maximum values of the criteria

attribute value, respectively; r; = max{a;;} — min{a;}; Ei]- is the attribute value after the
criteria normalization.

Step 2: Calculate the weight of the evaluation criteria

In this paper, in Section 3.1, the steps for calculating the criteria weight are shown
using MAHP.

Step 3: Arrange the normalized criteria attribute value at each spatial position in
descending order.

Step 4: Sort based on the weights corresponding to the standardized criteria attribute
values after sorting.

Step 5: Calculate the order weight of the evaluation criteria.

A key issue in the OWA approach is to quantify the decision makers’ risk-coping
attitude corresponding to the criteria order weight. This paper used the ORness measure
and tradeoff measure to calculate the order weight [69-72].

Based on the ORness measure, a is defined as [70]:

L

v],O <a<1 (15)

In Equation (15), a represents the decision maker’s attitude to roof water inrush risk,
and v; is the order weight of the evaluation criteria. The higher the value of a, the more
optimistic the decision maker is about the roof water inrush risk. When 0.5 > a > 0, it means
that decision makers are unwilling to accept high-risk solutions and tend to accept less
risky solutions; when a = 0.5, it indicates that decision makers are neither willing to accept
high-risk schemes nor willing to accept low-risk schemes; when 1 > a > 0.5, it indicates
that decision makers prefer to risk it and tend to accept more risky options [69-72].

The normalized form of the dispersion measure is [73]:

lnv

n
disp(W E o (16)

The dispersion measure is used to measure the extent to which the criteria information is
fully utilized in the aggregation process. The larger the value, the more information is used.
When ¢ =0, vj=1, other weights are 0, when ¢ =1, the order weight v = [n=Yn . .., 0l

Based on the ORness measure and dispersion measure, O'Hagan proposed a method
of determining the order weight of OWA operators using the maximum entropy principle.
The method determines the order weight of the evaluation criteria by solving a constrained
nonlinear optimization problem when the optimism of the decision maker is known.
Equation (17) was used for the calculation [74,75].

" vilnov;
max imize ¢ = —Z L

j=i

Inn (17)
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where the constraints are:

=1 (18)
0<u

Step 6: Multiply the standardized criteria attribute value with the sorting criteria
weight to obtain the weighted criteria attribute normalized value, multiplied by the
order weight.

Step 7: Superimpose and sum the results of each criteria attribute map to obtain each
spatial position’s comprehensive evaluation value of the ordered weighted averaging.

4. Results and Discussion
4.1. Determining Evaluation Criteria of Roof Water Inrush

In this paper, water abundance of the aquifer, aquifer permeability, aquifer thickness,
mining depth, coal seam thickness, overburden failure height, and aquifuge thickness were

selected as the seven evaluation criteria shown in Figure 6. The specific analysis of the
selected factors is as follows:

: Component Indictors

Water abundance of aquifer (T1)

Coal seam thickness (T7)

i
i
| — Water inrush source Aquifer permeabilty (T2)
I
4 : Aquifer thickness (T3)
© = !
-~ N |
5 F |
I
E = i Overburden failure height (T4)
g s>
2 § | Aquifuge thickness (TS)
2L !
Z 8!
Ra = ! Mining depth (T6)
I
i
i

Figure 6. Roof water inrush risk evaluation index system.

Water abundance of the aquifer (T1): The water abundance of the aquifer is used to
measure the amount of water yield of the aquifer during mining. The stronger the water
abundance of the aquifer, the more water will be released from the aquifer during coal
seam mining, and the higher the risk of roof water inrush. The water abundance of the
aquifer is quantified by the unit water inflow (q) of the borehole.

Aquifer permeability (T2): The size of the permeability coefficient reflects the perme-
ability of the aquifer. The larger the permeability coefficient of the aquifer, the stronger the
permeability of the aquifer, and the higher the risk of roof water inrush.

Aquifer thickness (T3): The thickness of the aquifer directly determines the amount of
water stored in the aquifer. The greater the thickness of the aquifer, the more water is stored
in the aquifer, and the higher the risk of roof water inrush when the coal seam is mined.

Mining depth (T4): The deeper the coal seam is buried, the higher the risk of roof
water inrush. The depth of coal seam directly determines the stress in overburden and the
failure height of roof overburden after mining. The deeper the coal seam is buried, the
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greater the original rock stress in the roof overburden, the more obvious the roof pressure
during coal seam mining, and the more likely this is to lead to the occurrence of a water
inrush accident.

Coal seam thickness (T5): The greater the thickness of coal seam mining, the greater
the disturbance of roof overburden, the more serious the deformation and failure of roof
overburden, and the greater the risk of roof water inrush during coal seam mining.

Overburden failure height (T6): The mining of the coal seam causes the overburden
to move, deform, and destroy, forming a fracture zone and a collapse zone within the
overburden damage height. When the fracture zone connects to the aquifer, it becomes a
water inrush channel. The deeper the water conducting fracture zone enters the aquifer,
the greater the damage degree of the aquifer, and the greater the risk of roof water inrush
during coal mining.

Aquifuge thickness (T7): The aquifuge can block the hydraulic connection between
the aquifer and the coal seam, and reduce the development height of mining fractures. The
greater the thickness of the roof aquifuge, the less the possibility of the water permeating
through the aquifer, and the lower the risk of roof water inrush during coal seam mining.

4.2. Standardization of Evaluation Criteria

The contribution of the six factors (T1, T2, T3, T4, T6, T7) to roof water inrush was pos-
itively correlated by using Equation (13) to standardize them. The contribution of aquifuge
thickness to roof water inrush was negatively correlated, and Equation (14) was used for
standardization. The dimensionless thematic map (Figure 7) for each evaluation criterion
was obtained in ArgcGIS based on the exploration borehole data of the Liangshuijing Mine.
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Figure 7. The dimensionless thematic map for the evaluation criteria: (a) T1; (b) T2; (c) T3; (d) T4;
(e) T5; () T6; (g) T7.

4.3. Evaluation Criteria Weight
4.3.1. Criteria Weight

Regarding the criteria weight, based on the probability distribution function of each
element in the pairwise comparison judgment matrix, Monte Carlo simulation uses random
number sampling to generate 10,000 judgment matrices. After a consistency check of the
analytic hierarchy process, there were 259 groups of qualified weight samples. Figure 8
shows the probability density estimation of the criteria weight samples obtained by the
MAHP method, and Figure 9 is the weight distribution function of each evaluation criterion.

50

‘Water abundance of aquifer

Premeability coefficient of aquifer

— Aquifer thickness

Burial depth of coal seam
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Height of fractured water-conducting zone
— Aquifuge thickness
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Figure 8. Criteria weight distribution function.
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Figure 9. Evaluation criteria weight distribution function.

In Table 1, the criteria weight data are shown, where the value in parentheses is the
confidence interval for the mean of the criteria weight with a confidence level of 95%.
Figures 1 and 9 are the weight distribution function of the evaluation criteria. From Table 1
and Figure 4, most of the criteria weights calculated by MAHP were distributed within a
narrow confidence interval range around the mean value. The narrower the confidence
interval width, the more concentrated the distribution of the criteria weight and the lower
the uncertainty. This method greatly reduces the uncertainty in the weight calculation of
the water inrush evaluation index.

In the traditional analytic hierarchy process, the relative importance of the valuation
criteria is not clear due to different experts. Different experts obtain different criteria
weight ranking results that have strong randomness and uncertainty. This paper used
MAHP, which introduces the probability density function of evaluation criteria, solves the
randomness and uncertainty in the process of determining the evaluation index weight,
and gives a clear ranking result of the relative importance of the water inrush evaluation
criteria from the most to the least as follows: water abundance of the aquifer, coal seam
thickness, aquifuge thickness, aquifer thickness, aquifer permeability, overburden failure
height, and mining depth.

It is worth noting that in the criteria weight results obtained by the Monte Carlo
analytic hierarchy process, the weight value of the coal seam thickness was large while the
weight values of aquifer permeability and overburden failure height were small. This is
not in line with previous perceptions. Traditionally, it is believed that the water abundance
of the aquifer, aquifer thickness, aquifer permeability, and overburden failure height
significantly influence the roof water inrush, therefore, their weight values of the evaluation
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criteria should be large. However, this was not the case for the evaluation criteria weight
calculations obtained in the Monte Carlo analytic hierarchy process. This is because two
evaluation criteria had a strong correlation: coal seam thickness and the overburden failure
height, and the water abundance of the aquifer and aquifer permeability all had a strong
correlation. The coal seam thickness determines the overburden failure height. The size
of the aquifer permeability determines the water abundance of the aquifer. To ensure
the rationality of the criteria weight distribution, when the weight value of one of them
was relatively large, the weight value of the other with correlation was small, which
demonstrates the rationality of determining the criteria weights using MAHP.

Table 1. The criteria weight statistics.

Criteria Mean Min Max Standardization = Confidence Interval
Water abundance of the aquifer 0.2678 0.1974 0.3301 0.02498 (0.2647-0.2708)
Aquifer permeability 0.0911 0.0633 0.1288 0.01233 (0.0895-0.0925)
Aquifer thickness 0.1463 0.1044 0.1985 0.0209 (0.1437-0.1488)
Mining depth 0.0497 0.0370 0.0761 0.0070 (0.0488-0.0505)
Coal seam thickness 0.1965 0.1401 0.2613 0.0220 (0.1938-0.1992)
Overburden failure height 0.0665 0.0484 0.0875 0.0074 (0.0656-0.0674)
Aquifuge thickness 0.1819 0.1395 0.2398 0.01979 (0.1795-0.1843)

Furthermore, in the traditional AHP, it is difficult for experts to give the relative
importance of the three factors: water abundance of the aquifer, aquifer thickness, and
aquifuge thickness. Different experts obtain different results. However, in the Monte Carlo
analytic hierarchy process, the relative importance of the three can be obtained based on
the interpretation of probability statistics.

4.3.2. Order Weight

Regarding the order weight, this paper assumed that decision makers have five risk
attitudes in response to roof water inrush: pessimistic, moderately pessimistic, neutral,
moderately optimistic, and optimistic. The corresponding a values were 0.1, 0.3, 0.5, 0.7,
and 0.9. After calculation by Equations (15)—(18), the order weights of each criterion are
shown in Table 2 [72].

Table 2. The order weights of the evaluation index under different a values.

a 0.1 0.3 0.5 0.7 0.9
Order weight vy 0.002 0.0438 0.1428 0.3096 0.6226
Order weight v, 0.0052 0.0607 0.1428 0.2236 0.2367
Order weight v3 0.0136 0.0841 0.1428 0.1614 0.09
Order weight vy 0.0353 0.1165 0.1429 0.1166 0.0342
Order weight vs 0.0918 0.1614 0.1429 0.0842 0.0130
Order weight vg 0.2391 0.2236 0.1429 0.0608 0.0049
Order weight vy 0.6224 0.3097 0.1429 0.0439 0.0019

4.4. Influence of Risk Attitudes on Roof Water Inrush Risk Evaluation Results

By using the dimensionless thematic map, evaluation criteria weights, and order
weights obtained in Section 4.1, Section 4.2 and Section 4.3, the zoning map of the water
inrush risk evaluation under different risk-coping attitudes of decision makers (a) was
obtained using ArcGIS. As shown in Figure 10, the evaluation result map was classified
into five water inrush risk levels (very high, high, medium, low, and very low) using the
natural breaks classification method.
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Figure 10. The evaluation result map of the roof water inrush risk under different risk attitudes:
(@)a=0.1,(b)a=05;(c)a=0.7,(d)a=0.9; (e)a=0.9.

To further explore the impact of different risk-coping attitudes of decision makers
on the risk evaluation results of roof water inrush, the number of pixels of very high and
high-risk areas for roof water inrush under different risk-coping attitudes were counted
(Table 3). Combining Figure 10 and Table 3, as the value of a gradually increased, that is,
the risk-coping attitude of decision makers gradually changed from pessimistic to neutral,
and finally to optimistic, and the area of very-high and high-risk areas for water inrush
significantly increased. This indicates that the roof water inrush evaluation results strongly
depend on the risk-coping attitude of the decision makers. Even the slightest change in the
risk-coping attitude can have a significant impact on the final risk evaluation results.

Table 3. The number of pixels of the roof water inrush risk areas in Figure 10.

Risk Attitude a Number of Pixels
Pessimistic 0.1 13,774,955
Moderately pessimistic 0.3 15,245,159
Neutral 0.5 19,685,325
Moderately optimistic 0.7 43,416,472

Optimistic 0.9 50,369,478
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4.5. Verification and Comparison of Evaluation Results under Different Risk Attitudes

In order to obtain the accuracy of the risk evaluation results of roof water inrush under
different risk-coping attitudes of decision makers, the 25 water inrush points known in the
mining area were compared with the roof water inrush risk zoning map obtained under
different risk-coping attitudes (Figure 11). Figure 12 is the prediction accuracy of the roof
water inrush risk zoning evaluation results under different risk attitudes. Among them,
when the risk attitude was 0.1, 0.3, 0.5, 0.7, and 0.9, the prediction accuracy (including
very high and high-risk) was 48%, 60%, 68%, 96%, and 100%, respectively. This shows
that as decision makers become more optimistic about risk-coping, the roof water inrush
prediction accuracy will be higher and higher. This is because the size of the water inrush
danger area in a mining area is larger, so there are more geographical units that can reach
high and very high-risk levels, and therefore a higher prediction accuracy. However, this
accuracy improvement is at the cost of increasing the overall area of very high and high-risk
areas for water inrush. The increase in this area is not necessarily consistent with the actual
situation, but also reduces the pertinence and effectiveness of roof water treatment work.
Therefore, water inrush risk evaluation under different risk-coping attitudes can provide
decision making references in various situations for the prevention and control of roof
water inrush, but a blindly optimistic attitude should not be taken to deliberately improve
the prediction accuracy.
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Figure 11. Verification diagram of the roof water inrush risk evaluation results under different
risk-coping attitudes: (a) a =0.1; (b) a =0.5; (¢) a=0.7; (d) a = 0.9.
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5. Conclusions

(1) In this paper, the Monte Carlo analytical hierarchy process (MAHP) was used to
calculate the evaluation criteria weight, which eliminates randomness and uncertainty
in the process of determining the evaluation indicators in the traditional analytical
hierarchy process. This gives the relative importance of the evaluation criteria in
descending order: water abundance of the aquifer, coal seam thickness, aquifuge
thickness, aquifer thickness, aquifer permeability, overburden failure height, and
mining depth.

(2) In this paper, the risk-coping attitude of decision makers was considered during the risk
evaluation of roof water inrush. The OWA operator quantifies the impact of the risk
attitude of decision makers on the water inrush risk evaluation. This paper assumed
that the risk-coping attitude of decision makers to deal with roof water inrush has
five situations: pessimistic, moderately pessimistic, neutral, moderately optimistic, and
optimistic. The corresponding a values were 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.

(3) As decision makers become more optimistic about their risk-coping attitudes, the area
of high-risk areas for roof water inrush within mining becomes significantly larger.
The roof water inrush risk assessment results strongly depend on the risk-coping
attitude of decision makers. A slight change in the decision makers’ risk-coping
attitude can have a significant impact on the final risk assessment results..

(4) Using the method proposed in this paper, the roof water inrush risk assessment results
can be made more objective and accurate, thereby reducing or eliminating the risks
associated with subjective decision making.

Author Contributions: Conceptualization, C.G., D.W. and ].G.; formal analysis, D.W. and C.G.;
investigation, C.G., D.W,, Y.F. and S.X.; methodology, C.G. and D.W.,; project administration, K.L. and
S.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
grant number 2019YFC1805400 And National Natural Science Foundation of China grant number
41877238.

Data Availability Statement: This article contains no data or material other than the articles used for
the review and referenced.

Acknowledgments: The authors are thankful to the reviewers for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, W,; Tian, G. Mine water Disaster Type and Prevention and Control Counten measures in China. Coal Sci. Technol. 2010, 38,
92-96.

2. Dong, S.; Ji, Y.; Wang, H.; Zhao, B.; Cao, H.; Liu, Y,; Liu, Y;; Ji, Z.; Liu, B. Prevention and control technology and application of roof
water disaster in Jurassic coal field of Ordos Basin. J. China Coal Soc. 2020, 45, 2367-2375.

3. Zeng, Y.; Li, Z.; Gong, H.; Zheng, J. Water abundance characteristics in aquifer of weathered roof bedrock and prediction on water
inrush risk. Coal Eng. 2018, 50, 100-104.

4.  Li, P. Mine Water Problems and Solutions in China. Mine Water Environ. 2018, 37, 217-221. [CrossRef]

5. Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water
Resour. Manag. 2015, 29, 399-418. [CrossRef]

6.  Dahri, N.; Abida, H. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes
Basin (southeastern Tunisia). Environ. Earth Sci. 2017, 76, 302. [CrossRef]

7. Tang, Z.; Zhang, H.; Yi, S.; Xiao, Y. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria
decision analysis. . Hydrol. 2018, 558, 144-158. [CrossRef]

8.  Lin, K,; Chen, H,; Xu, C,; Yan, P; Lan, T,; Liu, Z.; Dong, C. Assessment of flash flood risk based on improved analytic hierarchy
process method and integrated maximum likelihood clustering algorithm. J. Hydrol. 2020, 584, 124696. [CrossRef]

9. Xiao, Y. Yi, S.; Tang, Z. A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood
Hazard Assessment. Water Resour. Manag. 2018, 32, 3317-3335. [CrossRef]

10. Liu, Y, Yuan, S.; Yang, B.; Liu, J.; Ye, Z. Predicting the height of the water-conducting fractured zone using multiple regression

analysis and GIS. Environ. Earth Sci. 2019, 78, 422. [CrossRef]


http://doi.org/10.1007/s10230-018-0543-z
http://doi.org/10.1007/s11269-014-0817-6
http://doi.org/10.1007/s12665-017-6619-4
http://doi.org/10.1016/j.jhydrol.2018.01.033
http://doi.org/10.1016/j.jhydrol.2020.124696
http://doi.org/10.1007/s11269-018-1993-6
http://doi.org/10.1007/s12665-019-8429-3

Water 2023, 15, 254 20 of 22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

Yang, P; Yang, W.; Nie, Y.; Saleem, F; Lu, F.; Ma, R; Li, R. Predicting the Height of the Water-conducting Fractured Zone Based
on a Multiple Regression Model and Information Entropy in the Northern Ordos Basin, China. Mine Water Environ. 2022, 41,
225-236. [CrossRef]

Liang, Y.; Sui, W.; Qi, J. Experimental investigation on chemical grouting of inclined fracture to control sand and water flow. Tunn.
Undergr. Space Technol. 2019, 83, 82-90. [CrossRef]

Liu, Y,; Liu, J.; Yang, B.; Yuan, S. Assessing Water and Sand Inrushes Hazard Reductions due to Backfill Mining by Combining
GIS and Entropy Methods. Mine Water Environ. 2021, 40, 956-969. [CrossRef]

Liu, J; Yang, B,; Yuan, S; Li, Z.; Yang, M.; Duan, L. A Fuzzy Analytical Process to Assess the Risk of Disaster when Backfill
Mining Under Aquifers and Buildings. Mine Water Environ. 2021, 40, 891-901. [CrossRef]

Liu, J; Yang, B.; Yuan, S.; Li, L.; Duan, L. A fuzzy analytic hierarchy process model to assess the risk of disaster reduction due to
grouting in coal mining. Arab. J. Geosci. 2020, 13, 227. [CrossRef]

Li, J.; Wang, S.; Wang, Y.; Wang, X.; Wang, X. Water Inrush Risk Assessment of Coal Floor After CBM Development Based on the
Fractal-AHP-Vulnerability Index Method. Geotech. Geol. Eng. 2021, 39, 3487-3497. [CrossRef]

Shen, J.; Wu, Q.; Liu, W. The Development of the Water-Richness Evaluation Model for the Unconsolidated Aquifers Based on the
Extension Matter-Element Theory. Geotech. Geol. Eng. 2020, 38, 2639-2652. [CrossRef]

Li, Q.; Sui, W. Risk evaluation of mine-water inrush based on principal component logistic regression analysis and an improved
analytic hierarchy process. Hydrogeol. J. 2021, 29, 1299-1311. [CrossRef]

Cheng, X.; Qiao, W.; Li, G.; Yu, Z. Risk assessment of roof water disaster due to multi-seam mining at Wulunshan Coal Mine in
China. Arab. |. Geosci. 2021, 14, 1116. [CrossRef]

Zhu, T; Li, W,; Chen, W. Risk assessment of Cretaceous water inrush in the Ordos Basin based on the FAHP-EM. Water Policy
2021, 23, 1249-1265. [CrossRef]

Zhang, Y.; Zhang, L.; Li, H.; Chi, B. Evaluation of the Water Yield of Coal Roof Aquifers Based on the FDAHP-Entropy Method: A
Case Study in the Donghuantuo Coal Mine, China. Geofluids 2021, 2021, 1-16. [CrossRef]

Sun, Z.; Bao, W.; Li, M. Comprehensive Water Inrush Risk Assessment Method for Coal Seam Roof. Sustainability 2022, 14, 10475.
[CrossRef]

Xiao, L.; Wu, Q.; Niu, C.; Dai, G.; Wang, S.; Ren, D.; Luo, S. Application of a new evaluation method for floor water inrush risk
from the Ordovician fissure confined aquifer in Xiayukou coal mine, Shanxi, China. Carbonates Evaporites 2020, 35, 97. [CrossRef]
Qiang, W.; Liu, Y.z; Liu, Y. Using the Vulnerable Index Method to Assess the Likelihood of a Water Inrush through the Floor of a
Multi-seam Coal Mine in China. Mine Water Environ. 2011, 30, 54—60. [CrossRef]

Wu, Q.; Xu, K.; Zhang, W.; Wei, Z. Roof aquifer water abundance evaluation: A case study in Taigemiao, China. Arab. ]. Geosci.
2017, 10, 254. [CrossRef]

Wu, Q.; Guo, X;; Shen, J.; Xu, S.; Liu, S.; Zeng, Y. Risk Assessment of Water Inrush from Aquifers Underlying the Gushuyuan Coal
Mine, China. Mine Water Environ. 2017, 36, 96-103. [CrossRef]

Wu, Q.; Liu, Y,; Luo, L,; Liu, S.; Sun, W.; Zeng, Y. Quantitative evaluation and prediction of water inrush vulnerability from
aquifers overlying coal seams in Donghuantuo Coal Mine, China. Environ. Earth Sci. 2015, 74, 1429-1437. [CrossRef]

Wu, Q.; Zhao, D.; Wang, Y.; Shen, J.; Mu, W.; Liu, H. Method for assessing coal-floor water-inrush risk based on the variable-weight
model and unascertained measure theory. Hydrogeol. J. 2017, 25, 2089-2103. [CrossRef]

Wu, Q.; Liu, Y,; Zhou, W.; Li, B.; Zhao, B.; Liu, S.; Sun, W.; Zeng, Y. Evaluation of Water Inrush Vulnerability from Aquifers
Overlying Coal Seams in the Menkeqing Coal Mine, China. Mine Water Environ. 2015, 34, 258-269. [CrossRef]

Zeng, Y.; Wu, Q,; Liu, S.; Zhai, Y.; Lian, H.; Zhang, W. Evaluation of a coal seam roof water inrush: Case study in the Wangjialing
coal mine, China. Mine Water Environ. 2018, 37, 174-184. [CrossRef]

Gao, C.; Wang, D.; Liu, K.; Deng, G; Li, J.; Jie, B. A Multifactor Quantitative Assessment Model for Safe Mining after Roof
Drainage in the Liangshuijing Coal Mine. ACS Omega 2022, 7, 26437-26454. [CrossRef] [PubMed]

Liu, M.; Qiao, W.; Meng, Q.; Bu, Z. A new risk zoning method for water inrush from separated layers at coal mines: A case study,
Cuimu coal mine, China. Arab. ]. Geosci. 2021, 14, 2544. [CrossRef]

Stewart, T.].; Durbach, I. Dealing with Uncertainties in MCDA; Springer: New York, NY, USA, 2016; pp. 467—496.

Zimmermann, H.]. An application-oriented view of modeling uncertainty. Eur. ]. Oper. Res. 2000, 122, 190-198. [CrossRef]

Liu, W.; Han, M.; Meng, X.; Qin, Y. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination
Weight-Cloud Model: A Case Study. ACS Omega 2021, 6, 32671-32681. [CrossRef] [PubMed]

Chen, H.; Wood, M.D,; Linstead, C.; Maltby, E. Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment
management. Environ. Model. Softw. 2011, 26, 395-405. [CrossRef]

Chen, Y; Yu, J.; Khan, S. The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making.
Environ. Model. Softw. 2013, 48, 129-140. [CrossRef]

Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19-43. [CrossRef]

Wang, T.; Chen, Y. Applying consistent fuzzy preference relations to partnership selection. Omega 2007, 35, 384-388. [CrossRef]
Deng, H. Multicriteria analysis with fuzzy pairwise comparison. Int. J. Approx. Reason. 1999, 21, 215-231. [CrossRef]

Jing, L.; Chen, B.; Zhang, B.; Li, P.; Zheng, ]. Monte Carlo Simulation-Aided Analytic Hierarchy Process Approach: Case Study
of Assessing Preferred Non-Point-Source Pollution Control Best Management Practices. J. Environ. Eng. 2013, 139, 618-626.
[CrossRef]


http://doi.org/10.1007/s10230-021-00805-y
http://doi.org/10.1016/j.tust.2018.09.038
http://doi.org/10.1007/s10230-021-00829-4
http://doi.org/10.1007/s10230-021-00822-x
http://doi.org/10.1007/s12517-020-5130-5
http://doi.org/10.1007/s10706-021-01706-1
http://doi.org/10.1007/s10706-019-01175-7
http://doi.org/10.1007/s10040-021-02305-3
http://doi.org/10.1007/s12517-021-07491-8
http://doi.org/10.2166/wp.2021.028
http://doi.org/10.1155/2021/5512729
http://doi.org/10.3390/su141710475
http://doi.org/10.1007/s13146-020-00629-x
http://doi.org/10.1007/s10230-010-0125-1
http://doi.org/10.1007/s12517-017-3048-3
http://doi.org/10.1007/s10230-016-0410-8
http://doi.org/10.1007/s12665-015-4132-1
http://doi.org/10.1007/s10040-017-1614-0
http://doi.org/10.1007/s10230-014-0313-5
http://doi.org/10.1007/s10230-017-0459-z
http://doi.org/10.1021/acsomega.2c02270
http://www.ncbi.nlm.nih.gov/pubmed/35936470
http://doi.org/10.1007/s12517-021-08584-0
http://doi.org/10.1016/S0377-2217(99)00228-3
http://doi.org/10.1021/acsomega.1c04357
http://www.ncbi.nlm.nih.gov/pubmed/34901616
http://doi.org/10.1016/j.envsoft.2010.09.005
http://doi.org/10.1016/j.envsoft.2013.06.010
http://doi.org/10.1287/inte.24.6.19
http://doi.org/10.1016/j.omega.2005.07.007
http://doi.org/10.1016/S0888-613X(99)00025-0
http://doi.org/10.1061/(ASCE)EE.1943-7870.0000673

Water 2023, 15, 254 21 of 22

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Yaraghi, N.; Tabesh, P.; Guan, P.; Zhuang, ]. Comparison of AHP and Monte Carlo AHP Under Different Levels of Uncertainty.
IEEE Trans. Eng. Manag. 2015, 62, 122-132. [CrossRef]

Anagnostopoulos, K.; Vavatsikos, A. Site Suitability Analysis for Natural Systems for Wastewater Treatment with Spatial Fuzzy
Analytic Hierarchy Process. ]. Water Resour. Plan. Manag. 2012, 138, 125-134. [CrossRef]

Vadrevu, K.P; Eaturu, A.; Badarinath, K.V.S. Fire risk evaluation using multicriteria analysis—A case study. Environ. Monit.
Assess. 2010, 166, 223-239. [CrossRef]

Kordi, M.; Brandt, S.A. Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis.
Comput. Environ. Urban Syst. 2012, 36, 43-53. [CrossRef]

Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015.
Elaalem, M.; Comber, A.; Fisher, P. A Comparison of Fuzzy AHP and Ideal Point Methods for Evaluating Land Suitability. Trans.
GIS 2011, 15, 329-346. [CrossRef]

Fu, G.; Yin, W,; Dong, ].; Di, E; Zhu, C. Behavior-based accident causation: The “2—4"model and its safety implications in coal
mines. J. China Coal Soc. 2013, 38, 1123-1129.

Wu, Q. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China. J. China
Coal Soc. 2014, 39, 795-805.

Che, H. In fact, 96% of dangerous accidents can be avoided—DuPont executives talk about safety management. China’s Natl.
Cond. Strength 2003, 02, 57.

Kang, S.; Min, S.; Won, D.; Kang, Y.; Kim, S. Suggestion of an Improved Evaluation Method of Construction Companies’ Industrial
Accident Prevention Activities in South Korea. Int. . Environ. Res. Public Health 2021, 18, 8442. [CrossRef]

Chen, H,; Qi, H.; Long, R.; Zhang, M. Research on 10-year tendency of China coal mine accidents and the characteristics of human
factors. Saf. Sci. 2012, 50, 745-750. [CrossRef]

Khanzode, V.V,; Maiti, J.; Ray, PK. Occupational injury and accident research: A comprehensive review. Saf. Sci. 2012, 50,
1355-1367. [CrossRef]

Mahdevari, S.; Shahriar, K.; Esfahanipour, A. Human health and safety risks management in underground coal mines using fuzzy
TOPSIS. Sci. Total Environ. 2014, 488—489, 85-99. [CrossRef] [PubMed]

Hallowell, M.R.; Alexander, D.; Gambatese, ].A. Energy-based safety risk assessment: Does magnitude and intensity of energy
predict injury severity? Constr. Manag. Econ. 2017, 35, 64-77. [CrossRef]

Tu, W,; Li, L.; Shang, C.; Liu, S.; Zhu, Y. Comprehensive risk assessment and engineering application of mine water inrush based
on normal cloud model and local variable weight. Energy sources. Part A Recovery Util. Environ. Eff. 2019. [CrossRef]
ANSI/ASSP/ISO 45001-2018 Occupational Health and Safety Management Systems—Requirements with Guidance for Use.
Chilton’s Ind. Saf. Hyg. News 2019, 53, 34.

Wang, C.; Yang, S.; Jiang, C.; Wu, G.; Liu, Q. Monte Carlo analytic hierarchy process for selection of the longwall mining method
in thin coal seams. J. S. Afr. Inst. Min. Metall. 2019, 119, 1005-1012.

Ataei, M.; Shahsavany, H.; Mikaeil, R. Monte Carlo Analytic Hierarchy Process (MAHP) approach to selection of optimum mining
method. Int. ]. Min. Sci. Technol. 2013, 23, 573-578. [CrossRef]

Hsu, T.; Pan, EE.C. Application of Monte Carlo AHP in ranking dental quality attributes. Expert Syst. Appl. 2009, 36, 2310-2316.
[CrossRef]

Rosenbloom, E.S. A probabilistic interpretation of the final rankings in AHP. Eur. J. Oper. Res. 1997, 96, 371-378. [CrossRef]
Prato, T. Stochastic multiple attribute evaluation of land use policies. Ecol. Model. 2008, 219, 115-124. [CrossRef]

Durbach, I.N.; Stewart, T.]. Modeling uncertainty in multi-criteria decision analysis. Eur. J. Oper. Res. 2012, 223, 1-14. [CrossRef]
Marinoni, O. A stochastic spatial decision support system based on PROMETHEE. Int. |. Geogr. Inf. Sci. IJGIS 2005, 19, 51-68.
[CrossRef]

Benke, K.K.; Pelizaro, C. A spatial-statistical approach to the visualisation of uncertainty in land suitability analysis. J. Spat. Sci.
2010, 55, 257-272. [CrossRef]

Tang, Z.; Yi, S.; Wang, C.; Xiao, Y. Incorporating probabilistic approach into local multi-criteria decision analysis for flood
susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2018, 32, 701-714. [CrossRef]

Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability
analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270-277. [CrossRef]

Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern.
1988, 18, 183-190. [CrossRef]

Jiang, H.; Eastman, ].R. Application of fuzzy measures in multi-criteria evaluation in GIS. Int. ]. Geogr. Inf. Sci. IJGIS 2000, 14,
173-184. [CrossRef]

Makropoulos, C.K.; Butler, D. Spatial ordered weighted averaging: Incorporating spatially variable attitude towards risk in
spatial multi-criteria decision-making. Environ. Model. Softw. Environ. Data News 2006, 21, 69-84. [CrossRef]

Malczewski, J.; Liu, X. Local ordered weighted averaging in GIS-based multicriteria analysis. Annals of GIS 2014, 20, 117-129.
[CrossRef]

Tang, Z. Flood Hazard Assessment based on Spatially Explicit Multi-criteria Decision Analysis Under Uncertainty. Ph.D. Thesis,
Huazhong University of Science and Technology, Wuhan, China, 2018; p. 144.


http://doi.org/10.1109/TEM.2014.2360082
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000155
http://doi.org/10.1007/s10661-009-0997-3
http://doi.org/10.1016/j.compenvurbsys.2011.07.004
http://doi.org/10.1111/j.1467-9671.2011.01260.x
http://doi.org/10.3390/ijerph18168442
http://doi.org/10.1016/j.ssci.2011.08.040
http://doi.org/10.1016/j.ssci.2011.12.015
http://doi.org/10.1016/j.scitotenv.2014.04.076
http://www.ncbi.nlm.nih.gov/pubmed/24815558
http://doi.org/10.1080/01446193.2016.1274418
http://doi.org/10.1080/15567036.2019.1696427
http://doi.org/10.1016/j.ijmst.2013.07.017
http://doi.org/10.1016/j.eswa.2007.12.023
http://doi.org/10.1016/S0377-2217(96)00049-5
http://doi.org/10.1016/j.ecolmodel.2008.08.006
http://doi.org/10.1016/j.ejor.2012.04.038
http://doi.org/10.1080/13658810412331280176
http://doi.org/10.1080/14498596.2010.521975
http://doi.org/10.1007/s00477-017-1431-y
http://doi.org/10.1016/j.jag.2006.01.003
http://doi.org/10.1109/21.87068
http://doi.org/10.1080/136588100240903
http://doi.org/10.1016/j.envsoft.2004.10.010
http://doi.org/10.1080/19475683.2014.904439

Water 2023, 15, 254 22 of 22

73. O’Hagan, M. Aggregating Template or Rule Antecedents in Real-Time Expert Systems with Fuzzy Set Logic. In Proceedings of
the Twenty-Second Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October—2 November
1988; Volume 2, pp. 681-689.

74. Fullér, R.; Majlender, P. An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets Syst. 2001, 124,
53-57. [CrossRef]

75. O’Hagan, M. A Fuzzy Neuron Based upon Maximum Entropy Ordered Weighted Averaging; Springer: Berlin/Heidelberg, Germany,
2005; pp. 598-609.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/S0165-0114(01)00007-0

	Introduction 
	Study Area 
	Probabilistic Spatial Multicriteria Analysis Method 
	Monte Carlo Analytical Hierarchy Process (MAHP) 
	Ordered Weighted Averaging (OWA) 

	Results and Discussion 
	Determining Evaluation Criteria of Roof Water Inrush 
	Standardization of Evaluation Criteria 
	Evaluation Criteria Weight 
	Criteria Weight 
	Order Weight 

	Influence of Risk Attitudes on Roof Water Inrush Risk Evaluation Results 
	Verification and Comparison of Evaluation Results under Different Risk Attitudes 

	Conclusions 
	References

