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Abstract: Different regression-based machine learning techniques, including support vector machine
(SVM), random forest (RF), Bagged trees algorithm (BaT), and Boosting trees algorithm (BoT) were
adopted for modeling daily reference evapotranspiration (ET0) in a semi-arid region (Hemren catch-
ment basin in Iraq). An assessment of the methods with various input combinations of climatic
parameters, including solar radiation (SR), wind speed (WS), relative humidity (RH), and maximum
and minimum air temperatures (Tmax and Tmin), indicated that the RF method, especially with
Tmax, Tmin, Tmean, and SR inputs, provided the best accuracy in estimating daily ET0 in all stations,
while the SVM had the worst accuracy. This work will help water users, developers, and decision
makers in water resource planning and management to achieve sustainability.

Keywords: climatic inputs; evapotranspiration; Hemren catchment; machine learning; prediction;
semi-arid region

1. Introduction

Evapotranspiration is an important factor in the hydrological cycle and is used in
water resource management for irrigation [1,2], drought estimation and monitoring [3–5],
and in estimation of crop production [6,7]. Evapotranspiration (ET) could be defined as
the amount of water that is transferred from the Earth’s surface to the atmosphere, and it
plays a significant role in the world’s ecosystem that is related to water, energy, and carbon
cycles [8,9]. ET is affected by different factors, including precipitation, temperature, relative
humidity, wind speed, and solar radiation [10]. In addition, there is a common consent
that terrestrial ET around the world has been changed as a result of climate change and
human activity in the last decades [11–15]. Therefore, in order to calculate terrestrial ET, it
is necessary to recognize the roles of water management, the hydrological cycle, and the
impact of climate change [16,17].

Reference evapotranspiration (ET0) can be estimated using different methods and
approaches, including statistical or empirical methods, remote-sensing methods, and phys-
ical model-based methods [11]. In the first method, ET0 is estimated using flux tower
observations [18,19], while in the second method, ET0 is calculated using the integration of
remote-sensing data with experimental observations [20,21], the surface energy balance
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equation [22,23], Penman–Monteith or Priestley–Taylor equations [24–26], and data assim-
ilation methods [27–29]. In the third method, ET0 is estimated using a physical model
alone or integrated with data-simulation algorithms [30–32]. Although several studies
have used these methods globally, the daily estimation of ET0 using these methods comes
with some uncertainty [33]. Relative variation between the observed and estimated values
was found to range from 14% to 44% [34,35]. On the other hand, Lysimeters provide
more precise measurements of ET values, and many researchers estimate ET by employing
the measurements of Lysimeters [36,37]. Unfortunately, the use of Lysimeters has some
drawbacks such as the cost of installation and maintenance, in addition to environmental
impacts. Additionally, the restricted number of Lysimeters impedes the observation of ET
at specific locations [38]. Based on the above, the development of new adequate methods to
estimate reference evapotranspiration (ET0) with more accuracy and low cost is important
and necessary.

In the last decades, the use of machine learning (ML) has received more attention in the
field of water resource management around the world, including ET0 estimation. ML has
been applied to estimate the parameters of hydrology [39–45], hydraulics [46–49], and water
quality by many researchers [42,50–53]. Several previous studies have reported the capability
of ML techniques in estimating ET0 [54]. A comparative study using two ML techniques,
namely generalized regression neural networks (GRNN) and radial basis function neural
networks (RBFNN), in addition to empirical methods for ET0 estimation in Algeria, is
presented in [55]. It concluded that for ET0 estimation, the results obtained from the use of
GRNN are better than those obtained from using the RBF. Another ML model, which is
the support vector machine (SVM) model, was developed for ET0 estimation in [56] using
limited climatic data. They used different parameters such as maximum and minimum
temperature, wind speed, and solar radiation with several input combinations. The results
acknowledged that the SVM is useful for ET0 estimation with acceptable accuracy. A
comparison between an artificial neural network (ANN) with empirical approaches to
estimate ET0 using the daily meterological data has also been conducted [57]. It used two
types of ANN with three empirical approaches that included Priestley–Taylor, Makkink,
Hargreaves, and mass transfer. In [58], different machine learning techniques were used for
ET0 estimation with more actual and precise limited meteorological variables. The results
generalized the relation between the various meteorological parameters. Moreover, the
performance of ten ML techniques was evaluated in [59]. It used three statistical indices
that included RMSE, R2, and bias to evaluate the modeling results. In [60], a deep neural
network (DNN) model was developed for ET0 estimation using four meteorological stations
in Turkey. In that study, the results of DNN were compared with results of ANN. The study
revealed that the output of DNN was more accurate compared to that of ANN. In [61], eight
ML techniques were evaluated in estimating ET0 using temperature data only. Additionally,
the results were compared with the Hargreaves–Samani equation (a temperature-based
equation). It was concluded that the accuracy of the developed models varied with various
scenarios. Five machine learning models to predict daily ET0 across ten meteorological
stations in China were developed in [62]. The results from comparison showed that the
CAT model outperformed the other models. The overall findings of the previous studies
indicate that the use of soft computing techniques for modeling the evaporation process is
very promising, and further studies incorporating these techniques are recommended [63].

In this research, seven scenarios with different climate variables were evaluated by
employing four regression-based ML techniques. To the best of the authors’ knowledge,
these regression-based ML methods have not been previously compared in estimating ET0
in a semi-arid region.

2. Materials and Methods
2.1. Study Area

The catchment area of the Diyala River is at the eastern border of Iraq towards Iran.
The northern part of it (within Iran) is mostly of mountainous character, with about 3000 m
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height. The Hemren Basin, a large catchment area located in the northeast of Iraq within
the Diyala governorate, extends between (33◦53′13.00′′ to 35◦25′41.61′′ Northern latitude)
and (44◦30′47.68′′ to 45◦48′39.59′′ Eastern longitude) inside Iraqi land, and it is located
about 120 km northeast of Baghdad, the capital city in Iraq (Figure 1).
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Figure 1. Location of the study area.

The relief of study area is characterized with topographic differences, their elevation
ranges vary from 225 to 900 m above M.S.L. Therefore, the area was divided into three
main regions. The length of the Diyala River within the catchment area is about 150 km,
with an average gradient of 1 m per kilometer. Meanwhile, the Alwand River, which is the
main tributary on the left side of the Diyala River, has a gradient of 2 m/km. It drains an
area of 3974 km2, and without the part in Iranian land, the area is 1974 km2. The Narin
River, which is the largest tributary on the right side, has a small gradient with a catchment
area of 2344 km2, and empties into the Diyala River near Hemren Mountains. Moreover,
the downstream part of the catchment area, located between Derbendi Khan and Hemren,
has lower altitudes and gradients.

2.2. Employed Data

In the present study, the capability of four regression-based machine learning methods,
SVM, RF, BoT and BaT, was investigated for ET0 estimation. Seven input scenarios were
considered in this study using six climatic parameters, namely solar radiation (SR), wind
speed (WS), relative humidity (RH), and maximum, mean, and minimum air temperatures
(Tmax, Tmin, Tmean) as model inputs. The data were collected daily from five stations in Iraq,
namely Mandali, Kalar, Iran–Iraq Border, Qarah-Tapah, and Adhim stations. Table 1 shows
the statistical properties of the meteorological stations. The daily climate data during the
period of 1979–2014 were collected from the study area and used for model development.
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Table 1. Details of meteorological stations used in this study.

Station Name
Station Location Temperature (◦C) Relative Humidity

(%)
Solar Radiation

(MJ/m2)
Wind Speed

(m/s)

Lon. Lat. Max. Min. Max. Min. Max. Min. Max. Min.

Mandali 45.31 33.88 51.18 −8.76 96 3.2 32.2 0.81 12.7 0.7
Kalar 45.31 34.50 50.31 −4.69 98 3.5 32.65 0.3 10.25 0.72
Iraq–Iran Border 45.63 34.19 48.82 −11.67 96.6 3.62 33.28 0.56 11.13 0.63
Adhim 44.68 34.18 52.23 −3.45 99 3.7 32.05 0.3 10.82 0.66

2.3. Machine Learning Models

This section briefly explains the input combinations and machine leaning methods
used in this study. ET mainly depends on temperature and other climate variables as
stated by previous studies. The idea in this study was creating some scenarios including
temperature as the first variable and then combining it with other variables to select which
scenario was the best for predicting ET0.

Support Vector Machines (SVM) are widely recognized as powerful machine learning
(ML) models that yield valuable outcomes in both classification and regression problems.
The SVM methodology employs structural risk minimization during the training process,
which results in several effective features for simulating complex problems [46]. These
features include the sparse presentation of solutions, good generalization ability, and the
ability to avoid trapping in local minima. It is worth noting that the term Support Vector
Regression (SVR) is commonly used for regression-based problems.

In this method, the input vector x is transformed into a higher-dimensional space
through nonlinear mapping, where linear regression is applied to the input vector. Con-
sidering a solution space with x as the independent vector and y as the dependent vector
variables for the dataset having N number of data pairs, the linear regression function can
be written as:

f (x) = ∑N
n=1 wn ϕn(x) + b (1)

where ϕ(x) represents a non-linear function that maps the low input space to the high
output space; w represents the weights vector, while b denotes the threshold.

Unlike the SVR model, the other three ML models, RF, BaT, and BoT, are based
on the concepts of decision and regression tree models that employ ensemble learning
techniques. Decision tree learning is a supervised learning approach that is used to solve
both classification and regression problems. Examples include Classification and Regression
Tree (CART) models. In a decision tree model such as CART, each decision node in the
tree represents a test on some input variables. Ensemble learning is a prosperous ML
paradigm that merges a group of learners, rather than relying on a solitary learner, to
forecast unfamiliar target attributes. It has been proven that using ensemble learning can
improve the simulating and predicting results of individual models [64]. In this respect,
two types of ensemble learning methodologies, namely bagging (here for the Bat and RF
models) and boosting (here for the BoT model), are applied.

As indicated by [65], the BoT model incorporates important advantages of tree-based
methods and has unique features. Its performance is based on an ensemble for training new
samples. On the other hand, the bagging technique, also known as bootstrap aggregated, is
an early ensemble method, which has numerous trees designed to improve the stability
and accuracy of models. In the BaT, multiple independent decision trees can be constructed
simultaneously on different segments of the training samples by utilizing distinct subsets
of accessible characteristics.

Random forests are one of the most popular machine learning algorithms. They are so
successful because they provide in general good predictive performance, low over-fitting,
and easy interpretability. This interpretability is given by the fact that it is straightforward
to derive the importance of each variable on tree decision. In other words, it is easy to
compute how much each variable is contributing to the decision. The RF model acts
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similar to the BaT by constructing different decision trees. However, it uses a classification
methodology for combining multiple trees to arrive at a conclusive outcome using the
voting technique. Consequently, the RF classifier exhibits a robust ability to generalize. The
RF can be considered as a specified type of the Bootstrap model. In each stage, the system
has two subdivisions as unconnected segments to reduce the mean squared error values.

Feature selection through the random forest (RF) is categorized as an embedded
method. Embedded methods encompass the advantages of both filter and wrapper tech-
niques, as they rely on algorithms with built-in feature selection capabilities. Embedded
methods offer several advantages, including:

High accuracy: They yield precise results.
Improved generalization: They enhance the model’s ability to apply learned patterns

to new data.
Interpretability: They provide insights into the significance of selected features.
Random forest comprises multiple decision trees, each constructed using a random

subset of observations and a random subset of features from the dataset. This means that
not every tree processes all the features or observations. This design ensures that the trees
are uncorrelated, reducing the risk of overfitting. Each tree is essentially a sequence of
binary questions based on individual or combined features. At each node (corresponding to
each question), the tree partitions the dataset into two groups, each containing observations
that are more similar to each other and dissimilar to those in the other group. Consequently,
the importance of each feature is determined by how “pure” each of these partitioned
groups becomes.

2.4. Evaluation of Models’ Performance

The most important step in using machine-learning models is evaluating their accu-
racy. Performance evaluation of the four soft computing models was conducted based on
regression analysis using four statistical indices, namely mean absolute error (MAE), root
mean square error (RMSE), mean square error (MSE), and coefficient of determination (R2).

3. Results

The utilized input scenarios for daily ET0 estimation are presented in Table 2. From
the table, the first Scenario (M1) used full variables as inputs, while the seventh Scenario
(M7) had only two variables, Tmean and SR. The performance metrics of the employed
methods in estimating daily ET0 of the five stations are presented in the following sections.

Table 2. Scenarios of input combinations used for daily ET0 estimation at study stations.

Scenario
Code

Inputs Technique

RF SVM BoT BaT

M1 Tmax, Tmin, Tmean, SR, WS, and RH × × × ×
M2 Tmax, Tmin, Tmean, and SR × × × ×
M3 Tmean, SR, and WS × × × ×
M4 SR, WS, RH, andTmin × × × ×
M5 RH, WS, and Tmax × × × ×
M6 Tmax, RH, and Tmin × × × ×
M7 Tmean and SR × × × ×

3.1. Qarah-Tapah Station

From Figure 2 and Table 3, the performance metrics of the employed methods in
estimating the daily ET0 of the Qarah-Tapah station shows that the RF method had R2, MSE,
RMSE, and MAE ranges from 0.86 (RF-5) to 1 (RF-1), from 0.05 (RF-2) to 0.414 (RF-5), from
0.074 (RF-2) to 0.643 (RF-5), and from 0.055 (RF-2) to 0.487 (RF-5), respectively. It is evident
from the metrics’ ranges that the RF method was generally more successful in estimating
the daily ET0 of the Qarah-Tapah station. Another finding is that for the RF method, there
was a small difference between the first and second scenarios, and the second one produced
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the best accuracy. The other methods behaved differently, for example, the first and second
input combinations provided the same accuracy for the BoT method. The M1 scenario had
slightly better accuracy than the M2 for the SVM method, while the first scenario performed
worse compared to latter for the BaT. This difference can be explained by the different
working principles of the four implemented methods. The best estimates belonged to the
RF method, followed by the BaT methods, while the SVM generally produced the worst
ET0 estimates.
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Table 3. The effectiveness of the applied models in daily ET0 estimation at the Qarah-Tapah station
during the testing period.

Model
ML

Algorithm
Performance Metric

R2 MSE (mm/day)2 RMSE (mm/day) MAE (mm/day)

M1

RF-1 1.00 0.006 0.077 0.061
SVM-1 0.97 0.077 0.280 0.230
BoT-1 0.99 0.029 0.172 0.135
BaT-1 0.99 0.019 0.141 0.085

M2

RF-2 0.998 0.005 0.074 0.055
SVM-2 0.97 0.086 0.293 0.239
BoT-2 0.99 0.029 0.172 0.135
BaT-2 1.00 0.008 0.091 0.052

M3

RF-3 0.99 0.029 0.170 0.125
SVM-3 0.97 0.089 0.299 0.241
BoT-3 0.98 0.044 0.211 0.161
BaT-3 0.98 0.053 0.229 0.163

M4

RF-4 0.99 0.043 0.208 0.149
SVM-4 0.96 0.105 0.325 0.258
BoT-4 0.98 0.054 0.232 0.174
BaT-4 0.99 0.029 0.171 0.122

M5

RF-5 0.86 0.414 0.643 0.487
SVM-5 0.87 0.367 0.606 0.488
BoT-5 0.90 0.297 0.545 0.439
BaT-5 0.90 0.297 0.545 0.428

M6

RF-6 0.90 0.288 0.536 0.395
SVM-6 0.91 0.267 0.516 0.421
BoT-6 0.92 0.241 0.490 0.398
BaT-6 0.92 0.229 0.478 0.372

M7

RF-7 0.99 0.031 0.176 0.129
SVM-7 0.97 0.092 0.303 0.245
BoT-7 0.98 0.045 0.212 0.161
BaT-7 0.99 0.026 0.162 0.119
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3.2. Mandali Station

The test performances of the RF, SVM, BoT, and BaT methods in estimating ET0 of the
Mandali Station are reported in Figure 3 and Table 4. Here, it was also clear that the RF-2
model had the lowest MSE (0.024), RMSE (0.156), and MAE (0.059) followed by those of the
RF-1 and BaT-2 models, while SVM produced the worst estimates, similar to the previous
station.
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Figure 3. The effectiveness of the applied models in daily ET0 estimation at the Mandali station.

Table 4. The effectiveness of the applied models in daily ET0 estimation at the Mandali station during
the testing period.

Model
ML

Algorithm
Performance Metric

R2 MSE (mm/day)2 RMSE (mm/day) MAE (mm/day)

M1

RF-1 0.99 0.025 0.157 0.067
SVM-1 0.98 0.065 0.255 0.206
BoT-1 0.98 0.048 0.220 0.146
BaT-1 0.99 0.036 0.189 0.090

M2

RF-2 0.998 0.024 0.156 0.059
SVM-2 0.97 0.075 0.274 0.223
BoT-2 0.98 0.048 0.220 0.146
BaT-2 0.99 0.026 0.161 0.066

M3

RF-3 0.98 0.056 0.237 0.150
SVM-3 0.97 0.088 0.296 0.237
BoT-3 0.98 0.069 0.263 0.180
BaT-3 0.97 0.077 0.278 0.181

M4

RF-4 0.97 0.074 0.272 0.176
SVM-4 0.96 0.109 0.330 0.262
BoT-4 0.97 0.080 0.283 0.195
BaT-4 0.98 0.055 0.236 0.147

M5

RF-5 0.85 0.425 0.652 0.492
SVM-5 0.87 0.360 0.600 0.481
BoT-5 0.89 0.310 0.556 0.442
BaT-5 0.89 0.309 0.556 0.431

M6

RF-6 0.89 0.316 0.562 0.414
SVM-6 0.90 0.263 0.513 0.418
BoT-6 0.91 0.259 0.509 0.406
BaT-6 0.91 0.250 0.500 0.385

M7

RF-7 0.98 0.063 0.251 0.162
SVM-7 0.97 0.093 0.304 0.244
BoT-7 0.97 0.071 0.266 0.182
BaT-7 0.98 0.054 0.234 0.148
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3.3. Kalar Station

Figure 4 and Table 5 present the test performances of the implemented four methods
in estimating ET0 of the Kalar Station. Similarly to Qarah-Tapah and Mandali stations,
the RF-2 model provides the best performance with the lowest MSE (0.022), RMSE (0.148),
and MAE (0.056) and the highest R2 (0.998), followed by those of RF-1 and BaT-2 models.
In this station, the BaT and BoT ranked second and third, while the SVM was the least
accurate model.
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Table 5. The effectiveness of the applied models in daily ET0 estimation at the Kalar station during
the testing period.

Model
ML

Algorithm
Performance Metric

R2 MSE (mm/day)2 RMSE (mm/day) MAE (mm/day)

M1

RF-1 0.99 0.022 0.149 0.062
SVM-1 0.97 0.071 0.268 0.216
BoT-1 0.98 0.044 0.210 0.138
BaT-1 0.99 0.034 0.186 0.087

M2

RF-2 0.998 0.022 0.148 0.056
SVM-2 0.97 0.080 0.284 0.231
BoT-2 0.98 0.043 0.209 0.137
BaT-2 0.99 0.024 0.155 0.060

M3

RF-3 0.98 0.046 0.215 0.132
SVM-3 0.97 0.087 0.029 0.238
BoT-3 0.98 0.058 0.242 0.162
BaT-3 0.98 0.069 0.263 0.169

M4

RF-4 0.98 0.061 0.248 0.157
SVM-4 0.96 0.104 0.322 0.257
BoT-4 0.97 0.069 0.263 0.178
BaT-4 0.98 0.047 0.217 0.131

M5

RF-5 0.85 0.412 0.641 0.484
SVM-5 0.88 0.343 0.586 0.476
BoT-5 0.89 0.302 0.549 0.439
BaT-5 0.89 0.300 0.548 0.429

M6

RF-6 0.90 0.288 0.536 0.390
SVM-6 0.91 0.243 0.493 0.403
BoT-6 0.91 0.244 0.494 0.395
BaT-6 0.91 0.230 0.480 0.368

M7

RF-7 0.98 0.047 0.217 0.134
SVM-7 0.97 0.089 0.299 0.242
BoT-7 0.98 0.058 0.242 0.163
BaT-7 0.98 0.042 0.206 0.124
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3.4. Iraq–Iran Station

Figure 5 and Table 6 give the performance metrics of the four methods in the test
period of the Iraq–Iran Border station. In this station, RF-2 also ranked first by providing
the lowest MSE (0.020), RMSE (0.143), and MAE (0.055) and the highest R2 (0.998), followed
by those of the RF-1 and BaT-2 models. Here as well BoT and BaT performed superior to
the SVM method. Again, the fifth scenario provided the worst results, while the first and
second input scenarios had the best ET0 estimates.
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Table 6. The effectiveness of the applied models in daily ET0 estimation at the Iraq–Iran Border
station during the testing period.

Model
ML

Algorithm
Performance Metric

R2 MSE (mm/day)2 RMSE (mm/day) MAE (mm/day)

M1

RF-1 0.99 0.021 0.145 0.062
SVM-1 0.97 0.064 0.253 0.204
BoT-1 0.98 0.041 0.203 0.133
BaT-1 0.99 0.032 0.178 0.084

M2

RF-2 0.998 0.020 0.143 0.055
SVM-2 0.97 0.071 0.266 0.216
BoT-2 0.98 0.041 0.203 0.133
BaT-2 0.99 0.022 0.151 0.059

M3

RF-3 0.98 0.042 0.205 0.125
SVM-3 0.97 0.078 0.279 0.225
BoT-3 0.98 0.055 0.237 0.157
BaT-3 0.98 0.060 0.246 0.156

M4

RF-4 0.98 0.058 0.241 0.154
SVM-4 0.96 0.093 0.306 0.242
BoT-4 0.97 0.067 0.259 0.175
BaT-4 0.98 0.045 0.213 0.130

M5

RF-5 0.84 0.401 0.633 0.478
SVM-5 0.87 0.329 0.574 0.466
BoT-5 0.88 0.287 0.536 0.427
BaT-5 0.88 0.286 0.534 0.418

M6

RF-6 0.89 0.264 0.514 0.375
SVM-6 0.91 0.230 0.480 0.390
BoT-6 0.91 0.228 0.477 0.383
BaT-6 0.91 0.217 0.466 0.358

M7

RF-7 0.98 0.045 0.213 0.132
SVM-7 0.97 0.080 0.283 0.228
BoT-7 0.98 0.056 0.237 0.158
BaT-7 0.98 0.041 0.202 0.121
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3.5. Adhim Station

The performance measures of the RF, SVM, BoT, and BaT methods in estimation at the
Adhim Station are presented in Figure 6 and Table 7. The RF-2 model had the lowest MSE
(0.006), RMSE (0.078), and MAE (0.058), followed by those of the RF-1 and BaT-2 models.
SVM generally produced the worst estimates, while BaT and BoT methods followed the RF
in accuracy for estimating the daily ET0. Models including the first and/or scond scenarios
perform the best, while models with the fifth combination had the worst results. In this
station, BoT-1 had better accuracy than BoT-2 did; however, this difference was marginal.
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Table 7. The effectiveness of the applied models in daily ET0 estimation at the Adhim station during
the testing period.

Model
ML

Algorithm
Performance Metric

R2 MSE (mm/day)2 RMSE (mm/day) MAE (mm/day)

M1

RF-1 1.00 0.006 0.082 0.061
SVM-1 0.97 0.075 0.275 0.222
BoT-1 0.99 0.031 0.178 0.140
BaT-1 0.99 0.033 0.184 0.093

M2

RF-2 0.998 0.006 0.078 0.058
SVM-2 0.97 0.082 0.287 0.234
BoT-2 0.99 0.032 0.179 0.140
BaT-2 0.99 0.022 0.148 0.059

M3

RF-3 0.99 0.034 0.185 0.134
SVM-3 0.97 0.086 0.294 0.234
BoT-3 0.98 0.053 0.231 0.173
BaT-3 0.98 0.068 0.261 0.173

M4

RF-4 0.98 0.047 0.218 0.156
SVM-4 0.97 0.103 0.321 0.253
BoT-4 0.98 0.058 0.241 0.182
BaT-4 0.99 0.031 0.177 0.127

M5

RF-5 0.86 0.405 0.636 0.481
SVM-5 0.88 0.367 0.606 0.485
BoT-5 0.90 0.296 0.544 0.434
BaT-5 0.90 0.292 0.541 0.422

M6

RF-6 0.89 0.319 0.565 0.415
SVM-6 0.90 0.301 0.548 0.443
BoT-6 0.91 0.253 0.503 0.404
BaT-6 0.92 0.243 0.493 0.381

M7

RF-7 0.98 0.044 0.211 0.152
SVM-7 0.97 0.090 0.300 0.239
BoT-7 0.98 0.057 0.239 0.178
BaT-7 0.98 0.491 0.221 0.143
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Overall, the RF method, especially with the Tmax, Tmin, Tmean, and SR inputs, provided
the best accuracy in estimating the daily ET0 of all stations. Its accuracy was followed by
that of the BaT and BoT methods, while SVM had the worst accuracy. In most cases, the
second input scenario provided the best accuracy in estimating the daily ET0. It is also
worth noting that the seventh input scenario, having only Tmean and SR inputs, performed
superior to the fourth, fifth, and sixth input scenarios. These results are contrary to those
of [56], where a support vector machine (SVM) model was developed for ET0 estimation
using limited climatic data (i.e., maximum and minimum temperature, wind speed, and
solar radiation). The results in that study acknowledged that the SVM was useful for ET0
estimation with acceptable accuracy.

On the other hand, [66] used two machine-learning methods, random vector functional
link (RVFL) and relevance vector machine (RVM), in modeling ET0 using limited climatic
data, Tmax, Tmin, and extraterrestrial radiation with various input combinations and three
data split scenarios. The study indicated that using only the temperature input (Tmin,
Tmax) provided the worst ET0 estimations. Other studies also acknowledged similar
results [67,68]. Another study found that temperature-based models involving temperature
and Ra inputs offer promising results [61].

Figures 7 and 8 illustrate the time variation and scatter plots of the best model (RF-2)
estimates. It is clear from Figure 7 that the ET0 estimates by RF-2 were closely following the
observed values. The models’ ranks from the best to worst are presented in Table 8. From
Table 8, we can say that the first or second input scenarios, inlcuding Tmax, Tmin, Tmean,
SR, WS, and RH; and Tmax, Tmin, Tmean and SR variables, respectively, generally provided
the best estimates, while the fifth scenario, involving RH, WS, and Tmax, gave the worst
ET0 estimates. The main reason of this might be the fact that the SR input is very effective
for ET0, and not having it in this combination (fifth) and involving the WS parameter may
worsen the estimation accuracy. Adding some input variables may negatively affect the
variance and cause worse model accuracy in machine learning modeling. Here, adding
WS might deteriorate the model’s performance, as this can be observed from the first and
second input cases. From Table 8 it can also clearly be seen that for the Kalar Station, the
first and second scenarios produced the best estimates, whereas the fifth scenario had the
worst results. As clearly seen from Figure 8, the fit line of RF-2 overlapped the ideal line
(1:1 line), and it had a high correlation for all stations. All these results highly recommend
the RF method in estimating daily ET0.
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testing period.

Table 8. Ranks of ML models based on the five stations.

Model
ML

Algorithm

Models’ Ranks Based on Stations

Qarah-
Tapah Mandali Kalar Iraq–Iran Border Adhim

M1

RF-1 2 2 2 2 2
SVM-1 16 8 8 8 8
BoT-1 6 15 16 15 15
BaT-1 4 23 23 23 24

M2

RF-2 1 1 1 1 1
SVM-2 17 9 9 9 9
BoT-2 7 16 15 16 16
BaT-2 3 22 22 22 22
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Table 8. Cont.

Model
ML

Algorithm

Models’ Ranks Based on Stations

Qarah-
Tapah Mandali Kalar Iraq–Iran Border Adhim

M3

RF-3 8 3 3 3 3
SVM-3 18 10 10 10 10
BoT-3 12 17 17 17 17
BaT-3 14 26 26 26 26

M4

RF-4 11 5 5 5 5
SVM-4 20 12 12 12 12
BoT-4 15 19 19 19 19
BaT-4 9 25 25 25 23

M5

RF-5 28 7 7 7 7
SVM-5 27 14 14 14 14
BoT-5 26 21 21 21 21
BaT-5 25 28 28 28 28

M6

RF-6 24 6 6 6 6
SVM-6 23 13 13 13 13
BoT-6 22 20 20 20 20
BaT-6 21 27 27 27 27

M7

RF-7 10 4 4 4 4
SVM-7 19 11 11 11 11
BoT-7 13 18 18 18 18
BaT-7 5 24 24 24 25

4. Discussion

Evapotranspiration plays a significant role in the hydrological cycle and finds appli-
cations in water resource management, including irrigation, as well as in the assessment
and surveillance of drought conditions [69–76]. Four different regression-based machine
learning methods were compared for modeling daily reference evapotranspiration (ET0)
for a semi-arid region (the Hemren catchment basin in Iraq). The comparison statistics indi-
cated that the random forest method with Tmax, Tmin, Tmean, and SR inputs performed
superior to the other methods in estimating the daily ET0 at all stations, while the SVM had
the worst accuracy. Random forest (RF) is a popular machine-learning algorithm known for
its strong predictive performance, minimal overfitting, and ease of interpretability. RF con-
structs multiple decision trees and combines them using a voting mechanism, resulting in
robust generalization capabilities. One key feature of RF is its use of embedded methods for
feature selection, which combines the strengths of filter and wrapper methods. Embedded
methods are known for their high accuracy, excellent generalization, and interpretability.
RF builds multiple decision trees, each using a random subset of data observations and
features. This ensures that the trees are uncorrelated and less prone to overfitting. Each tree
consists of a series of questions based on features, with each question dividing the data into
two groups based on their similarity, ultimately determining the importance of each feature.
In summary, RF is a powerful machine learning algorithm valued for its predictive abilities,
robustness, and interpretability, making it a popular choice in various applications.

In [55], ET0 estimation was carried out using radial based artificial neural networks
(RBNNs) and generalized regression artificial neural networks (GRNNs). The inputs for
this estimation included daily mean relative humidity, sunshine duration, maximum and
minimum air temperatures, mean air temperature, and wind speed. The study yielded
the best R2 values of 0.868 and 0.889 for the RBNN and GRNN, respectively. Granata
and Nunno [77] adopted two deep learning methods, NARX and LSTM, to model ET0.
They experimented with various input combinations, including solar radiation, mean air
temperature, sensible heat flux, relative humidity, and lagged ET0 values. The results
showed R2 values of 0.687 and 0.837 as the best performance achieved by the LSTM and
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NARX models, respectively. The table data in Tables 3–7 clearly demonstrate that the
proposed methods achieved remarkable success in modeling ET0.

5. Conclusions

In this study, the applicability of four different regression-based machine learning
methods in estimating ET0 was investigated. Climatic data from five stations located in
a semi-arid region of Iraq was used as inputs to the models. According to comparison
statistics (R2, MSE, RMSE, and MAE) and graphical inspection, the random forest model
offered the best ET0 estimates in all stations, while the SVM provided the worst accuracy.
Employing various combinations of climatic inputs revealed that the models with Tmax,
Tmin, Tmean, and SR inputs produced the best estimations. The best random forest model
with Tmax, Tmin, Tmean, and SR improved the estimation accuracy of the SVM, BoT, and
BaT models by 94%, 83%, and 38% for Qarah-Tapah, by 68%, 50%, and 8% for Mandali, by
73%, 49%, and 8% for Kalar, by 72%, 51%, and 9% for Iran–Iraq Border, and by 93%, 81%,
and 73% for Adhim with respect to RMSE in the test period, respectively. The outcomes
of the study recommend random forest for estimating ET0 in a semi-arid region. The
study used data from one region, and more data can be used to assess the regression-based
machine learning methods in future studies. The regression-based methods considered in
this study may be compared with more complex machine learning methods.

Author Contributions: Conceptualization: S.S.S., A.M.S.A.-J., O.K., and A.E.; data creation: O.K.
and S.S.S.; formal analysis: O.K. and S.S.S.; investigation: O.K. and A.M.S.A.-J.; methodology: S.S.S.
and A.M.S.A.-J.; software: A.E. and O.K.; validation: S.S.S. and O.K.; writing—original draft: O.K.,
A.M.S.A.-J. and S.S.S.; writing—review and editing, S.S.S., A.M.S.A.-J., O.K., A.E and M.Z.-K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: It will be available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. French, A.; Hunsaker, D.; Bounoua, L.; Karnieli, A.; Luckett, W.; Strand, R. Remote Sensing of Evapotranspiration over the Central

Arizona Irrigation and Drainage District, USA. Agronomy 2018, 8, 278. [CrossRef]
2. Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to

Services for the End Users. Sensors 2017, 17, 1104. [CrossRef] [PubMed]
3. Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Tugrul Yilmaz, M.; Gao, F.; Otkin, J.A.; Tetrault, R. The

Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote
Sens. Environ. 2016, 174, 82–99. [CrossRef]

4. Senay, G.B.; Velpuri, N.M.; Bohms, S.; Budde, M.; Young, C.; Rowland, J.; Verdin, J.P. Drought Monitoring and Assessment.
In Hydro-Meteorological Hazards, Risks and Disasters; Shroder, J.F., Paron, P., Di Baldassarre, G., Eds.; Elsevier: Amsterdam,
The Netherlands, 2015; pp. 233–262.

5. Yusuf, B.; Al-Janabi, A.M.S.; Ghazali, A.H.; Al-Ani, I. Variations of infiltration capacity with flow hydraulic parameters in
permeable stormwater channels. ISH J. Hydraul. Eng. 2022, 28, 234–242. [CrossRef]

6. Khan, A.; Stöckle, C.O.; Nelson, R.L.; Peters, T.; Adam, J.C.; Lamb, B.; Chi, J.; Waldo, S. Estimating Biomass and Yield Using
METRIC Evapotranspiration and Simple Growth Algorithms. Agron. J. 2019, 111, 536–544. [CrossRef]

7. Doorenbos, J.; Kassam, A.H.; Bentvelsen, C.; Uittenbogaard, G. Yield Response to Water. In Irrigation and Agricultural Development;
Johl, S.S., Ed.; Pergamon Press: Oxford, UK, 1980; pp. 257–280.

8. Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using
Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [CrossRef]

9. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic
variability. Rev. Geophys. 2012, 50. [CrossRef]

10. Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water
Manag. 2019, 217, 303–315. [CrossRef]

11. Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al.
Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [CrossRef]

https://doi.org/10.3390/agronomy8120278
https://doi.org/10.3390/s17051104
https://www.ncbi.nlm.nih.gov/pubmed/28492515
https://doi.org/10.1016/j.rse.2015.11.034
https://doi.org/10.1080/09715010.2020.1759151
https://doi.org/10.2134/agronj2018.04.0248
https://doi.org/10.1175/JHM600.1
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1016/j.agwat.2019.03.015
https://doi.org/10.1038/nature09396


Water 2023, 15, 3449 16 of 18

12. Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.; Maignan, F.; et al.
Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 2013, 17,
3707–3720. [CrossRef]

13. Zeng, Z.; Piao, S.; Lin, X.; Yin, G.; Peng, S.; Ciais, P.; Myneni, R.B. Global evapotranspiration over the past three decades:
Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett. 2012, 7, 14026. [CrossRef]

14. Zeng, Z.; Wang, T.; Zhou, F.; Ciais, P.; Mao, J.; Shi, X.; Piao, S. A worldwide analysis of spatiotemporal changes in water
balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos. 2014, 119, 1186–1202. [CrossRef]

15. Al-Janabi, A.M.S.; Halim Ghazali, A.; Yusuf, B. Modified models for better prediction of infiltration rates in trapezoidal permeable
stormwater channels. Hydrol. Sci. J. 2019, 64, 1918–1931. [CrossRef]

16. Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend,
P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks,
agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [CrossRef]

17. Petropoulos, G.P.; Ireland, G.; Lamine, S.; Griffiths, H.M.; Ghilain, N.; Anagnostopoulos, V.; North, M.R.; Srivastava, P.K.;
Georgopoulou, H. Operational evapotranspiration estimates from SEVIRI in support of sustainable water management. Int. J.
Appl. Earth Obs. Geoinf. 2016, 49, 175–187. [CrossRef]

18. Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.;
et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations. J. Geophys. Res. 2011, 116. [CrossRef]

19. Xu, T.; Guo, Z.; Liu, S.; He, X.; Meng, Y.; Xu, Z.; Xia, Y.; Xiao, J.; Zhang, Y.; Ma, Y.; et al. Evaluating Different Machine Learning
Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690.
[CrossRef]

20. Cui, G.; Zhu, J. Infiltration model in sloping layered soils and guidelines for model parameter estimation. Hydrol. Sci. J. 2017, 62,
2222–2237. [CrossRef]

21. Zhao, B.; Mao, K.; Cai, Y.; Shi, J.; Li, Z.; Qin, Z.; Meng, X.; Shen, X.; Guo, Z. A combined Terra and Aqua MODIS land surface
temperature and meteorological station data product for China from 2003 to 2017. Earth Syst. Sci. Data 2020, 12, 2555–2577.
[CrossRef]

22. Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a
Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734.
[CrossRef]

23. Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation
estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [CrossRef]

24. Yao, Y.; Liang, S.; Li, X.; Chen, J.; Wang, K.; Jia, K.; Cheng, J.; Jiang, B.; Fisher, J.B.; Mu, Q.; et al. A satellite-based hybrid algorithm
to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens.
Environ. 2015, 165, 216–233. [CrossRef]

25. Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water
2016, 3, 834–853. [CrossRef]

26. Bateni, S.M.; Entekhabi, D.; Jeng, D.-S. Variational assimilation of land surface temperature and the estimation of surface energy
balance components. J. Hydrol. 2013, 481, 143–156. [CrossRef]

27. He, X.; Xu, T.; Xia, Y.; Bateni, S.M.; Guo, Z.; Liu, S.; Mao, K.; Zhang, Y.; Feng, H.; Zhao, J. A Bayesian Three-Cornered Hat (BTCH)
Method: Improving the Terrestrial Evapotranspiration Estimation. Remote Sens. 2020, 12, 878. [CrossRef]

28. Lu, Y.; Steele-Dunne, S.C.; Farhadi, L.; van de Giesen, N. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and
GOES Land Surface Temperature Data. Water Resour. Res. 2017, 53, 10858–10877. [CrossRef]

29. Xu, T.; Bateni, S.M.; Liang, S.; Entekhabi, D.; Mao, K. Estimation of surface turbulent heat fluxes via variational assimilation of
sequences of land surface temperatures from Geostationary Operational Environmental Satellites. J. Geophys. Res. Atmos. 2014,
119, 10780–10798. [CrossRef]

30. Xia, Y.; Hao, Z.; Shi, C.; Li, Y.; Meng, J.; Xu, T.; Wu, X.; Zhang, B. Regional and Global Land Data Assimilation Systems:
Innovations, Challenges, and Prospects. J. Meteorol. Res. 2019, 33, 159–189. [CrossRef]

31. Zhang, B.; Xia, Y.; Long, B.; Hobbins, M.; Zhao, X.; Hain, C.; Li, Y.; Anderson, M.C. Evaluation and comparison of multiple
evapotranspiration data models over the contiguous United States: Implications for the next phase of NLDAS (NLDAS-Testbed)
development. Agric. For. Meteorol. 2020, 280, 107810. [CrossRef]

32. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and
GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [CrossRef]

33. Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed
Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [CrossRef]

34. Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration
products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ.
2013, 139, 35–49. [CrossRef]

35. Anapalli, S.S.; Ahuja, L.R.; Gowda, P.H.; Ma, L.; Marek, G.; Evett, S.R.; Howell, T.A. Simulation of crop evapotranspiration and
crop coefficients with data in weighing lysimeters. Agric. Water Manag. 2016, 177, 274–283. [CrossRef]

https://doi.org/10.5194/hess-17-3707-2013
https://doi.org/10.1088/1748-9326/7/1/014026
https://doi.org/10.1002/2013JD020941
https://doi.org/10.1080/02626667.2019.1680845
https://doi.org/10.1002/2016WR020175
https://doi.org/10.1016/j.jag.2016.02.006
https://doi.org/10.1029/2010JG001566
https://doi.org/10.1029/2018JD028447
https://doi.org/10.1080/02626667.2017.1371848
https://doi.org/10.5194/essd-12-2555-2020
https://doi.org/10.1016/j.rse.2018.07.019
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.1016/j.rse.2015.05.013
https://doi.org/10.1002/wat2.1168
https://doi.org/10.1016/j.jhydrol.2012.12.039
https://doi.org/10.3390/rs12050878
https://doi.org/10.1002/2017WR021415
https://doi.org/10.1002/2014JD021814
https://doi.org/10.1007/s13351-019-8172-4
https://doi.org/10.1016/j.agrformet.2019.107810
https://doi.org/10.1002/2013WR014581
https://doi.org/10.1007/s10712-008-9037-z
https://doi.org/10.1016/j.rse.2013.07.013
https://doi.org/10.1016/j.agwat.2016.08.009


Water 2023, 15, 3449 17 of 18

36. Liu, X.; Xu, C.; Zhong, X.; Li, Y.; Yuan, X.; Cao, J. Comparison of 16 models for reference crop evapotranspiration against weighing
lysimeter measurement. Agric. Water Manag. 2017, 184, 145–155. [CrossRef]

37. Stanhill, G. Evapotranspiration. In Encyclopedia of Soils in the Environment; Hillel, D., Rosenzweig, C., Powlson, D., Scow, K.,
Singer, M., Sparks, D., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 502–506.

38. Chen, Z.; Shi, R.; Zhang, S. An artificial neural network approach to estimate evapotranspiration from remote sensing and
AmeriFlux data. Front. Earth Sci. 2012, 7, 103–111. [CrossRef]

39. Sihag, P.; Kumar, M.; Sammen, S.S. Predicting the infiltration characteristics for semi-arid regions using regression trees. Water
Supply 2021, 21, 2583–2595. [CrossRef]

40. Malik, A.; Tikhamarine, Y.; Sammen, S.S.; Abba, S.I.; Shahid, S. Prediction of meteorological drought by using hybrid support
vector regression optimized with HHO versus PSO algorithms. Environ. Sci. Pollut. Res. 2021, 28, 39139–39158. [CrossRef]

41. Sammen, S.S.; Ehteram, M.; Abba, S.I.; Abdulkadir, R.A.; Ahmed, A.N.; El-Shafie, A. A new soft computing model for daily
streamflow forecasting. Stoch. Environ. Res. Risk Assess. 2021, 35, 2479–2491. [CrossRef]

42. Abba, S.I.; Abdulkadir, R.A.; Sammen, S.S.; Pham, Q.B.; Lawan, A.A.; Esmaili, P.; Malik, A.; Al-Ansari, N. Integrating feature
extraction approaches with hybrid emotional neural networks for water quality index modeling. Appl. Soft Comput. 2021, 114,
108036. [CrossRef]

43. Ebtehaj, I.; Sammen, S.S.; Sidek, L.M.; Malik, A.; Sihag, P.; Al-Janabi, A.M.S.; Chau, K.-W.; Bonakdari, H. Prediction of daily water
level using new hybridized GS-GMDH and ANFIS-FCM models. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1343–1361. [CrossRef]

44. Hashim, B.M.; Al Maliki, A.; Alraheem, E.A.; Al-Janabi, A.M.S.; Halder, B.; Yaseen, Z.M. Temperature and precipitation trend
analysis of the Iraq Region under SRES scenarios during the twenty-first century. Theor. Appl. Climatol. 2022, 148, 881–898.
[CrossRef]

45. Mdegela, L.; Municio, E.; De Bock, Y.; Luhanga, E.; Leo, J.; Mannens, E. Extreme Rainfall Event Classification Using Machine
Learning for Kikuletwa River Floods. Water 2023, 15, 1021. [CrossRef]

46. Sihag, P.; Dursun, O.F.; Sammen, S.S.; Malik, A.; Chauhan, A. Prediction of aeration efficiency of Parshall and Modified Venturi
flumes: Application of soft computing versus regression models. Water Supply 2021, 21, 4068–4085. [CrossRef]

47. Alomari, N.K.; Sihag, P.; Sami Al-Janabi, A.M.; Yusuf, B. Modeling of scour depth and length of a diversion channel flow system
with soft computing techniques. Water Supply 2023, 23, 1267–1283. [CrossRef]

48. Sammen, S.S.; Ghorbani, M.A.; Malik, A.; Tikhamarine, Y.; AmirRahmani, M.; Al-Ansari, N.; Chau, K.-W. Enhanced Artificial
Neural Network with Harris Hawks Optimization for Predicting Scour Depth Downstream of Ski-Jump Spillway. Appl. Sci. 2020,
10, 5160. [CrossRef]

49. Granata, F.; Di Nunno, F.; Modoni, G. Hybrid Machine Learning Models for Soil Saturated Conductivity Prediction. Water 2022,
14, 1729. [CrossRef]

50. Ehteram, M.; Sammen, S.S.; Panahi, F.; Sidek, L.M. A hybrid novel SVM model for predicting CO2 emissions using Multiobjective
Seagull Optimization. Environ. Sci. Pollut. Res. 2021, 28, 66171–66192. [CrossRef]

51. Abba, S.I.; Abdulkadir, R.A.; Sammen, S.S.; Usman, A.G.; Meshram, S.G.; Malik, A.; Shahid, S. Comparative implementa-
tion between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen
concentration. Hydrol. Sci. J. 2021, 66, 1584–1596. [CrossRef]

52. Alali, Y.; Harrou, F.; Sun, Y. Unlocking the Potential of Wastewater Treatment: Machine Learning Based Energy Consumption
Prediction. Water 2023, 15, 2349. [CrossRef]

53. Ni, J.; Liu, R.; Li, Y.; Tang, G.; Shi, P. An Improved Transfer Learning Model for Cyanobacterial Bloom Concentration Prediction.
Water 2022, 14, 1300. [CrossRef]

54. Yang, F.; White, M.A.; Michaelis, A.R.; Ichii, K.; Hashimoto, H.; Votava, P.; Zhu, A.-X.; Nemani, R.R. Prediction of Continental-
Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine. IEEE Trans. Geosci.
Remote Sens. 2006, 44, 3452–3461. [CrossRef]

55. Ladlani, I.; Houichi, L.; Djemili, L.; Heddam, S.; Belouz, K. Modeling daily reference evapotranspiration (ET0) in the north of
Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative
study. Meteorol. Atmos. Phys. 2012, 118, 163–178. [CrossRef]

56. Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspi-
ration with Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [CrossRef]

57. Antonopoulos, V.Z.; Antonopoulos, A.V. Daily reference evapotranspiration estimates by artificial neural networks technique and
empirical equations using limited input climate variables. Comput. Electron. Agric. 2017, 132, 86–96. [CrossRef]

58. Adnan, M.; Latif, M.A.; Nazir, M. Estimating Evapotranspiration using Machine Learning Techniques. Int. J. Adv. Comput. Sci.
Appl. 2017, 8, 108–113. [CrossRef]

59. Carter, C.; Liang, S. Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing.
Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 86–92. [CrossRef]

60. Özgür, A.; Yamaç, S.S. Modelling of daily reference evapotranspiration using deep neural network in different climates. arXiv
2020, arXiv:2006.01760.

61. Wu, L.; Peng, Y.; Fan, J.; Wang, Y. Machine learning models for the estimation of monthly mean daily reference evapotranspiration
based on cross-station and synthetic data. Hydrol. Res. 2019, 50, 1730–1750. [CrossRef]

https://doi.org/10.1016/j.agwat.2017.01.017
https://doi.org/10.1007/s11707-012-0346-7
https://doi.org/10.2166/ws.2021.047
https://doi.org/10.1007/s11356-021-13445-0
https://doi.org/10.1007/s00477-021-02012-1
https://doi.org/10.1016/j.asoc.2021.108036
https://doi.org/10.1080/19942060.2021.1966837
https://doi.org/10.1007/s00704-022-03976-y
https://doi.org/10.3390/w15061021
https://doi.org/10.2166/ws.2021.161
https://doi.org/10.2166/ws.2023.026
https://doi.org/10.3390/app10155160
https://doi.org/10.3390/w14111729
https://doi.org/10.1007/s11356-021-15223-4
https://doi.org/10.1080/02626667.2021.1937179
https://doi.org/10.3390/w15132349
https://doi.org/10.3390/w14081300
https://doi.org/10.1109/TGRS.2006.876297
https://doi.org/10.1007/s00703-012-0205-9
https://doi.org/10.1007/s11269-015-0990-2
https://doi.org/10.1016/j.compag.2016.11.011
https://doi.org/10.14569/IJACSA.2017.080915
https://doi.org/10.1016/j.jag.2019.01.020
https://doi.org/10.2166/nh.2019.060


Water 2023, 15, 3449 18 of 18

62. Wu, T.; Zhang, W.; Jiao, X.; Guo, W.; Hamoud, Y.A. Comparison of five Boosting-based models for estimating daily reference
evapotranspiration with limited meteorological variables. PLoS ONE 2020, 15, e0235324. [CrossRef]

63. Shiri, J.; Zounemat-Kermani, M.; Kisi, O.; Mohsenzadeh Karimi, S. Comprehensive assessment of 12 soft computing approaches
for modelling reference evapotranspiration in humid locations. Meteorol. Appl. 2020, 27, e1841. [CrossRef]

64. Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review.
J. Hydrol. 2021, 598, 126266. [CrossRef]

65. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
66. Mostafa, R.R.; Kisi, O.; Adnan, R.M.; Sadeghifar, T.; Kuriqi, A. Modeling Potential Evapotranspiration by Improved Machine

Learning Methods Using Limited Climatic Data. Water 2023, 15, 486. [CrossRef]
67. Dimitriadou, S.; Nikolakopoulos, K.G. Multiple Linear Regression Models with Limited Data for the Prediction of Reference

Evapotranspiration of the Peloponnese, Greece. Hydrology 2022, 9, 124. [CrossRef]
68. Dimitriadou, S.; Nikolakopoulos, K.G. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the

Peloponnese Peninsula, Greece. Water 2022, 14, 2027. [CrossRef]
69. Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid.

Environ. 2013, 88, 130–140. [CrossRef]
70. Tegos, A.; Stefanidis, S.; Cody, J.; Koutsoyiannis, D. On the Sensitivity of Standardized-Precipitation-Evapotranspiration and

Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology 2023, 10, 64. [CrossRef]
71. Sang, L.; Zhu, G.; Xu, Y.; Sun, Z.; Zhang, Z.; Tong, H. Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic

Processes in the Arid Shiyang River Basin, Northwest China. Water Resour. Res. 2023, 59, 2. [CrossRef]
72. Li, J.; Wang, Z.; Wu, X.; Xu, C.; Guo, S.; Chen, X. Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized

Antecedent Precipitation Evapotranspiration Index. J. Hydrometeorol. 2020, 21, 891–908. [CrossRef]
73. Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W. Spatial and wavelet analysis of precipitation and river

discharge during operation of the Three Gorges Dam, China. Ecol. Indic. 2023, 154, 110837. [CrossRef]
74. Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A

review. Mar. Freshw. Res. 2023. [CrossRef]
75. Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping Winter Crops in China with Multi-Source Satellite Imagery and

Phenology-Based Algorithm. Remote Sens. 2019, 11, 820. [CrossRef]
76. Wu, B.; Quan, Q.; Yang, S.; Dong, Y. A social-ecological coupling model for evaluating the human-water relationship in basins

within the Budyko framework. J. Hydrol. 2023, 619, 129361. [CrossRef]
77. Granata, F.; Nunno, F.D. Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agric.

Water Manag. 2021, 255, 107040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0235324
https://doi.org/10.1002/met.1841
https://doi.org/10.1016/j.jhydrol.2021.126266
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.3390/w15030486
https://doi.org/10.3390/hydrology9070124
https://doi.org/10.3390/w14132027
https://doi.org/10.1016/j.jaridenv.2012.07.020
https://doi.org/10.3390/hydrology10030064
https://doi.org/10.1029/2022WR033519
https://doi.org/10.1175/JHM-D-19-0298.1
https://doi.org/10.1016/j.ecolind.2023.110837
https://doi.org/10.1071/MF22167
https://doi.org/10.3390/rs11070820
https://doi.org/10.1016/j.jhydrol.2023.129361
https://doi.org/10.1016/j.agwat.2021.107040

	Introduction 
	Materials and Methods 
	Study Area 
	Employed Data 
	Machine Learning Models 
	Evaluation of Models’ Performance 

	Results 
	Qarah-Tapah Station 
	Mandali Station 
	Kalar Station 
	Iraq–Iran Station 
	Adhim Station 

	Discussion 
	Conclusions 
	References

