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Abstract: Issues such as climate change, water scarcity, population growth, and distribution losses
have stimulated the use of new technologies to manage water resources. This is how the concept of
smart water management emerged as a subcategory of the concept of smart cities. This article aimed
first to identify the applications of smart water-management systems described in academic articles
either as applications in development or as applications already implemented or as future trends; and,
second, to classify them according to the processes in the value chain of public water supply services.
To this end, a systematic review of the literature was carried out, in which 100 mentions of applications
were identified in 62 selected articles; then, the mentions were grouped into 10 categories. The most
frequent application categories were smart meters, implementation models and architectures, and
loss management. Among the processes of the value chain, applications in processes of distribution
and water use were highly predominant. The lack of detail about the integration between the
different applications for a smart water-management system was pointed out as a limitation and an
opportunity for future research development, especially in terms of a technological roadmap study
based on the relationship between smart meters and loss management.

Keywords: smart water network; smart meter; water-management systems architecture; loss
management; water consumption monitoring for users; prediction of water demand

1. Introduction

Water plays a fundamental role in people’s lives, from the simple fact that it makes up
more than half of the human body to its application in various sectors such as healthcare,
food production, agriculture, and industry [1]. The management of water resources, that is,
“the activity of planning, developing, distributing, and managing the optimal use of water
resources” [2] (p. 4), has been facing different challenges in the last several years: climate
change, droughts, water scarcity, distribution losses, population growth, infrastructure
problems, and lack of user awareness [3].

Given this scenario, the discussion about the sustainability of water supply systems
gained strength [4]. The world is increasingly looking for solutions to face problems
related to the management of water resources, such as monitoring and controlling losses
in distribution [5], predicting users’ demand [6], and water quality [7]. In this respect,
the adoption of new technologies is increasing, which is denoted by the emergence of the
concept of Water 4.0 coined by the German Water Partnership, meaning the implementation
of Industry 4.0 technologies in the sanitation sector [8]. Furthermore, a survey conducted
between 2013 and 2014 on applications of smart metering technologies in water supply
systems in Australia and New Zealand [9] showed that 250,000 smart meters were already
installed or in the planning stage of being installed and 66% of the water service providers
interviewed considered this aspect in their plans for the following 12 months.
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Smart water management is a subcategory of the smart city concept [3,10–16].
Neirotti et al. [17] defined smart water management as one of the application domains of
smart cities that had lower coverage rates in the cities analyzed in the study in question;
however, they did not detail the applications within the concept of smart water networks.
Also, no other review article regarding smart water-management systems applications was
found. This context led to the following research questions:

• Q1: What are the applications of smart water-management systems presented in the
academic literature?

• Q2: How can those applications cover the value chain of public water supply services?

The objective of this paper was, first, to identify the applications of smart water-
management systems described in academic articles either as applications in development
or as applications already implemented or as future trends; and, second, to classify them
according to the processes in the value chain of public water supply services.

2. Literature Review
2.1. Smart Water Networks

Smart water networks are water supply systems that mix physical and virtual elements
in order to enable better system performance and resilience, as well as greater user engage-
ment [18]. Benítez et al. [19] defined this concept in a more tangible way, by characterizing
smart water networks as those that have a large number of devices for measuring variables
such as pressure, flow, and totalized flow in an automatic and continuous way (physical
elements); and, also, mentioning how the data from these meters (virtual elements) could
be used, for example, for loss detection and prediction of demand.

Günther et al. [20] (p. 452) treated the concept of smart water networks more deeply,
describing them as “the functional interaction of different components installed in a water
distribution system” and unraveling the physical and virtual aspects in the following
layers: physical, measurement and control, data collection and communication, data
monitoring, and data analysis. The physical layer includes the physical infrastructure of
the water network, i.e., pipes, reservoirs, valves, pumps, tanks, etc. The measurement
and control layer is composed of field measurement instruments (flow, pressure, reservoir
level, and water-quality parameters such as turbidity, conductivity, and free chlorine;
for example) and control devices such as programmable logic controllers (PLCs). The
data collection and communication layer includes SCADA (supervisory control and data
acquisition) systems, the telemetry infrastructure, and the data itself transmitted over
the communication network. The data management and monitoring layer is responsible
for storing, processing, and making this data available to interested parties. Finally, the
data-analysis layer consists of a set of tools that use data for different applications, which
can be categorized into functionalities.

2.2. Smart Water Management

Smart water management has been treated in the literature as one of the applica-
tion domains of smart cities, along with smart grids, urban mobility, garbage collection,
citizen services, healthcare, and safety [10,16]. Tzagkarakis et al. [21] correlated the “intelli-
gence” in question with the search for greater service efficiency in a smart city. Similarly,
Simmhan et al. [16] and Slaný et al. [22] defined smart water management as the use of
internet of things (IoT) technologies with the following objectives: guarantee the quality
and availability of water, avoid losses, preventively maintain the infrastructure (networks,
equipment, etc.), and engage users to save water. Therefore, it can be inferred that smart
water management consists in how to use smart water networks to deliver a sustainable,
efficient, and quality service to the end user.

2.3. Water Value Chain

In the same way that smart water management constitutes one of the application
domains within the concept of smart cities, it can also be subdivided into application
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domains. The value-chain concept, then, becomes an auxiliary tool. According to [23,24], a
value chain is a representation of a company’s processes in a detailed way, denoting how it
delivers its final product to the customer. Therefore, from the analysis of the water value
chain, it is possible to identify the application domains used as references to analyze the
coverage of applications of smart water-management systems.

The Basic Sanitation Company of the State of São Paulo (Sabesp) defines in its Sustain-
ability Report [25] the value chain illustrated in Figure 1. Sabesp is the largest sanitation
company in the Americas and the fifth largest in the world, in terms of population served,
and responsible for serving 28 million people in 375 municipalities in the São Paulo state
(Brazil).
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The water value chain has a strong relationship with the water cycle in nature. In its
analysis of the processes applied for water reuse, Prisciandaro et al. [26] propose a closed
water cycle, considering water capture, treatment, storage, and distribution processes in
addition to sewage treatment and effluent reuse (see Figure 2). The water cycle proposed
by these authors represented more thoroughly and comprehensively the main processes
identified by [25] and, for this reason, it was adopted as a reference for the analysis of the
coverage of smart water-management system applications in the water value chain.
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3. Methods

The methodology adopted in this paper was that of a systematic literature review
illustrated in Figure 3 using the PRISMA framework [27], which searched for articles
dealing with smart water-management systems and their applications. The initial article
search was carried out on the Web of Science database platform on March 22, 2022, using
the following search string:

• (TI = (“smart water management”)) OR (TI = (“smart water network”)) OR (TI = (“smart
water grid”)) OR (TI = (“smart water meter”)) OR (TI = (“smart water sensor”)) OR (AB
= (“smart water management”)) OR (AB = (“smart water network”)) OR (AB = (“smart
water grid”)) OR (AB = (“smart water meter”)) OR (AB = (“smart water sensor”)) OR (AK
= (“smart water management”)) OR (AK = (“smart water network”)) OR (AK = (“smart
water grid”)) OR (AK = (“smart water meter”)) OR (AK = (“smart water sensor”))

This search string resulted in a set of 212 articles. Next, review articles, abstracts, and
editorial material were excluded from the set, so that only articles published in scientific
journals, conferences, and congress annals remained, including the “early access” ones. In
the end, the set comprised 194 articles.

Three criteria for the selection of articles to be reviewed were defined: (a) minimum of
ten citations, (b) publication from 2019 with at least one citation, and (c) minimum average
of one annual citation. The criteria were regressively restrictive (37, 58, and 73 selected
articles, respectively). Finally, we decided to select the articles which met at least one of the
three criteria, resulting in a total sample of 98 articles.

The abstracts of the selected articles were analyzed independently by the authors to
identify applications of smart water-management systems. The analyzed articles were
entered in the lines of a Microsoft Excel spreadsheet and the applications in the columns;
then, the applications mentioned in each article were highlighted. During the analysis stage,
36 articles were excluded because they either focused on other research areas (agriculture,
energy, rainwater drainage, and sectorization of supply networks) or did not address
applications related to smart water-management systems; therefore, 62 articles remained.
A total of 100 application mentions were identified and grouped into 10 categories by
similarity.

Finally, the selected articles were classified according to the processes of the value
chain to which their mentions of applications referred, allowing the crossing of application
categories with the processes of the value chain.
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4. Applications of Smart Water Management

The literature review on smart water-management systems aiming to answer the
research question Q1 resulted in the identification of 100 mentions of applications in
62 articles, grouped into ten categories. The applications of smart meters stood out, present
in 43% of the analyzed articles, followed by implementation models and architectures
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(15%) and loss management (11%)—see Figure 4 for the complete ranking of applications.
Figure 5 illustrates there has been a significant growth of publications on smart water-
management applications in the last five years, driven mainly by the smart-meter category.
The ten categories of applications identified were detailed in the following subsections.
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4.1. Smart Meters

Smart meters made up the main category of smart water-management system appli-
cations. Although no formal definition of the concept of smart meters was found, it was
possible to conclude from the analyzed articles that their “intelligence” derives from the
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ability to record and transmit information about the physical quantity measured through a
communication channel. Solutions such as the WM-Bus protocol [28], LoRa and LoRaWAN
networked meters with low energy consumption and longer transmission range [22,29–31],
and meters based on IEEE 802.15.4 and ContikiOS LibCoAP [32], exemplified the imple-
mentation of different communication channels for data transmission. In contrast to these
technologies, which presuppose the existence of an electronic meter that generates an electri-
cal signal proportional to the measured variable, Li, C. et al. [13] and Pietrosanto et al. [33]
proposed image recognition methods for reading mechanical water flow meters, which
is an interesting technology for cities where the installed base of mechanical meters still
predominates over electronic ones. All applications found regarding smart meters were
listed in Table 1.

Table 1. Identified smart meter applications (Authors).

Applications References

Smart meters in general [1], [5] *, [9,19,21,34–36], [37] *, and [38–50]

Arduino and WiFi [51] *

IEEE 802.15.4 and ContikiOS LibCoAP [32]

IoT (LoRa/LoRaWAN, SigFox and NB-IoT) [22] * and [29,30,52,53]

Reading of mechanical flow meters [13,33] *

LinkIt One and Mediatek Cloud Sandbox [54]

Self-powered meters [14,55]

Wastewater flow meter using tomography [56]

Vibration and acoustic meters [57–60] *

Raspberry PI and 6LoWPAN [31]

Raspberry PI and ZR16S08 [61] *

Wireless M-Bus (WM-Bus) [28]
* Simultaneous reference to applications in the “smart meters” and “loss management” categories.

In the field of data transmission, Lalle et al. [52] stood out with their comparative
study of three technologies of low energy consumption (LPWAN) used in smart water-
management systems based on IoT: LoRaWAN, SigFox, and NB-IoT. Their results showed
that the NB-IoT had better scalability, i.e., it was capable of aggregating more smart meters
at a lower error rate in data transmission packages. The reports on the development of
smart meters took into account energy consumption and battery life. For this reason,
energy consumption was a restriction when considering the solutions presented by [28,29].
Two strands of work were found aiming at optimizing energy consumption: edge com-
puting architecture and self-powered smart meters. Tzagkarakis et al. [21] demonstrated
architectural solutions for smart meters based on edge computing in which smart meters
locally processed data compression algorithms for sending them to servers in order to
extend battery life. Li, X. J. et al. [14], in their turn, proposed a self-powered water flow
meter project based on a turbogenerator to generate a voltage signal proportional to the
flow rate in the meter and also generate the energy needed to recharge its battery, together
with a wireless signal transmitter and an application for mobile devices to enable users to
monitor consumption.

With the development of smart meter technologies over time, smart meters went
on from serving only as a tool for measuring consumption and billing customers to be-
coming part of a series of applications throughout the whole water-management chain.
Fabbiano et al. [57], Gong et al. [58], Stephens et al. [59], and Zhang et al. [60] corroborated
this argument and proposed the application of vibration and acoustic meters to predict
pipe breakage events and leaks, as did Gautam et al. [51], who reported the use of smart
meters to collect data from residential reservoir levels, and Jia et al. [34], who dealt with
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a new approach to modeling sanitary sewage systems using data from residential smart
meters and their geographic location to identify domestic contributions and flows in the
sewage network.

The interest of the authorities of Dhaka (Bangladesh) [53] and of Australia and
New Zealand [9] in the implementation of smart meters and the good results obtained in
reducing water consumption after they were implemented in Capetown (South Africa) [35]
were evidence found about the interest in and benefits of such technology. This perception
of benefit was corroborated by the volume of scientific production on the subject: 42 articles
on smart meter applications. From this set of articles, 15 contextualized smart meters with
other applications and, among these, 10 stood out for mentioning smart meter applications
and loss management simultaneously (see comments in Table 1).

4.2. Loss Management

The International Water Association (IWA) uses the concept of water balance to stan-
dardize the terms related to water loss management as described in Table 2. Water losses
comprise both those related to leakages (real losses) and to metering issues and unautho-
rized consumption (apparent losses), which implies lower revenues and also the waste of
energy and water as natural resources.

Table 2. Standard IWA Water Balance [62].

System
input

volume

Authorized
consumption

Billed authorized
consumption

Billed metered consumption Revenue
waterBilled unmetered consumption

Unbilled authorized
consumption

Unbilled metered consumption

Nonrevenue
water

Unbilled unmetered consumption

Water losses

Apparent losses
Unauthorized consumption

Mering inaccuracies and data handling errors

Real losses

Leakage on transmission and/or
distribution mains

Leakage and overflows at the utility’s storage tanks

Leakage on service connections up to the point of
customer metering

The category of loss-management applications shown in Table 3 constituted one
of the main ways in which data generated by smart meters were used in the analyzed
articles. Applications focused on real losses management and characteristically comprised
collection and treatment of pressure and flow data in the water network to identify leak
events, including their locations. The first article selected on the subject was the one dealing
with the design, implementation, and operation of TaKaDu, a real-time water-infrastructure
monitoring solution in use in Jerusalem (Israel) since 2009 [5]. TaKaDu was responsible for
collecting the information that arrived at SCADA, treating it through statistical algorithms,
and identifying faults in the network, such as leaks.

Table 3. Identified loss-management applications (Authors).

Applications References

System for loss control [5,22,33,37,51,61,63]

Vibration and acoustic meters for leak identification [57–60]

The traditional technique of identifying losses by nighttime minimum flow still proved
to be useful, combined with data from smart meters [33,37]. The economic and financial
feasibility of applying a loss-management system was proven by [37], who analyzed the
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results of a maintenance campaign in the hydraulic installations of 196 schools which used
the data from smart meters to identify leaks through this method, obtaining as its main
result a higher savings of water than the cost of the maintenance carried out.

Another strand of loss-management applications sought to develop smart vibration and
acoustic meters to identify cracks in pipes and, in this way, anticipate leakage events [57–60].

4.3. Analysis and Prediction of Demand

The references analyzed (see Table 4) approached demand analysis as the study of infor-
mation generated from the processing of data sent by smart meters, enabling the evaluation
of water-consumption behavior by users [38,44], operational optimization of the water supply
system [9], and the identification of consumption patterns and anomalies [45,64].

Table 4. Identified applications of analysis and prediction of demand (Authors).

Applications References

Analysis of demand [9,38,44,45,64]

Models of prediction of demand [3,19,49,51,65]

The mass of data provided by smart meters not only allowed the analysis of present de-
mand but also enabled the elaboration of models for predicting future demand.
Benítez et al. [19] presented a method of prediction of demand based on similarity tech-
niques that eliminated the need to incorporate aspects of seasonality and allowed predic-
tions within a 24 h horizon. Vijai et al. [3] and Gautam et al. [51] presented solutions based
on machine learning, and Vijai et al. [49] supported the application of neural networks.

4.4. Consumption Monitoring for Users

This set of studies dealt with software that allowed users to monitor their water con-
sumption online [9,51]. Gautam et al. [51] proposed an IoT-based smart water-management
system with software for viewing information about consumption, consumption prediction,
and leak detection.

Of the seven articles on consumption monitoring applications for users listed in Table 5,
six also mentioned the use of smart meters, corroborating them as a necessary condition for
the implementation of such applications. Kounoudes et al. [66] were the exception, as they
addressed this issue in the context of user data-privacy preferences.

Table 5. Identified applications of consumption monitoring for users (Authors).

Applications References

Systems in general [33,41,66]

Pandora FMS and web system [32]

Online platform “for users” [9,14,51]

4.5. Cyber Security

Concern about cyber security in smart water-management systems reported by the
articles in Table 6 stemmed from the perception of water scarcity as a threat to the world pop-
ulation and of how cyber attacks could contribute to this scarcity. Considering these issues,
Ntuli et al. [67] proposed an architecture for implementing smart water-management sys-
tem technologies, in which authorization and access-control servers receive authorization
requests and grant tokens to devices that produce and consume data. Pritchard et al. [47]
discussed different security aspects applicable to software and wireless networks to propose
an approach that could combine them into a single solution.
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Table 6. Identified cyber-security applications (Authors).

Applications References

Architecture for security [47,67]

User data privacy [43,66]

Within the cyber security topic, a specific strand has developed in recent years to
address user data privacy. Kounoudes et al. [66] addressed the issue in the context of a
smart home in which water management is prominent, seeking to identify and consider
user preferences regarding data privacy. Taking applicable technologies into consideration,
Mahmoud et al. [43] presented studies on the implementation of the integration of data
from smart meters with blockchain, so as to preserve the identification of users and their
consumption data.

4.6. Supervisory Systems (SCADA)

Two of the four references to SCADA systems (also known as supervisory systems)
listed in Table 7 occurred in the context of integration with other applications, as in the
cases already mentioned with real-time simulation models [68] and with TaKaDu [5].

Table 7. Identified applications of supervisory systems (SCADA) (Authors).

Applications References

SCADA integration with real-time models [68]

SCADA in general [5]

SCADA for sewage management [12]

MAGES [69]

Two articles dealt specifically with the use of SCADA in sewage-management pro-
cesses: Gaska et al. [12] mentioned the adoption of SCADA systems for sewage treatment
and wastewater management; Tabuchi et al. [69], in their turn, discussed MAGES, a real-
time control system for controlling the pollution caused by rainwater mixed with sewage
overflows in the Paris Metropolitan Region (France).

4.7. Modeling of Water Systems

The category of modeling of water systems brought together different applications
whose objectives were to create computer models to analyze and simulate the real behavior
of the systems. The three of them were classified as shown in Table 8.

Table 8. Identified water systems modeling applications (Authors).

Applications References

Models in real time [68,70]

Models for operational optimization [40]

Di Nardo et al. [40] demonstrated how the calibration of a hydraulic model of the
water distribution system of Castellammare di Stabia (Italy) was compromised by the use
of a few smart meters, which reinforces the benefit of implementing a larger number of
them as mentioned above. This paper addressed this application category with the main
objective of operational optimization.

Two articles advanced the research area by proposing the adoption of models of water
systems in real time. Boulos et al. [68] proposed the integration of supervisory systems
(SCADA) with real-time simulation models for more proactive operational actions. Abu-
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Mahfouz et al. [70] presented a dynamic hydraulic model integrated with sensors and
actuators which showed advantages in comparison with static models.

4.8. Models of Analysis and Prediction of Water Quality

The water-quality analysis and prediction models mentioned in the articles in Table 9
aimed to identify events of noncompliance with quality standards, such as contamination.
Armon et al. [5] developed TaKaDu, a tool based on the statistical analysis of data, while
Vijai et al. [3] presented a solution based on machine learning, and Adedeji et al. [63]
demonstrated IoT applications.

Table 9. Applications of models of analysis and prediction of water quality identified (Authors).

Applications References

IoT [63]

Machine learning [3]

TaKaDu [5]

4.9. Operational Optimization Algorithms

The category of applications of operational optimization algorithms comprised the
only article selected that deals with the use of data-analysis techniques aimed at improving
operational processes in the context of water management (see Table 10). Gaska et al. [12]
discussed how to reduce energy consumption by applying artificial intelligence (AI)
to optimize processes and make predictive diagnoses in sewage treatment and waste
management systems.

Table 10. Identified application of operational optimization algorithms (Authors).

Application References

Artificial intelligence (AI) [12]

4.10. Implementation Models and Architectures

The applications presented above were largely addressed in segmented ways in the
articles. The implementation of a “smart water management” system proved to depend
on the definition of models which organized different applications. Different solutions
were proposed by the articles listed in Table 11. Hauser et al. [71] combined this concern
with the issue of interoperability of solutions to propose a structured process for defining
system architectures for smart water management. Robles et al. [72] presented a high-
level integration model. At a greater level of detail, Gonçalves et al. [7] presented REFlex
Water, an architecture for IoT-based smart water management which adopts complex event
processing and declarative business process techniques and was applied in a Brazilian
municipality. Zhu et al. [50] defined a smart water-management system implementation
model based on five levels (smart sensing, infrastructure, water-related big data, smart
applications, and access portal) and two subsystems (standardization and regulation and
information security).

Table 11. Identified applications of implementation models and architectures (Authors).

Applications References

Implementation models and architectures in general [6,10,15,39,50,71]

Big data in Apache Hadoop [11]

IoT-based models [1,16,47,54,61,73,74]

REFlex Water [7]
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One article focused specifically on the study of methods for treating big data in smart
water-management system architectures. Diaconita et al. [11] comparatively analyzed
several architectures for processing the big data of smart cities (with water management
as one of their application domains), using Apache Hadoop, which they pointed out as a
powerful tool for horizontal integration.

5. Discussion

This paper adopted a systematic literature review methodology to investigate which
smart water-management applications have been mentioned in the scientific literature in
a broader way so it could compile and organize the knowledge regarding the subject. It
has identified 100 different mentions of applications of smart water-management systems
in 62 articles, just what was aimed at by research question Q1. Those applications were
grouped into ten categories: smart meters, loss management, analysis and prediction of
demand, consumption monitoring for users, cyber security, supervisory systems (SCADA),
modeling of water systems, water-quality analysis and prediction models, operational
optimization algorithms, and implementation models and architectures. The categories
of smart meters and implementation models and architectures stood out, cited in 42 and
15 articles, respectively. This work proved to be more comprehensive than [1], which
systematic literature review focused on two categories named water-level monitoring and
water-quality monitoring. The set of application categories defined in this article composes
a wider framework for smart water management.

It is important to emphasize that the manuscripts reviewed in this study do not
fully describe the ten categories here defined, so some indepth research regarding each
of them may be valuable for a deeper understanding of smart water management. One
example is earlier research regarding the adoption of AI in 49 large water utilities in
the United States, finding that: (a) 24% of them had used some kind of AI; (b) more
than half were planning to do so; (c) saving money appeared as the main driver for AI
implementations, followed by leak detection and water-quality improvement; (d) the
main concerns regarding its implementation were uncertainty regarding the return of
investments and lack of AI knowledge [75]. Therefore, in spite of not having any of the
keywords listed on the research string defined in our manuscript; this manuscript could fit
“loss management”, “models of analysis and prediction of water quality”, and “operational
optimization algorithms” categories.

The recurrence of the subject of smart meters was justified by the fact that they
constitute the basis of the architecture of smart water-management systems, given their
ability to transmit data on the measured physical quantities which serve as a source for
the other applications. The strong correlation between this application category and the
loss-management category indicates the first steps towards the implementation of a smart
water-management system and can be detailed in a future technological roadmap study
together with the major framework composed of all ten categories described in this article,
in addition to some investment and cost analysis of its implementation.

Loss-management applications deserve a highlight due to their inherent relation to
more sustainable and efficient use of water resources, as demonstrated by applications
mentioned in the referred section of this article. Thus, this application category plays
a fundamental role in the pillars of the smart water-management concept presented in
this manuscript.

The analysis of the coverage of applications in the water value chain aiming to answer
the research question Q2 resulted in a predominance of applications in water distribution
and utilization processes and, also, in water-management systems as a whole (see Figure 6).
The volume of scientific production on smart meters and loss management, topics closely
related to the processes in question, contributed to this predominance. On the other hand,
the total absence of applications aimed at water treatment and effluent reuse processes was
highlighted, even though they are pointed out as adding value to users [25]. Therefore, the
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need to develop more indepth studies on possible existing applications or the development
of new ones for these processes was justified.
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