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Abstract: To alleviate the impacts of water shortages and ensure the effective allocation of water
resources, the integration of multiple sources has been a viable but challenging alternative for water
resource managers. A robust decision support system (DSS) reduces the complexity of decision
making and allows the user to define operational strategies that reduce costs and address system
limitations. Through the Particle Swarm Optimization (PSO) collective intelligence algorithm and
the operational zoning of reservoirs, it was possible to identify the monthly flow allocation for the
Agreste of Pernambuco in Brazil. The analysis of unit costs allowed us to conclude that high local
energy tariffs guide the DSS in the exploration of water-transfer works between basins, such as the
Agreste pipeline, which had full use of approximately 2 m3/s in the analyzed scenarios. The study
also sought to investigate the influence of rainy and dry periods, with the higher flows into local
reservoirs in rainy periods leading the system to operate at a cost 2.6% higher compared to the dry
period. The use of DSS was able to provide support and parameters that facilitate decision making,
ensuring that the system operates efficiently and sustainably.

Keywords: decision support system (DSS); particle swarm optimization (PSO); multiple supply
systems; semiarid

1. Introduction

During water scarcity scenarios resulting from periods of drought, reduced precipita-
tion and pollution of water sources, ensuring the reliability of the population’s supply is
a key factor to avoid conflicts and vulnerabilities. Although there is a natural predisposi-
tion to regions with poor distribution of water resources and adverse weather conditions,
anthropogenic actions make the scenario even more worrying. Problems such as high water
demand associated with population growth, pollution of water bodies and climate change
significantly increase the water deficit, bringing unsustainable conditions to the population
and the local environment [1].

Ren et al. [2] highlight that climate change and the intensification of human activities
have changed the stationarity of hydrometeorological series, bringing greater uncertainty
to the use of water resources. A key challenge in managing water resources is to reduce
the vulnerability of this system, even if anthropogenic influences cannot be predicted by
statistical methods. Modeling water supply systems is complex, fraught with uncertainties
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and incomplete input data, which often prevents ensuring the reliability of flow allocation
and quantifying supply risks.

In the context of water resources management, a very relevant topic is the design
and operation of integrated hydraulic systems [2–4]. The integration of multiple water
sources is an effective alternative to alleviate water scarcity problems and ensure the
development of effective water allocation policies. Despite this, supply systems with
multiple water sources, especially transferred water, make water resource management
a major challenge [4,5]. The presence of multiple water sources leads to the problem
of a multi-process, as it requires complex analysis of the infrastructural limitations of
the system, control of reservoir volumes, demand projections and climate forecasts, thus
requiring a robust optimization method for decision making.

The promotion of various methodologies for managing water resources, whether
they be methods of genetic algorithms, collective intelligence or simulation models of
the processes that occur in watersheds, is crucial to aid in decision making. Yao and
Georgakakos [6] find that reliable flow forecasts and adaptive decision support systems
(DSSs) substantially benefit the performance of reservoirs and, consequently, the water
supply system. For this, the DSS must be able to focus efforts on developing strategies to
increase water supply and consciously control demand.

The effectiveness of the flow allocation model is directly linked to the ability of the
optimization method to adapt to the study site and describe its characteristics. It can
be seen that evolutionary and collective intelligence algorithms, coupled with reservoir
simulation models, have been a frequent choice for use in water resources management
and have generated consistent results at good convergence rates [5,7–11]. It is necessary
to use techniques capable of assisting in the process of analysis, operation, planning and
decision making in water resources systems in a deeper way than a simple balance between
supply and demand.

The particle swarm optimization (PSO) collective intelligence method assumes a promi-
nent position among probabilistic algorithms, being frequently applied in the most diverse
areas and standing out among genetic algorithms for better results at shorter processing
times [12]. The model was inspired by the dynamics and behavior of socially organized
populations in nature, which are influenced by the individual’s personal experience and
the group’s knowledge. The PSO is an efficient, robust and easy-to-implement method
with few parameters to be adjusted [13]; therefore, it has gained space in the scientific field
in the area of water supply with multiple water sources [1,8,9,14].

Searching for technologies and strategies to optimize the management of water re-
sources is an indispensable tool to minimize supply inefficiencies. In the Brazilian semiarid
region, especially in the Agreste region of Pernambuco (Brazil), there is a large concentration
of people, few options for local sources, low rainfall and high evaporation rates, generating
a conflict scenario that highlights the importance of strategic planning. Because of this sce-
nario, the DSS developed seeks to obtain the allocation of flows from consumption centers
in the Agreste region of Pernambuco through an integrated proposal for optimization via
PSO coupled with a model of operational zoning of reservoirs, considering technical and
economic criteria.

Some papers using the PSO method analyze the optimal allocation of water resources
to competing water-use sectors, such as the agricultural, domestic, industrial and ecological
sectors [14,15]. Others use reservoir operation models, such as the PSO coupled with
MODSIM river basin decision support system [16] to maximize the catchable flow to supply
a total demand in the basin based on the fulfillment of guarantees [1,17]. Yan et al. [9] chose
to use the PSO, but this time to compare the results of the whale optimization algorithm
(AWOA), which showed better rates of convergence and precision for the allocation of
water resources in the Hadan province in China. In Brazil, Cirilo et al. [11] adopted the
PSO to define the flows to be transported from different sources to 18 locations, minimizing
the corresponding costs. The decision variables were the discharge percentages from each
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source to each demand center and the model was applied in the Agreste region of the state
of Pernambuco, this study being the precursor of the present study.

The present study uses the PSO coupled with a model of operational zoning of
reservoirs, considering technical and economic criteria. A holistic view of the problem
is sought, focusing on optimizing the operation of the reservoirs and discriminating the
demands and impacts on all municipalities and villages in the study area. The flow
allocation problem ranges from 26 water sources to 41 consumption centers belonging to
the Agreste region of Pernambuco, Brazil. The system has reservoirs, pipelines and water-
transfer works between basins. The high number of variables involved in the process, as
well as the volume of input data of the model, increases the complexity of decision making.
The reservoir operation model based on the general zoning of the reservoir capacity [7]
allows defining of a set of capturable flows based on reservoir operation scenarios and no
longer on the usual concept of supply guarantees. The use of the PSO to allocate flows
allows parallelization between the optimization of the operation of the reservoir and the
operational costs of water transport with a focus on the full service of the consumption
centers benefited by the project.

The main differences of this study in relation to the cited works that can be highlighted
are (a) greater number of consumption centers and water sources involved in the process,
increasing the number of variables of the problem and the complexity of the optimization
process; (b) disaggregation of demands by consumer centers, considering infrastructure
limitations, instead of using a total demand of the study area or categorizing conflicts of
general use.

2. Study Area

The Brazilian semiarid region is usually affected by water scarcity problems, causing
several socioeconomic and environmental impacts that impose obstacles to the region’s
development. From the perspective of reducing the vulnerability of the population affected
by the unavailability of water, promoting the rational use of water and circumventing
the effects of droughts, several debates and public policies have emerged over time. The
issue of public policies to combat and coexist with droughts has undergone major and
marked transformations over the last two centuries, but there are still many challenges in
water management.

Water scarcity depends on meteorological systems that operate in the region and
large-scale climatic phenomena that influence the variables that define the behavior and
circulation of the atmosphere [18]. The northeastern semiarid region presents great spatial
and temporal variability of rainfall, with irregular rainfall concentrated in a few months.
This scenario, associated with the high potential for water evaporation, the dominant
geological characteristics and climate change, which have increasingly intensified the
problem of water scarcity, place the region on constant alert and promote the need to live
with drought [19,20].

The state of Pernambuco has the most unfavorable water balance in Brazil, and the
Pernambuco Agreste has the worst performance among all regions of the state [20]. The
Agreste region of Pernambuco is poor in terms of water flow from the rivers, which makes
it impossible to fully supply the population and causes a series of conflicts over the use
of water. In addition to the low rainfall, there is a high population density in the region,
an absence of local sources that allow meeting demand, high evaporation rates and poor
water quality, either due to soil salinity or sewage load.

Cirilo et al. [21] highlight that, despite efforts to provide sufficient water, these measures
are not enough to solve the problems arising from water scarcity, especially in rural areas.
Therefore, technologies and alternatives for optimizing the management of water resources
must be sought to minimize the problems of restricting water availability, and the need to
transfer water between basins sometimes arises. In Pernambuco’s Agreste, transfers between
basins and integrated systems are part of the strategy to solve the problem. Figure 1 shows
the location of the study area in the state of Pernambuco and Brazil.
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Figure 1. Location of the Agreste region of the state of Pernambuco, the study area of the work.

The study area comprises parts of the hydrographic basins of the Capibaribe, Ipojuca,
Una, Mundaú, Ipanema and Moxotó rivers. In all, there are 35 municipalities and 6 villages,
21 reservoirs and 5 pipelines, making up a universe of 41 consumption centers and 26 water
sources. The possibility of allocating flows from different sources justifies the need for
a DSS that facilitates the management of the region’s supply system. Figure 2 shows the
hydrological network, the consumption centers and the infrastructure available for water
supply in the region.
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Figure 2. Discretization of the study area: (a) hydrological network and (b) pipeline system, channels,
sources and consumption centers of the project.

Caruaru is the main city in the Agreste region of Pernambuco. It is the second
largest city in the state of Pernambuco and the third most populous in the countryside
of the northeast region of Brazil, with a population of over 370,000 inhabitants. It is also
an important educational, industrial and technological center of the region and located on
08◦17′00′′ latitude and 35◦58′34′′ longitude, away 130 km from Recife, the capital city of
the state [22]. The city has a negative water balance due to the influence of factors such
as irregular rainfall in time and space, high evaporation rate, and the crystalline nature
of the geology [23]. The temperature varies from 11 ◦C to 38 ◦C, with an average annual
precipitation of 680 mm, which is concentrated between March and July [24].
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To mitigate the impacts of water scarcity in the region, the Ministry of National
Integration prepared the São Francisco River Integration Project (PISF), which began to be
discussed and negotiated with state governments and with entities represented in basin
and water bodies, effectively being designed in the 1990s. In its first conception, there
was only one main channel called Eixo Norte with capture in the municipality of Cabrobó,
PE, crossing this state and emptying into the networks of rivers in Paraíba, Ceará and Rio
Grande do Norte. Following the disagreement of the Government of Pernambuco about this
conception, the project of a second channel, called Eixo Leste, is destined to serve, through
complementary works, the Agreste of Pernambuco and areas of Paraíba. The East Axis is
currently in operation, feeding the Paraíba River and through it the Boqueirão Reservoir,
the main source of the Paraíba city of Campina Grande, whose 410,000 inhabitants were in
a situation of pre-collapse of water supply.

For the water from the São Francisco River to reach the Agreste of Pernambuco, some
complementary works are necessary. The first is a channel, called Ramal do Agreste, which
will interconnect the East Axis of the PISF to the water-treatment plant in the municipality
of Arcoverde-PE, which constitutes the second complementary work. The channel was
recently opened.

The ETA works are still at an early stage. The third is the Agreste Adductor System,
a set of lifting systems with approximately 1300 km of pipes (divided into two phases) to
serve 68 cities and at least 80 locations in the region. These works should already have
been completed according to the originally established schedule. In 2011, the most severe
drought occurred in the state, probably more severe than any in the last 80 to 100 years.
Anticipating the delay of the PISF works, the Government of Pernambuco, in 2013, started
a schedule of works in parallel to minimize the supply problem. These are the Pirangi and
Serro Azul pipelines, from springs in the Mata Sul region of the state, the Siriji pipeline
in Mata Norte, the drilling of a battery of wells in the Tupanatinga region, sedimentary
aquifers and local systems derived from dams in the Southern Agreste.

More recently, also intending to anticipate the supply of cities from the São Francisco
River, two pipelines are under construction: the Moxotó pipeline, derived from the Eixo
Leste reservoir in the municipality of Ibimirim, with completed stages, and the Alto
Capibaribe pipeline, from the Boqueirão reservoir, in Paraíba, which was the first source
outside the São Francisco River basin to receive water from the PISF. In the general context,
these sources should be interconnected wherever possible to the Agreste pipeline sections
as they are completed to allow the transport of water to the cities.

In addition to the anticipation of supply, it is important to note that this multiplicity
of water sources will represent a remarkable paradigm shift because the Agreste region
will have different means of being supplied. For a region identified as having the most
critical water balance in the country, it will undoubtedly be an extraordinary change that
will boost its development.

3. Materials and Methods
3.1. Particle Swarm Optimization (PSO)

PSO was developed by Kennedy and Eberhart [25] as a stochastic optimization al-
gorithm based on social simulation models. The model is inspired by the dynamics and
behavior of socially organized populations in nature, such as flocks of birds, schools of
fish and herds of animals. In general terms, individuals in the population are represented
by particles that move in a search space and are influenced by their own experience, the
cognitive system, and through the knowledge of neighboring particles, the social system.

Kennedy et al. [26] state that the process of cultural adaptation is based on the ability of
particles to feel the environment and estimate their behavior, followed by the comparison of
performances between the group and imitation of promising trajectories. The PSO structure
requires particle initialization: the most usual technique is random uniform initialization,
which means that each particle of the initial swarm and, consequently, the initial positions
and velocities are described by sampling a uniform distribution over search space.
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PSO uses two important sociometric principles, Gbest and Pbest, which represent,
respectively, the best position in the search space traversed by any of the particles and
the best individual position of the particle. Both focus on the adopted objective function,
which guarantees the optimality of the problem solution. The impact exerted by the metrics
Gbest and Pbest depends on two constants: the cognitive factor (c1) and the social factor (c2).
Furthermore, the search space exploration capability is controlled by the inertia factor (ω),
which brings a balance between global and local exploration, resulting in a smaller number
of iterations to find the optimal solution.

Thus, a particle will move in a certain direction that is a function of some parameters:
the current position xi(t), the current velocity vi(t), the inertia, the best position ever occupied
by the particle (Pbest) and the best position ever found by the swarm (Gbest). The particle
velocity is adjusted according to Equation (1):

vi(t+1)= ωtvi(t)+rand c1

(
Pbest−xi(t)

)
+rand c2 (G best−xi(t)

)
(1)

where c1 and c2 are constants limited to a finite range, i is the analyzed particle, t is the
current iteration and rand generates random values between 0 and 1, which help ensure
that the particle does not get lost in local minima. The cognitive and social factors, c1 and
c2, normally assume a value of 2 [27].

After calculating the velocity of particle i, its position in the next iteration is established
as the addition of the old position and the calculated velocity, expressed by Equation (2).

xi(t+1)= xi(t)+vi(t+1) (2)

The inertia weight ω has a significant effect on the behavior of the algorithm and
indicates the ability of the particles to maintain their current trajectory, reducing the distur-
bances that move them away from the best positions. Without inertia, even if a promising
region of the search space was detected, the particles would oscillate in wide trajectories
around their best positions. The refined search (i.e., around the best positions) requires
strong attraction of particles toward promising regions and small changes in a position that
prevent their escape from the close neighborhood [28].

Global exploration has its most effective performance at the beginning of the process,
as the particles are spread out in a very comprehensive search field. Therefore, it is
recommended that ω takes on larger values at the beginning of the searches, and, over
the iterations, its value is gradually reduced, thus ensuring a faster convergence. The
suggestion, proposed by Eberhart and Shi [27], was to use a linear variation of inertia with
an initial value of 0.9 and a final value of 0.4, according to Equation (3).

ωt = (ωini−ωend)
(T− t)

T
+ωend (3)

whereωini andωend are the initial and final values, respectively, T is the total number of
iterations and t is the current iteration.

3.2. Reservoirs Operation

To quantify the flow that can be captured in the reservoirs, the time series of flow
and precipitation of stations close to the reservoirs were used. Assuming that the physical
and climatic characteristics of the watershed are similar to the dam [29], the daily flow
was calculated in proportion to the drainage area between the fluviometric station and
the drainage area controlled by each dam. The evaporation rate was obtained at the
meteorological stations closest to each of the reservoirs. The historical series of flows and
rainfall were obtained from the databases of the National Water and Basic Sanitation Agency
(ANA) and the Pernambuco Water and Climate Agency. The Height x Area x Volume
curves were calculated using geoprocessing tools and applied to the high-resolution MDT
of the Pernambuco Tridimensional Program (PE3D) [30].
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The set of capturable flows was obtained through the concept of general zoning of
the reservoir capacity for the operating rules based on the storage status at the beginning
of each time [7]. Operation scenarios were defined based on percentage ranges of the
reservoirs’ storage, namely the following: collapse, pre-collapse, extreme drought, severe
drought, drought, alert, restricted operation and normal operation. The percentage ranges
are based on the reservoir zoning guide curves, considering the hydrological year for the
analysis. For each guide curve, there are two restriction levels, separated by a transition
period (i.e., their duration depending on the level of water accumulation in the reservoir)
so that when the reservoir’s situation is more critical, the time is longer with more severe
restriction. Figure 3 illustrates the guide curves and accumulation scenarios for one of the
reservoirs in the study area, the Prata reservoir, followed by the respective flow distribution
(Figure 4).
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Figure 4. Flow distribution related to the month and water accumulation scenario in the Prata reservoir.

3.3. Decision Support System

The optimization process corresponds to the allocation of water from sources (NS) to
consumption centers (NC). The decision variables were the set of percentage values (Xi,j) of
the maximum flow Qj,t that can be captured from each reservoir or transported through
the pipeline systems that make up the water transfers between basins. This approach
allows capturing water from sources proportionally depending on an increase or decrease
in water availability.
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DSS provides subsidies for water allocation each month. The annual historical series
of inflows to each reservoir, with 40 years of daily data, were classified into five classes:
(a) year with rainfall much above average; (b) above average; (c) on average; (d) below
average; and (e) well below average. The definition of a climate scenario at the time the
DSS is rotated leads to the choice of data from one of the classes to feed the operation of the
reservoirs and, consequently, to the decision of the recommended flow rates for capture
in each one of them. Simulations are performed with daily time steps and allocated flow
(decision variables) throughout the month under analysis.

Because this is an optimization problem governed by constraint and boundary con-
ditions, penalties are applied to the optimization process, causing solutions that violate
the constraints to be discarded immediately and disregarded in the following solutions.
The application of a penalty guarantees that the sum of the corrected flows allocated to
the consumption centers of a given source j in any period t does not exceed the water
availability of the source.

DSS seeks to find economically viable solutions that respect infrastructural, operational
and water availability constraints from sources. For this, the objective function to be
optimized depends directly on the operating costs of the systems and on penalties capable
of guiding the model through the search space, as shown in Equation (4). The penalty
function is based on the constraints of the problem and guarantees that the maximum flows
are not exceeded.

MinFO =
1
T
·

T

∑
t=1
{

NS

∑
j=1

[
NC

∑
i=1

qi, j, t ·(ci,j+f j)+maximum(0,
NC

∑
i=1

qi,j,t− Qj,t)·β]} (4)

where qi,j,t is the final corrected flow allocated from source j to consumption center i at
time t, ci,j is the average energy cost of pumps in section i–j per m3 of water transported
and fj is the cost of source j of different natures to energy costs, comprising the sum of
water purchase and/or treatment costs, personnel costs and others that may be considered
significant for decision making. Qj,t is the water availability of source j at time t, and β is the
penalty factor, equivalent to a fine of USD 190,000.00 per m3/s, exceeding the maximum
flow that can be supplied by the water source.

The input information concerning water, technical and economic nature from the DSS
allows for a safer simulation of the systems’ operation. The water order criteria describe
important conditions for the functioning of the reservoirs, such as guide curves and Height
x Area x Volume curves, initial percentage of reservoir accumulation and historical series of
inflow, precipitation and evaporation. The technical criteria characterize the infrastructure
of the system and the demands of consumption centers. The economic criteria are the unit
costs associated with the costs of energy consumed in the water-pumping stations that
make up the system, in addition to costs for water treatment and payment for raw water,
when applicable.

In the optimization process, the initialization of particle positions occurs randomly by
uniform distribution rules from a predefined interval. The decision variables must assume
values that are physically possible and restricted to demand conditions at consumption
centers and water availability from sources. Figure 5 shows the DSS flowchart. At each
iteration of the optimization, the simulation process is performed for the total particle
population, providing information that is compared later and that offers support for
decision making.
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4. Results and Discussion

Once the maximum flows that can be captured from the reservoirs are defined, as
well as the water transport limitations of the adductor systems, the DSS allocates water
from each water source to each consumption center. The allocation problem defines the
functioning of the integrated supply system composed of 41 consumption centers and
26 water sources (NC = 41, NS = 26). In the simulation, a solution is obtained for the current
month because the weather forecast may change in the following months. The optimal
solution must be able to operate with minimum costs under technical and water criteria, in
addition to presenting a satisfactory performance for the analyzed historical series.

It was assumed that each reservoir starts from an initial condition of 50% of accumula-
tion volume at the beginning of the month, and the DSS presented in this work considers
the possibility of bidirectional flow: depending on the availability of water in the reservoirs,
the pipelines that take water to the cities can be supplied by more than one source and
eventually by flow reversal. In the context of this work, the months of February, which
is part of the dry season, and July, which is considered a rainy month, were selected to
represent the dry and wet periods. The climate forecast scenario for the simulation was
rainfall at the historical average.
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Figure 6 shows the flow distribution for consumption centers with a demand greater
than 0.2 m3/s in February and July. It can be seen that the rainy season and the consequent
increase in the level of accumulation in the reservoirs result in the allocation of more water
to the consumption centers. There is a significant increase in the flow captured from the
Jucazinho reservoir, equivalent to more than 30% of the supply to the municipality of
Caruaru in July, and the Tabocas reservoir, which is now responsible for most of the water
supply to the municipality of Santa Cruz do Capibaribe. This flow arrangement allowed
for a greater contribution from the Agreste pipeline to the municipality of Arcoverde, but
there was no significant interference for the other municipalities.
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Figure 6. Distribution of flows to the consumption centers with the highest demand in the months of
(a) February and (b) July.

In both simulations, it was possible to notice the economic viability of the Agreste
pipeline, which, in periods of drought, is the most used water source. This pipeline
would be responsible for supplying more than 40% of the demand of the study area in the
simulations made, and this choice in the optimization process is due to the high average
energy costs practiced in the region for the continuous operation of the system. In the case
of the Agreste pipeline, the cost of water is charged per m3 consumed plus a fixed cost
resulting from the contracted demand and is independent of energy tariffs.

With the increase in the water availability of the reservoirs throughout the month
due to the increase in rainfall and inflows, the DSS leads to a path of greater use of the
reservoirs and consequent reduction in water transport through the pipelines whose costs
are less viable, such as the Alto Capibaribe and Moxotó pipelines, which can be seen from
the results in Figure 7.
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Figure 7. Comparison between available and captured flows given the unit costs of water sources in
the months of (a) February and (b) July.

Figure 8 shows how the accumulation of the Jucazinho and Prata reservoirs behaves,
which are the main and most used reservoirs in the study area. Both start the month with
50% of their maximum capacity and follow different paths depending on the analyzed
month. For the Prata reservoir, whose capacity is smaller, the variations are few throughout
the month, but it is noted that the storage condition of the reservoir is slightly higher
than the initial one at the end of July, whereas the opposite happens in February. For
the Jucazinho reservoir, there is a considerable increase in the volume of accumulation in
July, equivalent to 18 hm3, whereas the reservoir does not undergo significant changes in
February. It is noticeable that, for both reservoirs, the abstraction is below the availability
of the water source, which highlights the existence of more viable sources to supply
the demands.
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Figure 8. Accumulation volume throughout the month with the uptake defined by the DSS from
(a) Jucazinho reservoir and (b) Prata reservoir.

The increase in the volume of accumulation in the reservoirs leads to an increase in
water availability and consequent greater use of the source. DSS solutions are percentage
values of source availability and, therefore, a higher available flow is directly reflected
in a higher captured flow. This mechanism allows the process to prioritize local sources,
even if water transfer pipelines between basins are more economically viable. In Table 1,
the average costs of supplying each water source are shown, allowing the conclusion that
the total cost of operation is higher in the rainy season than in the dry season. This result
highlights inefficient pumping stations and high energy tariffs, which make it difficult to
take advantage of nearby reservoirs and lead the system to choose to use almost exclusively
the available flow from the Agreste pipeline.

Table 1. Average daily cost per water source in February and July.

Water Source
Average Daily Cost (US$)

February July

Amora Grande Reservoir 3427.38 3427.38
Bitury Reservoir 688.95 273.02
Brejão Reservoir 362.07 448.52

Brejo do Buraco Reservoir 18.56 0.00
Ingazeira Reservoir 623.41 29.99

Ipaneminha Reservoir 1598.56 1378.93
Jucazinho Reservoir 5581.59 16,456.03
Machado Reservoir 493.80 595.79

Mateus Vieira Reservoir 14.41 74.26
Mororó Reservoir 0.00 43.60

Mulungú Reservoir 0.00 0.00
Pau Ferro Reservoir 2500.36 816.80

Pedro Moura Reservoir, Jr. 2166.17 2166.17
Poço Fundo Reservoir 37.82 0.00

Riacho de Pau Reservoir 2566.48 0.00
Santana Reservoir 0.00 0.00

Santana Reservoir II 0.00 7.02
Serro Azul Reservoir 0.00 0.00

Tabocas Reservoir 0.00 3834.96
Taquara Reservoir 12.33 0.00

Prata Reservoir 18,302.71 15,921.62
Agreste Pipeline 23,972.93 24,291.65

Alto Capibaribe Pipeline 8159.77 3692.77
Moxotó Pipeline 11,481.42 9647.43
Pirangi Pipeline 1399.61 2539.94

Vertente Doce Pipeline 1150.62 1150.62

Total 84,558.94 86,796.50
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The Jucazinho reservoir, whose available flows for February and July were 1.68 m3/s
and 2.03 m3/s, respectively, provided only 0.29 m3/s in February and 0.59 m3/s in July. This
is not an isolated situation, given the low utilization of the Prata reservoir, in addition to
the small reservoirs that were also underexploited. In general, the Agreste pipeline stands
out for supplying the region, followed by the Jucazinho and Prata reservoirs, and the
Moxotó and Alto Capibaribe pipelines. The other sources make a negligible contribution,
supplying few consumption centers. It is also noted that the increase in the flow captured
from Jucazinho reduced the operational costs of the Moxotó and Alto Capibaribe pipelines,
although globally this solution is less economically viable.

DSS is designed to process large amounts of data, simulate various solutions, support
optimization models and provide clear reports with important information. Despite the
solution being a key part of the optimization process, the clarity of the reports provided by
DSS allows for identifying provision inefficiencies and focusing efforts to improve service
delivery. Metrics of costs per water source and unit costs per consumption center offer
support to identify problem points in the supply of the study area, serving as the initial
step for more detailed investigations and infrastructure improvements. Figure 9 shows the
demands of consumption centers and the average unit costs for supply in the simulated
months. It can be seen that most demands are low, with the municipality of Caruaru having
the highest demand, equivalent to 1.130 m3/s, but the average for the study area is only
0.107 m3/s. Without the use of multiple water sources, the municipality of Caruaru is
subject to significant water rationing, driven mainly by the lack of rain, the deficiency in
water distribution and the higher demand required, as highlighted by Silva et al. [31].
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Figure 9. Average unit cost for supplying consumption centers in February and July.

It was possible to notice that most consumption centers categorized as villages and,
therefore, with very low demands, have higher unit costs, as is the case of Alto São Francisco,
Vila de Santana and Vitorino. In general, costs tend to increase for the July simulation
due to the greater use of reservoirs. The municipality of Caruaru, for example, had no
input from the Jucazinho reservoir in February, and the results indicated an average unit
supply cost of 0.245 USD/m3. In June, with more than 30% of its demand supplied by the
Jucazinho reservoir, the cost was raised to 0.304 USD/m3. Despite this, about 24% of the
consumption centers did not have considerable changes between the months, meaning
a low influence of the rainy and dry periods on the distribution of flows.

In general, optimization methods based on probabilistic algorithms tend to be more
efficient than deterministic ones for application in complex real problems, since the objective
function and constraints do not need to have a mathematical representation, much less
be continuous and differentiable. These work correctly with discrete and continuous
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parameters and, in most cases, they tend to be simpler to implement. On the other hand,
the biggest disadvantage of probabilistic methods is the computational processing time
required, which directly depends on the computational cost linked to the evaluation of
the objective function and the desired level of uncertainty. The complexity of the DSS is
due to the processes of correcting the allocated flows and obtaining daily costs that require
the manipulation of a large amount of data and verifications, thus making the process
slower. In PSO, the main parameters responsible for defining the certainty of the solution
are the quantities of particles and iterations. Figure 10 shows the surface that describes the
processing time as a function of the number of iterations and particles.
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The results of this section were obtained with 100 iterations and 1000 particles, totaling
16 h and 40 min of processing for each simulation. Knowing that the longer the processing
time, the closer the solution obtained is to the global optimum, the definition of using
100 iterations and 1000 particles emerged from an exhaustive battery of optimization
tests of the problem. Tests of 50, 100 and 200 iterations correlated to 100, 500, 1000 and
1500 particles were performed, varying the input information, such as months of the year
for analysis and the initial condition of reservoir accumulation. The results obtained in the
sensitivity test showed that above 100 iterations and 1000 particles, the minimization of
costs is insignificant compared to the required processing time.

5. Conclusions

The efficient allocation of water resources, especially in conditions of multiple sources
of water supply and water scarcity, is a challenge for managers of supply companies.
The need to develop robust decision support systems capable of providing support for
decision making is well known. The definition of parameters that guide the efficient
operation of large systems that produce and add water is essential for the Agreste region of
Pernambuco (Brazil), whose unfavorable water balance reinforces the need for strategic
planning. The collection of water, technical and economic information proved to be an
important step for the modeling and optimization of processes, allowing the system to
emulate the characteristics of the case study and guaranteeing the achievement of applicable
and real solutions.

It is important to highlight how, in the general composition, the use of multiple sources
and the transfer works between basins will make it possible for the Agreste to reduce the
problem of water scarcity, making it possible to supply water to the population in full,
without interruptions or rationing. This new reality highlights the need for DSS, as it places
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the water supply in the Agreste region of Pernambuco in a new phase: the optimization of
service provision.

The DSS highlighted the economic viability of the Agreste pipeline and that the
maximum use of local reservoirs has not been economically advantageous due to high
energy tariffs. The Agreste pipeline was responsible for supplying more than 40% of the
demand in the study area, reflecting its unit cost of 0.14 USD/m3, while there are water
sources that reach 0.80 USD/m3. Depending on the number of pumping stations between
the water source and the consumption center, the input from the Agreste pipeline should be
prioritized. Unit cost metrics by water source and consumption centers provided important
information to identify system inefficiencies and develop a strategic plan to optimize service
delivery. Although supplying from multiple sources is complex and makes the integrated
management of the system difficult, it is clear that its use guarantees sufficient quantity
and quality of water for the local population, providing relief from the water scarcity that
still plagues the region.
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