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Abstract: Studying the impact of mainshock–aftershock sequences on dam reliability is crucial for
effective disaster prevention measures. With this purpose in mind, a new method for stochastic
dynamic response analyses and reliability assessments of dams during seismic sequences has been
proposed. Firstly, a simulation method of stochastic seismic sequences is described, considering the
dependence between mainshock and aftershock based on Copula function. Then, a novel practical
framework for stochastic dynamic analysis is established, combined with the improved point selection
strategy and the direct probability integration method (DPIM). The DPIM is employed on a nonlinear
system with one degree of freedom and compared with Monte Carlo simulation (MCS). The findings
reveal that the method boasts exceptional precision and efficiency. Finally, the seismic performance
of a practical dam was evaluated based on the above method, which not only accurately estimates
the response probability distribution and dynamic reliability of the dam, but also greatly reduces
the required calculations. Furthermore, the impact of aftershocks on dam seismic performance is
initially evaluated through a probability approach in this research. It is found that seismic sequences
will significantly increase the probability of earth dam failure compared with sequences of only
mainshocks. In addition, the influence of aftershocks on reliability will further increase when the
limit state is more stringent. Specifically, the novel analysis method proposed in this paper provides
more abundant and objective evaluation indices, providing a dynamic reliability assessment for dams
that is more effective than traditional evaluation methods.

Keywords: stochastic mainshock–aftershock sequences; DPIM; Copula function; dynamic reliability;
seismic performance assessment

1. Introduction

Earth dams have been widely used because of their low price, convenient materials
and long history. Earthquakes have a destructive effect on earth dams and may cause direct
damage to people’s lives and property. Many scholars have studied the nonlinear seismic
response of the dams from the perspectives of stress, displacement and failure [1–3].

However, these studies fail to account for the impact that aftershocks have on struc-
tures. Aftershocks may cause significant secondary damage to the structure, thus exacerbat-
ing the situation [4]. A series of aftershocks led to 196 damaged dams in Sichuan Province
16 days after the main 2008 Wenchuan earthquake, China [5]. The aftershocks caused
landslides of varying degrees in some dams and land reclamation areas in the 2011 Tohoku
earthquake, Japan [6]. The large-scale aftershocks caused landslides in more geotechnical
structures in the 2015 Gorkha earthquake, Nepal [7]. In addition, large shaking table tests
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have shown that aftershocks may further damage the dam [8]. Hence, it is critical to
investigate how the seismic sequence affects the structure. Some interesting research [9–12]
has revealed the possible serious consequences of aftershocks for buildings. These studies
usually use incremental dynamic analysis or MCS to analyze the seismic uncertainty of
reinforced concrete buildings and steel buildings, but there is little research on geotechnical
structures. Shokrabadi et al. [13] evaluated the structural performance of ductile-reinforced
concrete frames using as-recorded seismic sequences and pointed out that seismic demand
and danger may be overestimated or underestimated by the seismic sequences. Wang
et al. [14] conducted a study on the nonlinear dynamics of a dam–reservoir–foundation
system under seismic activity and discovered that the direction of the earthquake affects
the concrete damage propagation processes. Yu et al. [15] synthesized the recorded earth-
quakes into earthquake sequences for calculating the inelastic SDOF system and studied
the influence of artificial seismic sequences on system collapse capacity. Pang et al. [16,17]
employed multiple stripe analysis to assess the vulnerability of a high concrete face rock-
fill dam (CFRD) exposed to seismic sequences. The study concluded that the fragility
of CFRDs would be amplified by aftershocks. In the field of performance-based seismic
design, Dong et al. [18] proposed a framework for a probabilistic seismic performance
assessment subjected to earthquake sequences and investigated the probabilistic direct loss
of bridges under seismic hazard. Wen et al. [19] studied the effect of aftershocks on the
fragility of structures under different limit states based on engineering demand parameters
and intensity measures.

Nevertheless, the studies did not consider the interdependent relationship between
mainshocks and aftershocks and only combined them from the time perspective [20]. In
fact, aftershocks and mainshocks share the same focal mechanism [21]. Based on this mech-
anism and engineering sites, Wang and Shen [22,23] presented a physical function model
of ground motions. This method ultimately revealed the origin of seismic randomness,
which is different from the spectral representation method [24]. Additionally, with the im-
provement in structural safety design requirements, deterministic seismic analysis methods
can not meet the demands. It is necessary to propose a reliability analysis method that is
suitable for geotechnical structures. The Monte Carlo method has been found to have low
efficiency for calculating structural reliability. To address this issue, Li et al. [25] developed
a probability density evolution method (PDEM) that employs equivalent extreme events.
However, a discretization scheme is necessary to solve the probability density evolution
equation (PDEE) and obtain the finite difference solution. Different difference schemes
may cause dissipation or dispersion, thereby decreasing the stability and accuracy of the
PDEM. In response, Chen et al. [26,27] presented a unified and effective DPIM based on
Dirac delta function smoothing. This method can directly solve the probability density
integral equation (PDIE) without using a difference scheme [28,29].

It is worth mentioning that research on the stochastic dynamic response analysis
of earth dams considering influence on aftershocks is rarely reported. To this end, this
paper will propose a more efficient strategy to evaluate the reliability of the dams. In
this paper, a point selection strategy is applied to lower the generalized F-discrepancy
(GFD) to reduce the number of samples required by traditional methods. Some stochastic
seismic sequences are produced using a generation model that utilizes the superposition
technique of harmonic wave groups. The correlation between mainshocks and aftershocks
is established through Copula functions. MCS are employed to verify the accuracy and
efficiency of the improved DPIM in a single degree of freedom (SDOF) system. Furthermore,
the generated stochastic seismic sequences and improved DPIM are applied to a practical
dam to obtain the stochastic dynamic response results. This study first reveals the effect of
aftershocks on dam reliability and then analyzes the variation law of this influence with
the design demand. The flowchart of this paper is shown in Figure 1.
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Figure 1. Flowchart of the framework of this study.

2. Simulation of Mainshock–Aftershock Sequences

The MCS method requires a large number of earthquake sequences to achieve preci-
sion, which poses difficulties in practice. A new method is required to accurately capture
ground motion characteristics and generate multiple stochastic mainshock-aftershock se-
quences.

2.1. Physical Random Function Model of the Sequences

In seismic engineering, a physical random function model is often utilized to simulate
ground motion [30]. The traditional method may not completely elucidate the underlying
factors of randomness but instead focus on its manifestation. Wang et al. [23] considered
that the randomness of ground motions is closely related to the generation mechanism of
earthquakes and the seismic wave propagation mode, as shown in Figure 2.
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Therefore, a model for ground motion, utilizing a physical random function based on
the source–path–site mechanism, is proposed. This can be expressed as

a(t) = − 1
2π

∫ +∞

−∞
A(ξ, ω) • cos[ωt + Φ(ξ, ω)]dω, (1)
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A(ξ, ω) =
A0•ω•e−KRω√

ω2 + (1/τ)2
•

√√√√√ 1 + 4ξ2
g(ω/ωg)

2

[1− (ω/ωg)
2]

2
+ 4ξ2

g(ω/ωg)
2

, (2)

Φ(ξ, ω) = arctan(
1

τω
)− R• ln[aω + 1000b + 0.1323 sin(3.78ω) + c cos(dω)], (3)

where A(ξ, ω) and Φ(ξ, ω) are the Fourier amplitude spectrum and phase spectrum, respec-
tively; ω is the circular frequency; A0 is the source amplitude coefficient; K is a coefficient
to measure the attenuation effect of friction and K = 10−5 s/km; R is the epicentral distance;
τ is Brune’s coefficient; ωg is the predominant circular frequency; ξg is the equivalent
damping ratio; a, b, c, d are empirical parameters that comprehensively characterize the
final waveform of synthetic ground motion.

The parameters in this model can be represented as random variables. From Equa-
tion (1), the physical model of the seismic sequence can be extended:

a(t) =
[

aM(t1)
aA(t2)

]
=

[
− 1

2π

∫ +∞
−∞ A(ξM, ω) • cos[ωt1 + Φ(ξM, ω)]dω

− 1
2π

∫ +∞
−∞ A(ξA, ω) • cos[ωt2 + Φ(ξA, ω)]dω

]
, (4)

where, in the model of the mainshock and aftershocks, the time vectors for each event are
denoted as t1, t2, while the random variables are represented by ξM, ξA (M and A represent
the mainshocks and aftershocks).

Therefore, the model parameters of the seismic sequences (Equation (4)) can be sum-
marized as:

ξ = [ξM, ξA] =
[
A0M, τM, aM, bM, cM, dM, A0A, τA, aA, bA, cA, dA, ξg, ωg

]
, (5)

where the variables A0 and τ represent the source randomness. a, b, c, d represent random-
ness in the propagation process. Randomness at the local site is described by variables ξg,
ωg. Tables 1 and 2 present the probability distribution and statistical features of ξ [22,31,32].

Table 1. Distribution and statistics of seismic characteristics.

Variable
Mainshocks Aftershocks

Type µ σ Type µ σ

A0 Lognormal −2.85 1.26 Lognormal −4.54 1.32
τ Lognormal −1.75 1.24 Lognormal −2.15 1.71
a Lognormal 1.32 0.56 Lognormal 1.83 0.49
b Lognormal 1.89 0.55 Lognormal 1.95 0.50
c Weibull 1.33 1.22 Weibull 1.76 1.66
d Weibull 1.23 1.20 Weibull 1.44 1.35

Table 2. Distribution and statistics of site characteristics.

Variable Type µ σ

ξg Weibull 0.49 4.674
ωg Weibull 12.63 1.26

2.2. Establishment of the Mainshocks and Aftershocks Correlation

In this paper, the factors affecting the characteristics of ground motions were abstracted
into variables. Thus, the relationship between the mainshocks and aftershocks can be
established by the correlation between variables ξM and ξA, and the Copula functions
between variables are listed in Table 3 [22,31,32].
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Table 3. The best Copula type and parameter.

Best Copula CA0MA0A CτMτA CaMaA CbMbA CcMcA CdMdA

Plackett Student Plackett Clayton Clayton Student
Parameters θ θ ν θ θ θ θ ν

20.172 0.233 4 3.199 1.330 0.523 0.212 4

Figure 3 depicts the final set of dependent representative points on the projected
subspace. It is evident that this method produces dependent variables with a high level of
realism and strong nonlinearity. This correlation cannot be constructed only by virtue of
the correlation coefficient.

1 
 

 

 
Figure 4. Schematic diagram of ground motion simulation. 

  

Figure 3. Dependent representative point set. (a) Relationship between variables A0M and A0A

(b) Relationship between variables τM and τA.

The principle of generating dependent random variables based on the Copula function
is complex, and this method will be introduced in detail in Section 3.

2.3. Ground Motions Generation

The inverse Fourier transform is often utilized to generate ground motions. However,
it is important to note that the fine structure of the ground motion phase spectrum can have
a significant impact on the resulting waveform. As such, the ground motion generated
based on this method cannot accurately reflect the nonstationary nature of ground motion.
Due to the wave group properties of seismic waves, it is more reasonable to use the
superposition method of narrow-band harmonic wave groups. The specific technical flow
of this method is shown in Figure 4. Firstly, the amplitude and phase spectra of seismic
waves are transformed into the changes in the amplitude and phase of each wave group
through the inverse Fourier transform method. The wave group can then be superimposed
on a specific local site, and a simulated ground motion time history with nonstationary
characteristics can be produced.
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Figure 4. Schematic diagram of ground motion simulation.

The specific mathematical calculations corresponding to the procedure are as follows.
The amplitude spectrum is divided into uniform narrow bands, and each narrow band

is assumed to be constant. A time history of acceleration on the site with epicentral distance
R can be expressed as:

aR(t) = −∑
j

Aj•Fj(t)• cos(ωjt + ϕj), (6)

Aj =
2
π

A0ωje
−KRωj√

ω2
j + (1/τ)2

•

√√√√√ 1 + 4ξ2
g(ωj/ωg)

2

[1− (ωj/ωg)
2]

2
+ 4ξ2

g(ωj/ωg)
2

, (7)

Fj(t) =
sin[(t− x

cj
)∆ωj]

(t− x
cj
)

, (8)

cj =
dω

dk
|ω=ωj =

aωj + 1000b + 0.1323 sin(3.78ωj) + c cos(dωj)

d(a + cos2(dωj))
, (9)

ϕj = arctan(
1

τωj
)− R• ln[aωj + 1000b + 0.1323 sin(3.78ωj) + c cos(dωj)], (10)

where the j-th wave group’s amplitude is denoted as Aj, with Fj(t) and ϕj being the time
energy envelope function and the phase. The group velocity of the j-th wave group is
denoted by cj.

In summary, seismic sequences of any number can be generated based on the stochas-
tic seismic sequence physical model of Equation (4) and the superposition method of
Equation (6).

2.4. Verification of Stochastic Seismic Sequences

This chapter presents the generation of 140 seismic sequence groups (PGA = 0.25 g),
with four examples displayed in Figure 5. The ground motion exhibits nonstationary
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characteristics, with instances where the aftershock’s amplitude surpasses that of the
mainshock, mirroring realistic seismic events.
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response spectrum. 
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Figure 5. Four examples of acceleration time history of stochastic earthquake sequences. (a) Sample
#1 of acceleration time history of seismic sequence. (b) Sample #2 of acceleration time history of
seismic sequence. (c) Sample #3 of acceleration time history of seismic sequence. (d) Sample #4 of
acceleration time history of seismic sequence.

A total of 636 groups of real data were used for comparison with the simulation results
to verify the accuracy of the seismic generation method proposed in this paper. Figure 6a,b
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present a comparison of the mean and standard variance of stochastic ground motion
with the measured earthquake sequences. The results indicate that the ground motions
generated in this study have favorable statistical characteristics. Additionally, Figure 6c
depicts the comparison between the mean value of the response spectrum of 140 stochastic
ground motions and the measured seismic response spectrum. The comparison suggests
that the method proposed in this paper is reliable and accurate in generating realistic
seismic ground motions.
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Figure 6. Comparison between simulation data and real data of stochastic 
seismic sequences. (a) Comparison of mean values. (b) Comparison of standard 
deviation. (c) Comparison of acceleration response spectrum. 

 
Figure 10. Restoring force hysteresis loop. 

 
Figure 15. Finite element model of the dam (1:1000) (Different colours 
represent different material partitions). 
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Figure 6. Comparison between simulation data and real data of stochastic seismic sequences. (a) Com-
parison of mean values. (b) Comparison of standard deviation. (c) Comparison of acceleration
response spectrum.

3. Direct Probability Integral Method

The MCS method cannot reflect the various degrees of freedom of the earth dam and
long duration of seismic events. Therefore, an improved DPIM is introduced to calculate the
stochastic dynamic response of dams. Additionally, to achieve accurate results, this paper
proposes an enhanced selection strategy for representative point sets, which significantly
decreases the number of representative points.

3.1. Probability Density Integral Equation

Chen and Yang [27] devised the DPIM to address the probability information of the
structural stochastic response and derive the dynamic reliability. Based on the principle of
the conservation of probability, this approach holds that random factors are transferred from
random input vectors to random output vectors in a given system, and the propagation
process can be expressed as a mapping:

Y(t) = g[X(Θ, t)] = g(Θ, t), (11)

where g(·) is a unified mapping function; X(Θ, t) is a stochastic process that denotes
excitation here; and Θ is a random factor describing the randomness of the system.
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The PDIE of output function Y can be expressed as

pY(y, t) =
∫

ΩΘ

pΘ(θ)δ[y− g(θ, t)]dθ, (12)

where δ(·) is the Dirac delta function; pΘ(θ) is the probability density function of Θ; and
y is the output vector, which represents the response. Since the integral Equation (12) is
difficult to solve directly, the smoothing technique of replacing the discontinuous Dirac
function with the continuous Gaussian function was an effective simplification method for
the equation. Equation (13) is further obtained by reducing the standard deviation of the
Gaussian function to nearly zero.

lim
σ→0

pN(y; µ, σ) = lim
σ→0

1√
2πσ

e−(y−µ)2/2σ2
= δ(y− µ), (13)

where σ is a smoothing parameter and σ = ∆y (∆y is the discretized step length of y) was
adopted in a simplified way.

Therefore, the PDIE can be conveniently solved by incorporating Equation (13) into
Equation (12):

p̂Y(y, t) =
N

∑
q=1

{
1√
2πσ

e−[y−g(θq ,t)]2/2σ2
Pq

}
, (14)

where Pq is the probability carried by random representative points, which can be expressed
as

Pq =
∫

Ωq
pΘ(x)dx. (15)

3.2. Dynamic Reliability Analysis Based on Absorbing Condition Method

To simplify the dynamic problem, it is necessary to split the probability information
of a dynamic system. Hence, the probability of a representative point Pq, represented by
the q-th response can be decomposed into two parts: the failure component Pq, f (t) and the
survival component Pq,s(t), namely,

Pq(t) = Pq, f (t) + Pq,s(t). (16)

The performance function is generally used to describe the transformation of the
structure from normal state to failure state under load, which can be mathematically
expressed as:

Z(t) = Y−Y(Θ, t), (17)

where Y is the prescribed limit state or threshold.
Therefore, the performance function Z ≤ 0 serves as a reflection of the failure event.

The q-th assigned probability of the failure part is expressed as

Pq, f (ti) = 0, z ∈ ΩZ, f =
{

z
∣∣g(θq, ti

)
≤ 0

}
. (18)

In order to maintain the conservation of probability in the system, the probability
distribution that remains must be substituted by the survival portion. Therefore, the
probability density function (PDF) used to solve the stochastic response in the safe domain,
combined with PDIE (Equation (14)), can be expressed as

p̂Z,s(z, t) =
N

∑
q=1

{
1√
2πσ

e−[z−g(θq ,t)]2/2σ2
Pq(t)

}
. (19)
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The first passage reliability of the dynamic system can be quantified as

Ps(t) = Pr[Z > 0] =
∫ ∞

0
pZ,s(z, t)dz =

Nz

∑
j=1

p̂Z,s(z, t)∆z, (20)

where Nz = z/∆z.

3.3. Selection Point for Dependent Random Variables

In order to effectively apply DPIM to stochastic dynamical systems, it is imperative to
introduce a random factor Θ and assign a probability Pq to it. This introduction process is
actually the process of random representative point set selection and partition of probability
space. In this paper, a point in the representative point set represents a random variable ξ,
which can generate a seismic sequence. The 140 groups of seismic sequences in Section 2
need a representative point set containing 140 points, and each point has 14 dimensions.

The accuracy and efficiency of the DPIM are affected by the point set’s cardinality
and uniformity. Thus, we propose the concept of GFD to measure point set uniformity.
The complex nonlinear multidimensional random variable set involving non-uniform and
non-Gaussian distributions can be represented by reducing GFD [33]. The GFD can be
expressed as

DGF = max1≤i≤s{sup|Fn,i(x)− Fi(x)|}, (21)

where Fn,i(x) is the empirical marginal CDF, which is computed using Equation (22); Fi(x)
is the marginal CDF of the i-th random variable.

Fn,i(x) =
n

∑
q=1

Pq•I
{

xq,i ≤ x
}

, (22)

where xq,i is the i-th element of random variable xq; I{·} is the indicator function, I{A} = 1,
if and only if event A holds true; otherwise, I(A) = 0.

The s-dimensional initial independent scattered point set xq = (xq,1, xq,2, · · · , xq,s),
q = 1, 2, . . . , n can be acquired through various sampling methods, such as the Sobol set.
However, a point set with a lower GFD can be attained by adjustment with the following
two equations:

x∗m,i = F−1
i (

n

∑
q=1

1
n
•I
{

xq,i < xm,i
}
+

1
2
• 1

n
), (23)

x∗∗m,i = F−1
i (

n

∑
q=1

Pq•I
{

x∗∗q,i < x∗∗m,i
}
+

1
2
•Pm), (24)

Copula theory [34] allows for the conversion of several marginal distributions into
a multivariate joint distribution using a Copula function. Recently, Copula theory has
been increasingly applied in the fields of bridge engineering [35,36], geotechnical engineer-
ing [37,38], and hydrology [39]. Sklar’s theorem states that every multivariate distribution
F with marginal distribution F1(x1), . . . , Fn(xn) can be expressed as

F(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)}. (25)
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Therefore, the marginal conditional distributions can be expressed as

F(x1|x2) =
∂Cx1x2{F1(x1), F2(x2)}

∂F2(x2)
. (26)

Now, one can establish the correlation between x∗∗1 and x∗∗2 in point set x∗∗ by copula
function C{·}:

xc
2 = F−1

(x∗∗2 |x∗∗1 ), (27)

where F−1
(·) is the inverse function of F(x1|x2) in Equation (26); xc

2 is a random variable
with correlation with x∗∗1 , which is transformed based on variable x∗∗2 . The six other pairs
of dependent variables in x∗∗ adopt the same transformation.

In Section 2, random factors were abstracted into random variables. Generating a large
number of sample points conform to a specific distribution is an efficient way to conduct
a random dynamic analysis of structures. Thus, through the method in this section, the
required sample points can be obtained. Figure 7 displays the scatter plot of a Sobol set of
140 points in the projected subspace of high-dimensional variables.
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Figure 7. Sampling points on the projected subspace. (a) Initial independent scattered points.
(b) Independent representative point set (Color is only for distinguishing).

The process from Figure 7a to Figure 7b represents the process by which independent
sampling points are assigned probabilities in a high-dimensional space. Where Figure 7a
depicts the initial independent scattered points, Figure 7b shows the Voronoi cells of the
independent representative point set, with polygons colored to reflect the assigned proba-
bility Pq of this point. A larger polygon area indicates a higher probability of distribution.
The horizontal and vertical axes of the graph are used to represent the coordinates of the
position of the point in space.

3.4. Novel Probabilistic Analysis and Evaluation Framework

The numerical procedure for a reliability analysis of structures subjected to seismic
sequences is shown in Figure 8a. The reason why the proposed method is more efficient is
that it forms a perfect mapping relationship between the two parts to achieve dimension
reduction, as shown in Figure 8b.
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3.5. Verification of DPIM

The MCS method is applied to an SDOF system to verify the accuracy of the probability
method. To validate the proposed stochastic dynamic analysis method in this paper, a
seismic sequence–excitation nonlinear SDOF system (depicted in Figure 9) was introduced.
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Figure 9. Nonlinear SDOF dynamic system.

The dynamic balance equation of an SDOF system subjected to ground motion can be
expressed as follows:

m
..
u + c

.
u + f (u) = −m

..
xg(t), (28)

where m and c are the mass and damping, respectively; f is the nonlinear restoring force in
the form of f = ∂ f

∂u u;
..
xg(t) is the acceleration of ground motion.
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This paper adopts the bilinear elastoplastic model, in which the yield force is 160 kN
and the restoring force hysteresis loop is shown in Figure 10. m = 1 kN, c = 6 kN · s/cm
and initial stiffness k = 106 kN/m are used. The Newmark-β method (β = 0.25) is used to
solve the physical equation in Equation (28).

1 

 

 

Figure 10. Restoring force hysteresis loop. 

 

Figure 15. Finite element model of the dam (1:1000) (Different colours 

represent different material partitions). 

Figure 10. Restoring force hysteresis loop.

The probability information and reliability of the SDOF system can be obtained
through the process shown in Figure 8. Furthermore, the effectiveness of the proposed
method was verified on an SDOF structure by utilizing 50,000 Monte Carlo samples. The
obtained results were compared and found to closely align with those obtained through
the proposed method.

Figure 11 illustrates the PDF of the absolute displacement of the SDOF at representative
times, indicating the accuracy of the proposed method. Although there is a slight gap in
the details, compared with the large amount of calculation required by MCS, these errors
can be completely ignored.
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Figure 11. The PDF of the displacement of SDOF at representative times. (a) PDF at 10 s. (b) PDF at
50 s. (c) PDF at 90 s.

Figure 12 displays the CDF of the displacement’s absorbing condition (AC), while
Figure 13 shows the dynamic reliability of an SDOF system under various thresholds. The
calculation results, errors, and computation time for this analysis are detailed in Table 4.
The proposed probability analysis method demonstrates a comparable reliability to MCS
and offers superior calculation efficiency.
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Table 4. Errors and calculation time.

Methods Sample Size Errors Calculation Time (s)

DPIM 200 0.10% 4.51
MCS 5 × 104 - 1059.04

4. Dynamic Reliability Analysis of an Earth Dam Subjected to Stochastic

Seismic Sequences

This section aims to present a stochastic dynamic analysis and reliability evaluation
of the considered dam based on DPIM. We study the effects of aftershocks on the dam
through both deterministic and stochastic dynamic analysis. Moreover, we discuss, for
the first time, the impact of aftershocks on dam reliability based on our proposed analysis
framework.

4.1. Finite Element Model and Material Parameters

The present study is based on an asphaltic–concrete–core rockfill dam named Quxue,
which is located in Sichuan Province in China. The dam is 220 m long and 164 m high,
and the dam crest is 15 m wide. The full reservoir level is equal to 160 m and the main
cross-section is presented in Figure 14. The seismic fortification intensity is VIII, and the
epicentral distance is 18.5 km. The finite element model is given in Figure 15.
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partitions).

The viscoelastic boundary element is adopted to simulate the infinite foundation, and
the seismic wave is equivalent to the load applied to the boundary to simulate the traveling
wave effect of the seismic wave [40]. The unrecoverable plastic deformation of structures is
the main factor leading to the failure of geotechnical structures. Therefore, the generalized
plastic P–Z constitutive model [41–43] is used to effectively simulate the dilatancy, shear
shrinkage and cyclic cumulative deformation of soil under dynamic loads. This can be
expressed as

dσ = Dep : dε, (29)

where Dep is an elastic–plastic matrix, which can be expressed as

Dep = De −
De : ngL/U ⊗ n : De

HL/U + n : De : ngL/U
, (30)

where ngL, ngU are the directions of the loading plastic flow and unloading plastic flow,
respectively; n is the vector of the loading direction; and HL, HU are the plastic moduli of
loading and unloading, respectively.

The increase in strain can be divided into elastic and plastic increments:

dεe = Ce : dσ, (31)

dεp =
1

HL/U
ngL/U ⊗ n : dσ. (32)

The main material parameters are determined by the dynamic triaxial test. These are
given in Tables 5–8, and their accuracy was calibrated in the report [44]. The GEODYNA
software served as the tool for both static and dynamic calculations. Due to the existence
of an upstream water level and core wall, zone I and zone II of the dam are saturated and
unsaturated, respectively, which was achieved by modifying the parameters [45–47].
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Table 5. Rockfill parameters for generalized plastic model.

ρ (kg/m3) G0 K0 Mg Mf αf αg H0 HU0

2250 1130 1440 1.75 1.60 0.35 0.35 1500 2000
ms mv ml mu rd γDM γu β0 β1

0.40 0.40 0.20 0.30 180 70 7 35 0.038

Table 6. Transition parameters for generalized plastic model.

ρ (kg/m3) G0 K0 Mg Mf αf αg H0 HU0

2365 1330 1540 1.70 1.40 0.20 0.32 1000 1800
ms mv ml mu rd γDM γu β0 β1

0.20 0.20 0.25 0.10 120 50 7 30 0.021

Table 7. Core wall parameters for generalized plastic model.

ρ (kg/m3) G0 K0 Mg Mf αf αg H0 HU0

2460 1000 800 1.70 1.60 0.45 −0.80 800 2000
ms mv ml mu rd γDM γu β0 β1

0.50 0.50 0.10 0.20 220 70 7 10 0.01

Table 8. Parameters for linear-elastic model.

Material ρ/(kg/m3) E/(GPa) ν

Bed rock 2650 13 0.250
Concrete base 2450 30 0.167

4.2. Dynamic Response of the Earth Dam

The dynamic responses of the dam after earthquakes can be obtained based on FEM.
Among the 140 groups of calculation results, one group was selected to focus on the
dynamic response of the dam after the seismic sequence. The horizontal deformation and
settlement of the dam following the mainshock are shown in Figure 16. The maximum
horizontal displacement is 27 cm, which occurs at the downstream slope of the dam. And
the maximum settlement is 37.5 cm, occurring at the dam crest.
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The horizontal deformation and settlement of the dam following the aftershock are
shown in Figure 17. The maximum horizontal displacement can reach 53 cm, which occurs
at the downstream slope of the dam. And the maximum settlement can reach 72 cm, which
occurs at the downstream dam crest.
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Figure 17. Dynamic response after aftershock of a single sample. (a) Horizontal deformation.
(b) Vertical deformation.

Geotechnical materials with nonlinearity will undergo large residual deformations
during earthquakes. Water will overflow the dam crest and cause serious disaster when
the upstream water-retaining side of the dam is lower than the water level. Therefore,
the displacement at the upstream dam crest needs special attention. Figure 18a displays
the time history of the dam’s maximum displacement, which can reach 34.4 cm. The
maximum displacement is only 22.1 cm when only the mainshock occurs. After the
aftershock, the plastic deformations in the structure were further developed, and the
maximum displacement reached 34.4 cm. The settlement time history of the upstream dam
crest is shown in Figure 18b, and the maximum settlement can reach 70.7 m. Similarly,
the maximum settlement is only 37.2 cm when only the mainshock occurs. After the
aftershock, the structure with plastic deformation was further damaged, and the maximum
settlement reached 70.7 m. Strikingly, compared with the case of a single mainshock, the
seismic sequence increases the settlement of the structure by nearly 33.5 cm. Such a large
displacement increment will significantly affect the service function of the dam.

Figure 19 illustrates a comparison of the dam’s deformation following the mainshock
and aftershock, showing that the aftershock obviously exacerbated the damage trend of the
dam.

4.3. Stochastic Dynamic Results and Reliability

The aftershocks have a significant impact on the dam when the difference ∆ between
the dam crest settlement (vertical deformation) after the aftershocks and that after the
mainshocks is greater than 6 cm. In 140 groups of dynamic calculations, 33 groups have a
difference ∆ greater than 6 cm, as shown in Figure 20. The potential for dams to fail due
to seismic sequences is greater than the potential caused by single mainshocks. Therefore,
an analysis of the impacts of aftershocks on structures from a probabilistic perspective is
needed. Figure 21 displays the average and standard deviation of the structural dynamic
response. The means of displacement and settlement (Figure 21a) have similar change
characteristics, and the change in the mean of settlement is more obvious than that of
displacement after aftershocks. The standard deviations of displacement and settlement
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(Figure 21b) have similar characteristics. They changed violently in the first 20 s before
and stabilized after 20 s but increased again after 70 s, indicating that aftershocks further
increased the dispersion of the response. It is necessary to further extract probability
information to study the safety performance of dams under seismic sequences.
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60 s–80 s, respectively. Aftershocks cause greater fluctuations in probability than the lat-
er stage of the mainshock, which emphasizes the importance of considering the ran-
domness of aftershocks and its implications. Figure 22c shows the evolution process of 
the PDF of settlement over 60–80 s. It has similar characteristics to Figure 22a, but fluctu-
ates more violently. This shows that the geotechnical structure is constantly settling un-
der earthquakes, rather than shaking up and down like other elastic structures. After-
shocks still caused more irregular fluctuations, as shown in Figure 22d. 
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Figure 21. Mean and standard deviation of dynamic response. (a) Mean of dynamic response.
(b) Standard deviation of dynamic response.

The evolution process of the PDF of the structural responses can be obtained based
on the DPIM, e.g., the PDF surfaces shown in Figure 22. Figure 22a,b show the evolution
of displacement PDF over time during the mainshocks of 20–40 s and the aftershocks of
60 s–80 s, respectively. Aftershocks cause greater fluctuations in probability than the later
stage of the mainshock, which emphasizes the importance of considering the randomness
of aftershocks and its implications. Figure 22c shows the evolution process of the PDF
of settlement over 60–80 s. It has similar characteristics to Figure 22a, but fluctuates
more violently. This shows that the geotechnical structure is constantly settling under
earthquakes, rather than shaking up and down like other elastic structures. Aftershocks
still caused more irregular fluctuations, as shown in Figure 22d.
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The settlement at the upstream dam crest is a significant indicator when assessing 
the seismic resistance, and the variability in settlement can be expressed by the PDF at 
different times, as shown in Figure 24. The distribution of settlements is very concentrat-
ed when the seismic peak occurs (PDF at 10 s), while the settlements have a relatively 
wide distribution after the mainshocks (PDF at 50 s), and the settlements tilt to the more 
dangerous side after the complete seismic sequence (PDF at 90 s). 
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The contour of the corresponding PDF surface can also be obtained, as shown in
Figure 23. It flows in the time domain, which intuitively reveals the propagation process
of random factors Θ. This indicates the liquidity of probability in the state spaces and
confirms the conservation of probability from the side aspect.
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Figure 23. PDF contour map at 60–80 s. (a) PDF contour of horizontal displacement. (b) PDF contour
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The settlement at the upstream dam crest is a significant indicator when assessing the
seismic resistance, and the variability in settlement can be expressed by the PDF at different
times, as shown in Figure 24. The distribution of settlements is very concentrated when the
seismic peak occurs (PDF at 10 s), while the settlements have a relatively wide distribution
after the mainshocks (PDF at 50 s), and the settlements tilt to the more dangerous side after
the complete seismic sequence (PDF at 90 s).
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The corresponding CDF curves can be easily obtained based on the PDFs. The proba-
bility characteristics of each typical time instant can be more clearly reflected by the CDF,
as shown in Figure 25.
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The performance CDF can be obtained based on the AC approach proposed in Section 3.
Figure 26 shows that no matter how high the threshold is, the reliability in the case of
seismic sequences is lower than that in the case of a single mainshock.
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The first-passage dynamic reliabilities in different thresholds of the dam can be ob-
tained through extreme CDF, as illustrated in Figure 27. The reliability of the structure
begins to significantly decrease after the mainshocks, and the reliability will significantly
decrease again after the subsequent aftershocks. On the other hand, with the decrease in
the threshold, the dynamic reliability of the structure will be greatly reduced, and the time
at which the decrease begins will be slightly earlier, as shown in Table 9.
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Table 9. Time when reliability begins to decrease. 
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the seismic performance of nonlinear structures shows a decrease in reliability after the 
peak in the aftershocks, indicating the noticeable impact of aftershocks on structures. In 
the performance-based seismic design of an earth dam, a reliability of 88% is obviously 
not enough to consider single mainshock because the aftershocks will significantly re-
duce the reliability by 10%, making the design or safety evaluation inaccurate. 
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Table 9. Time when reliability begins to decrease.

Thresholds 0.8 m 0.7 m 0.6 m 0.5 m

Mainshock 14.4 s 12.7 s 12.0 s 10.9 s
Aftershock 71.7 s 69.3 s 66.9 s 60.8 s

To explore the influence of the aftershocks on structural reliability, we focus on the
analysis when the threshold is 0.6 m, as shown in Figure 28. The reliability is 0.88 under
the single mainshock and further reduces to 0.78 under the seismic sequences. Strikingly,
the seismic performance of nonlinear structures shows a decrease in reliability after the
peak in the aftershocks, indicating the noticeable impact of aftershocks on structures. In the
performance-based seismic design of an earth dam, a reliability of 88% is obviously not
enough to consider single mainshock because the aftershocks will significantly reduce the
reliability by 10%, making the design or safety evaluation inaccurate.
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In Figure 29, the reliability and difference between a single mainshock and seismic
sequences are presented at different thresholds. Apparently, the reliability difference
gradually increases with the decrease in threshold; that is, reliability is more likely to
significantly decline due to aftershocks in such cases, particularly when the threshold is
low. As a consequence, in seismic design that prioritizes performance-based structures,
it is essential to consider the impact of aftershocks, especially in situations dealing with
non-linear structures where the threshold is low.
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5. Conclusions

A novel probabilistic approach is proposed for assessing the stochastic dynamic
response of earth dams to seismic sequences. In this method, the relevant randomness of
mainshocks and aftershocks is introduced, and the decoupling method used to solve the
stochastic response is established. This study examines the impact of aftershocks on dam
reliability in terms of probability for the first time. The conclusions are as follows:

(1) Simulation method of seismic sequences. This paper proposes a physical model for
nonstationary stochastic seismic sequences that employs a source–path–site mechanism,
where uncertainties in ground motion are represented as random variables and the source
of randomness is identified. The model is evaluated through comparison with actual
ground motion data to determine its accuracy.

(2) Generate dependent variables. The multidimensional representative point set
with a minimum GFD and different distributions is selected. Utilizing Copula theory,
the relationship between mainshocks’ and aftershocks’ model parameters is established,
resulting in more integrated seismic sequences. This approach has a high accuracy with
smaller samples in stochastic dynamic analysis.

(3) Stochastic dynamic analysis of the dam. The generalized plasticity theory is
introduced into the stochastic dynamic calculation, and the stochastic dynamic response
of the dam is solved by DPIM. The displacement-based performance index allows for the
calculation of the PDF, CDF, and reliability of a dam at any given time. The study revealed
that aftershocks can decrease the reliability of a dam by 1–15%, especially when the design
demand is higher. Thus, it is crucial to take aftershocks into account when considering
seismic design.

(4) A novel method for a reliability analysis of dams that is both practical and efficient.
This identifies the sources of random factors in ground motions and follows the principle
of probability conservation. This allows for the comprehensive acquisition of all probability
information regarding structural dynamic responses, because it is not limited by different
conditions and has strong numerical stability. This method provides a new idea for future
engineering design and performance evaluations.
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