
Citation: Shandu, I.D.; Atif, I. An

Integration of Geospatial Modelling

and Machine Learning Techniques

for Mapping Groundwater Potential

Zones in Nelson Mandela Bay, South

Africa. Water 2023, 15, 3447. https://

doi.org/10.3390/w15193447

Academic Editor: Jianjun Ni

Received: 7 July 2023

Revised: 29 August 2023

Accepted: 30 August 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

An Integration of Geospatial Modelling and Machine Learning
Techniques for Mapping Groundwater Potential Zones in
Nelson Mandela Bay, South Africa
Irvin D. Shandu and Iqra Atif *

Department of Geography Archaeology and Environmental Studies, University of Witwatersrand,
Johannesburg 2000, South Africa
* Correspondence: iqra.atif@wits.ac.za

Abstract: Groundwater is an important element of the hydrological cycle and has increased in
importance due to insufficient surface water supply. Mismanagement and population growth have
been identified as the main drivers of water shortage in the continent. This study aimed to derive a
groundwater potential zone (GWPZ) map for Nelson Mandela Bay (NMB) District, South Africa using
a geographical information system (GIS)-based analytic hierarchical process (AHP) and machine
learning (ML) random forest (RF) algorithm. Various hydrological, topographical, remote sensing-
based, and lithological factors were employed as groundwater-controlling factors, which included
precipitation, land use and land cover, lineament density, topographic wetness index, drainage
density, slope, lithology, and soil properties. These factors were weighted and scaled by the AHP
technique and their influence on groundwater potential. A total of 1371 borehole samples were
divided into 70:30 proportions for model training (960) and model validation (411). Borehole location
training data with groundwater factors were incorporated into the RF algorithm to predict GWPM.
The model output was validated by the receiver-operating characteristic (ROC) curve, and the models’
reliability was assessed by the area under the curve (AUC) score. The resulting groundwater-potential
maps were derived using a weighted overlay for AHP and RF models. GWPM computed using
weighted overlay classified groundwater potential zones (GWPZs) as having low (2.64%), moderate
(29.88%), high (59.62%) and very high (7.86%) groundwater potential, whereas GWPZs computed
using RF classified GWPZs as having low (0.05%), moderate (31.00%), high (62.80%) and very high
(6.16%) groundwater potential. The RF model showed superior performance in predicting GWPZs
in Nelson Mandela Bay with an AUC score of 0.81 compared to AHP with an AUC score of 0.79.
The results reveal that Nelson Mandela Bay has high groundwater potential, but there is a water
supply shortage, partially caused by inadequate planning, management, and capacity in identifying
potential groundwater zones.

Keywords: analytic hierarchical process; weighted overlay model; random forest; model validation

1. Introduction

Water scarcity has been identified as a major issue, especially in developing nations
where there are insufficient exploration methods and inadequate water supply to meet the
population demand [1]. South Africa has recorded inadequate water distribution with a
sharp increase in water shortage [2], where provinces such as Eastern Cape have declared a
surge in water demand since municipalities were confronted with the challenge of meeting
water users’ demands. Since surface water faces many challenges, including availability,
scientists have revealed that groundwater could play a significant role in meeting water
users’ demands.

Groundwater, which is usually defined as the water that exists in the pore spaces of
rock or soil [3], represents about 30% of the globe’s freshwater [4] and has a vital function
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in the hydrological cycle [5], especially in areas with limited access to freshwater, where it
serves as vital freshwater for both urban and rural communities. Groundwater normally
exists in the saturated zone where pore spaces are mostly filled with water. The unsaturated
zone (vadose zone) is where pore spaces are filled with both air water [6], where not all pore
spaces are filled with water. Groundwater is less subject to climate change and has been
shown to be an affordable choice for agriculture, industrial, domestic, and other uses [7].
However, groundwater is little utilized in most African countries due to its operational
costs, limited access to technology, lack of infrastructure, and lack of knowledge in terms of
its occurrence [8]. Africa possesses a substantial groundwater storage capacity, which is
roughly calculated to be 100 times more extensive than available renewable freshwater and
about 20 times larger than the water held in the surface dams or lakes [9]. The potential of
groundwater storage in Africa presents an opportunity to address the continent’s water
scarcity issues and underscores the importance of effective management and sustainable
use of this valuable resource [8].

The management and utilization of groundwater require a proper method that mea-
sures its quality, quantity and spatial variability, and these measures ensure groundwater
sustainability [10]. Extensive extraction of groundwater can lead to a decrease in the
groundwater level [11], and consequently, effective groundwater monitoring is essential in
areas where groundwater plays a central role in the local water supply: “Groundwater map-
ping serves as an indicator of the variability of groundwater throughout the region and the
likelihood of their presence” [6]. History has revealed that researchers have concentrated
on in situ measurements of groundwater potential mapping (GWPM), which are frequently
too expensive, time-consuming and impractical for large regional-scale research [12]. These
approaches to groundwater exploration include drilling, geophysics and hydrogeological
methods [10,13]. Although these methods were often too expensive and time-consuming,
they gave accurate and reliable results. As a result, Fajana [14] attempted to delineate
groundwater aquifer potential in Odo Ayedun in Nigeria based on electric resistivity and
porosity calculations, where they carried out a reconnaissance survey of the study area to
acquire coordinates and interpret vertical electric sounding data for subsurface geology.
The traditional methods have helped researchers in achieving aims that pertain to ground-
water delineation and have revealed a vital function in recognizing prospective areas for
borehole excavation: “The lack of adequate technology in identifying the groundwater po-
tential zones and proper planning remains to be a bottleneck in developing continents” [6],
especially in Africa [8].

As technology advances, researchers have proved geographical information systems
(GISs) and remote sensing (RS) to be more affordable and effective methods in GWPM
for sustainable planning, administration, and management of aquifers [11], since these
methods provide an ability to generate complex hydrological content for the spatiotemporal
domain [15] with crucial spatial analysis and predictive modelling equipment. Remote
sensing satellites often do not provide the details of groundwater variability by penetrating
deeply through the subsurface soil and geological media. Rather, they assist in explaining
features that could be associated with the availability of groundwater [16]. The GIS ap-
proach has been integrated with various techniques, such as multicriteria decision-making
methods including analytical hierarchical process (AHP) which is widely used for ground-
water mapping [2,5,8,17], and fuzzy-AHP [18,19], multi-influencing factor (MIF), fuzzy
logic (FL), certainty factor (CF) [20], weight of evidence (WOE) [21], evidence belief function
(EBF) [22] for landslide mapping, and index models (IMs) [17,23]. Other researchers, such
as Mogaji et al. [24], have also attempted to delineate GWPZs based on techniques such as
the Dempster–Shafer theory of evidence (DS-EBF) model, which revealed great accuracy.

The AHP technique, as explained by Abrar et al. [8], enables researchers to define
groundwater potential zones (GWPZs) by evaluating the importance of hierarchically
non-saturated criteria concerning those positioned at a high level. Based on the AHP
and GIS approach, Ndhlovu et al. [17] evaluated GWPZs in the Zambezi by assessing
the effect of various factors, such as lineament density, lithology, land use and land cover
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(LULC), soil properties, slope degrees, rainfall, and drainage density, and argued that these
factors have the potential in determining groundwater potential. Owolabi [25] attempted
to develop feasible research to demonstrate a GWPZ with a high accuracy in the Eastern
Cape, and claimed that the AHP model is vital to delineating GWPZs in semiarid regions.
Gintamo [15] applied GIS-based integrated Saaty’s AHP to derive GWPZs in Ethiopia’s
Bilate River Catchment by assessing the extent of impact and contribution of each factor
to groundwater potential. Moodley et al. [5] attempted to delineate GWPZs in KwaZulu
Natal (KZN), South Africa based on the AHP approach, claimed their study was the first
to establish GWPZs in KZN through an integration of GIS, remote sensing and AHP
techniques, and contended that the procedure of delineating GWPZs in South Africa is
largely characterized by obsolete, time-intensive, and expensive in situ methods [6].

Technological progress has shifted towards machine learning (ML) and deep learn-
ing (DL), and recent studies have employed these algorithms to accurately derive GW-
PZs [10,26,27] and improve model accuracy and efficiency [28]. The ML and DL techniques
rely heavily on the availability and quality of the dataset [29] since these techniques learn
from experience and identify hidden patterns [30]. Researchers have demonstrated the
efficiency of ML and DL algorithms in various applications including landslide suscep-
tibility mapping, floods, and groundwater prediction [6]. There are various types of ML
algorithms developed by researchers thus far, including support vector machine (SVM),
random forest (RF), boosted regression tree (BRT), classification regression tree (CRT), naïve
Bayes (NB), and DL algorithms, including convolutional neural network (CNN), artificial
neural network (ANN), recurrent neural network (RNN) and long short-term memory
(LSTM) [6,10,11,31]. For groundwater mapping, researchers have proved the efficiency of
the ML and DL algorithms BRT, RF and SVM [11], RF [27,32], CNN and SVM [33], logistic re-
gression [34], classification and regression tree (CART) [35], naïve Bayes [27], and LSTM [10]
for groundwater prediction. These techniques have allowed researchers to improve their
performance through the process of hybrid or model ensembles. Arabameri et al. [7] em-
ployed a new hybrid model that combined random subspace and multilayer perception
(MLP) and achieved very high accuracy. Studies such as Hasanuzzaman et al. [27] have
demonstrated the capability of ML by comparing RF with multicriteria AHP, where RF
derived GWPZs with high accuracy. Moreover, these techniques still require in situ mea-
surement as an appropriate method of model accuracy validation.

Despite these promising techniques for assessing groundwater resources, the spatial
variation of aquifers is recognized at the national level in South Africa, but less is known
about the specific case of Nelson Mandela Bay (NMB). Hence, the main objective of this
study was to delineate a groundwater potential zone map for Nelson Mandela Bay, South
Africa by integrating geographical information system, analytic hierarchical process, and
machine learning-based random forest models. The AHP technique was employed to
identify optimal parameters and assign weightage to criteria for groundwater potential
zone (GWPZ) assessment. The area under the receiver-operating characteristic curve
(AU-ROC) was utilized to assess the performance of both the AHP and RF groundwater
prediction algorithms. The study also mapped the spatial distribution of groundwater
in the NMB region. The groundwater potential zone map derived from this study is
anticipated to play a significant role in informing policymakers, water managers, and other
stakeholders involved in managing and preserving the region’s groundwater resources,
contributing to the long-term resilience and sustainability of South Africa’s water systems.

The introduction of this study provides an overview of the study area and sets forth
the study objectives. We explore materials and methods to detail the approach to delineate
groundwater potential mapping starting with the preparation of thematic factors. We then
apply the AHP technique to compute the weight and ranking of these factors, followed
by the construction of a weighted overlay model to generate an initial groundwater map.
The RF model enhances the accuracy and robustness of groundwater prediction. Section 3
showcases the spatial variability of thematic factors and the delineated groundwater poten-
tial zones. The model validation and comparison derive which model was most efficient.
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Finally, the discussion highlights the interpretation of the findings and their implications,
while the conclusion summarizes the key outcomes and suggests future research directions.

Overview of the Study Area

Nelson Mandela Bay (NMB) Metropolitan is a vibrant coastal city situated in the
Eastern Cape province of South Africa, covering an approximate area of 1959 km2 with its
central coordinates marked as 33◦48′ S, 25◦30′ E, as presented in Figure 1. NMB is situated
on the shores of the Indian Ocean and has a diverse culture and heritage, making it a
popular tourist destination, and it is considered an economic giant in the country. NMB
lies within a transitional climatic region, characterized by a blend of climatic influence
from the KZN summer rainfall and the Western Cape Mediterranean climate [6,36]. The
positioning of NMB between these climatic regions results in distinct weather patterns and
conditions. It features a warm-temperature climate, characterized by an average annual
temperature of approximately 22 ◦C and an average annual rainfall of 490 mm. “The
southern half of the district is dominated by fractured rocks, which consist of the Table
Mountain group” [6] (shale), Bokkeveld Group (shale and limestone), and a weak rock of
the Uitenhage Group (sandstone) [37].
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Figure 1. Nelson Mandela Bay district spatial location.

The district’s lithology consists of shale, sandstone, siltstone, limestone, and granite.
The eastern coastline of the district is characterized by a cape fold belt comprising fine-
grained quartzites derived from Table Mountain’s sandstone [36]. The soil composition
in NMB predominantly consists of Nanaga coastal formation, sandy loam soil, sandy
clay, loamy sand and sandy clay loam. Additionally, the upper Swartkops regions hold
agricultural significance due to their favorable soil characteristics [6,36]. NMB encompasses
extensive forested areas, sparsely vegetated regions, and agriculturally active zones, with
25% of the total area occupied by surface water bodies. The topography of the district is
shaped by marine strata filling a wide valley at the terminus of the east–west-oriented Cape
Fold Belt. The predominant topographical features consist of flat and gradually sloping
areas towards the sea. This configuration is likely influenced by a blend of marine and
continental erosion processes [36]. The mountains protrude in the western boundary of
the district.
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2. Materials and Methods
2.1. Methodological Approach

The research was segmented into four distinct phases: the initial phase was select-
ing and evaluating parameters, weighting and rating for GWPZ modelling; the second
phase was to develop the geospatial model for GWPZ delineation; the third phase was to
compare the efficiency of AHP and RF for GWPZ modelling through the area under the
receiver operating characteristic curve; and the fourth phase was to generate a groundwater
distribution map for NMB.

This study adopted a methodological approach followed by other studies [5,31,38],
presented in Figure 2. This study employed parameters that are frequently utilized in
other research studies, which encompass drainage density, precipitation, land use and
land cover (LULC), slope and topographic wetness index (TWI). Secondary data sources
such as soil texture, lithological properties, lineament density and borehole location were
also included. Other studies have used various parameters for ML algorithms including
aspect, distance from rivers, distance from the fault lines, profile and plan curvature [10,31].
The present study initially employed the AHP technique to delineate GWPZs through a
process of weighted overlay analysis. By extracting the value of GWPZs from boreholes
and parameter data, the study then tries to predict GWPZs using the RF algorithm. In
contrast, other studies attempted to predict GWPZs using borehole yield data obtained
from various boreholes. This approach differs from the current study, which sought to
overcome the scarcity of groundwater yield data by employing the AHP technique and RF
modelling to predict GWPZs.
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Figure 2. Comprehensive flowchart outlining the methodology for modelling of groundwater
potential zones (GWPZs) [5,31,38].

2.2. Preparation of Groundwater-Controlling Thematic Map

Table 1 provides an overview of the sources of groundwater-conditioning factors
employed in this study.
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Table 1. Groundwater-controlling factors’ data sources.

Parameter Data Source Sensor and Spatial Resolution

Boreholes Department of Water and Sanitation Vector Layer

Drainage Density USGS Earth Explore Shuttle Radar Topographic Mission (SRTM); 30 m (1 arc–s)

Precipitation TerraClimate; Climate Data Engine TerraClimate; ~4 km (1/24th degree) grid

LULC Sentinel Hub; Google Earth Engine (GEE) Processing Sentinel 2; [B2–B4, B8] 10 m & [B1, B5–B7, B8A, B9] 60 m

Slope USGS Earth Explore SRTM; ~30 m (1 arc–s)

TWI USGS Earth Explore SRTM; ~30 m (1 arc–s)

Soil International Soil Reference and Information Centre
(ISRIC)—Soil Data Hub Vector Layer

Lithology ISRIC Soil Data Hub Vector Layer

Lineament
Density Council of Geoscience Vector Layer

Precipitation is recognized as the principal contributor to groundwater recharge, es-
pecially to the water table and unconfined aquifer, and how its amounts, intensity, and
temporal and spatial distribution affect the rate of recharge and groundwater level fluc-
tuation [8]. In most regions, it has a direct correlation with groundwater recharge [12], as
not all water infiltrate constitutes groundwater. The research employs the TerraClimate
Sensor for acquiring precipitation data spanning from 2011 to 2021. The inverse distance
weighting (IDW) interpolation technique was then utilized to categorize the data into five
distinct classes, determined by natural breaks. The annual average precipitation was com-
puted as detailed in Equation (1). Data reliability was also studied by Hanchane et al. [39]
who observed that TerraClimate data effectively represent the altitudinal precipitation
gradient and average rainfall patterns, showing a peak in November and a trough in July,
which aligns with Mediterranean climate characteristics. NMB is also characterized by the
Mediterranean, so it is a reliable dataset for hydrometeorological studies.

P =
P1+P2+P3+. . . + Pn

N
(1)

P represents average annual precipitation depth, Px denote the average precipitation
value of each year, and N denotes the total number of years [6].

Land use and land cover factors encompassing agricultural areas, built-up regions,
and water bodies can exert an influence on groundwater availability. For instance, Razavi-
Termeh et al. [31] found that agricultural areas have a positive impact on groundwater
recharge, while built-up areas prevent rainfall from penetrating the ground. An integration
of LULC in groundwater prediction modelling provides a piece of evidence that human
activities can change the hydrological dynamics. Data from the Sentinel-2 satellite sensor
were employed to extract the LULC map, which had a spatial resolution of 10 m for B2–B4,
B8 and 60 m for B1, B5–B7, B8A, and B9 [6]. Training and testing datasets were collected on
the Google Earth Engine (GEE) as points. An accuracy of 90% was attained when classifying
the pixels in an image using support vector machine (SVM)-supervized classification for
the September 2022 image. The image was subdivided into several classes: water bodies,
sparse vegetation, sand, forest, built-up and bare land, and agricultural areas.

Lineaments, also known as faults, are characterized by straight or curvilinear patterns
that can be visible on the Earth’s surface and form significant landscape features [8]: “Lin-
eament density refers to the occurrence of faults and lineaments in the landscape” [6]. This
linear feature follows a straight or rectilinear alignment [6,40] and can be expressed as an
underlying geological media contact. Regions with high lineament density are considered
the crucial indicator of groundwater potential [11,12]. In this research, lineaments were
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derived from geological faults and contact lines sourced from the Council of Geoscience.
Lineament density was determined using Equation (2):

LD =
∑i=n

l=1 LI
A

(2)

where ∑i=n
l=1 LI represents a summation of individual lineament length (L) and A represents

the unit’s area/size (L2) [6].
The topographic wetness index describes how easily surface water gathers [16], and it

significantly affects the soil quality of a region [11]. The TWI displays a positive correlation
with groundwater availability, reflecting the connection between water accumulation at a
site and the gravitation forces that facilitate downstream water movement [10]. Equation (3)
was used to calculate the TWI from the SRTM of 30 m spatial resolution DEM, where TWI
was computed as the logarithmic ratio of the average gradient to the district area that
drains into a drainage network’s point. Previous studies have also proved the correlation
between groundwater potential and TWI [41].

TWI = In (fa/tan β) (3)

Here, fa denotes the flow accumulation and β represents the slope angle for a
specific point [6].

Groundwater recharge and drainage density (DD) are complexly related and affected
by various lithological structural factors [4,17]. Prior research has indicated that areas
characterized by low drainage density are more prone to groundwater recharge [8,17],
whereas other studies suggest that high drainage density constitutes a high potential
for recharge [5]. In this study, the inverse connection between drainage density and
groundwater was employed, where regions exhibiting very high DD imply rapid runoff
and drainage from the area [17]. DD was derived by processing Shuttle Radar Topographic
Mission (SRTM) DEM data with a spatial resolution of 30 m, utilizing the Strahler stream
order technique. Equation (4) was employed to compute the drainage density for each grid
cell. Subsequently, the DD values were categorized into five distinct groups using natural
break intervals.

DD =
total length of the river network

drainage area
(4)

The slope is a topographical characteristic that governs the interplay between in-
filtration and runoff rates. Regions characterized by low slope degree, flat terrain or
gentle inclines tend to exhibit a diminished hydraulic gradient, consequently facilitating
greater infiltration [4]. Steep slopes result in low groundwater recharge and a great surface
runoff [17]. The slope was calculated using Equation (5) in degrees, based on SRTM with a
30 m resolution DEM, the slope was then classified into five classes.

slope = tan−1(rise / run) × (180 /π) (5)

Here “rise” refers to the vertical elevation change between two points, while “run” per-
tains to the horizontal distance between those same points. The function Arctan is an inverse
function tangent, and π is the mathematical constant for pi, which is approximately 3.14159.

Lithological materials play a crucial role in holding and controlling water movement
and determining porosity, where lithological materials with a high porosity contribute
to an increase in groundwater storage, and materials with high permeability suggest
groundwater flow [8] and thus control the infiltration [12,17]. Porosity and permeability
are terms with a direct relationship with groundwater, where high porosity promotes water
storage and high permeability allows water to flow through rock or soil [4]. “The lithology
thematic map was derived from a geological map acquired from the Council of Geoscience
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for South Africa and it was then classified according to different geological domains” [6],
including limestone, sandstone, granite, shale, and siltstone.

Soil is a complex blend of organic matter, minerals, air, water and other decayed
materials and organisms that constitute the Earth’s surface [42]. Soil determines the surface
runoff and potential infiltration [11], and regulates the level of permeability [8]. Soils make
an ideal groundwater potential factor because they can easily permit the infiltration of
rainfall [8,41]. “The soil data were obtained from the International Soil Reference and
Information Centre (ISRIC) a World Soil data hub”. Soil media were classified according to
relative class, “with each having a different rating for groundwater recharge and contribu-
tion to groundwater including loamy sand, sand, sandy clay, sandy clay loam and sandy
loam”, while excluding its depth [6].

2.3. Computing Weight Using Analytic Hierarchy Process

The determination of weight was computed through the AHP, a methodology outlined
by Saaty that encompasses a hierarchical additive weighting technique for making decisions
involving multiple criteria. It uses the relative significance of each parameter to compare
with other parameters [8,27]. This technique helps in determining the relative weighting of
each parameter to identify GWPZs [5]. Ndhlovu et al. [17] used the AHP technique as a
forerunner method for groundwater potential delineation. “This technique can simplify the
complex choices to pairwise comparison by minimizing the biases in decision-making” [6].
AHP can be described in three levels: the “first level is based on building a fundamental
hierarchy for decision-making, the second level is based on indicating the parameter that
will be used to derive potential zones, and the third level: is based on alternatives in
selecting and classifying the potential zones for analysis” [6]. The present study subdivided
these levels into four phases: (i) the selection of groundwater potential factors, (ii) the
calculation of the pairwise comparison matrix, (iii) the estimation of relative weights by
standardizing the pairwise matrix, and (iv) assessing the consistency of the matrix using
weights [5,6]. Table 2 represents a scale of importance from 1 to 9 that has been used by
various studies [43] that assesses the importance of factors to groundwater potential [8],
with a the pairwise comparison matrix in Table 3.

Table 2. Saaty’s scale of importance measure for evaluating pairwise comparison matrix of parameters.

Parameter Data Source

1 Equal importance
2 Weak
3 Moderate importance
4 Moderate plus
5 Strong plus
6 Strong importance
7 Very strong importance
8 Very-very strong importance
9 Extreme importance

Table 3. Pairwise comparison matrix for the thematic layers used in the delineation of GWPZs based
on AHP.

Thematic
Layer Precipitation LULC LD TWI DD Slope Lithology Soil

Precipitation 1 5 2 5 4 5 2 5
LULC 1/5 1 1/5 1 1/3 1 1/3 1

LD 1/5 2 1 4 1 3 1/3 3
TWI 1/5 1 1/4 1 1/5 1/3 1/4 1/3
DD 1/4 3 1/3 5 1 1 1/3 1

Slope 1/4 1 1/3 3 1/3 1 1/4 1
Lithology 1 5 3 4 3 4 1 6

Soil 1/5 1 1/3 3 1 1 1/6 1
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Table 4. Standardized pairwise comparison matrix for the thematic layers in groundwater potential
zone delineation using AHP.

Thematic
Layer Precipitation LULC LD TWI DD Slope Lithology Soil Weight

Precipitation 0.30 0.26 0.27 0.19 0.37 0.31 0.43 0.27 30.0%
LULC 0.06 0.05 0.03 0.04 0.03 0.06 0.07 0.05 5.0%

LD 0.06 0.11 0.13 0.15 0.09 0.18 0.07 0.16 12.1%
TWI 0.06 0.05 0.03 0.04 0.02 0.02 0.05 0.02 3.7%
DD 0.08 0.16 0.04 0.19 0.09 0.06 0.07 0.05 9.4%

Slope 0.08 0.05 0.04 0.12 0.03 0.06 0.05 0.05 6.1%
Lithology 0.30 0.26 0.40 0.15 0.28 0.24 0.21 0.33 27.3%

Soil 0.06 0.05 0.04 0.12 0.09 0.06 0.04 0.05 6.5%

The weight of each parameter was computed by standardizing the matrix with the
total weight and pairwise comparison values between parameters, as presented in Table 4.

To ensure the reliability of the AHP and RF analysis, the weight of each parameter
was assessed by calculating the consistency ratio (CR). A consistency ratio value of 0.10
or lower indicates that the parameter weightings are consistent and acceptable, while a
CR greater than 0.10 indicates inconsistencies in the judgements made during the anal-
ysis. In such cases, it is necessary to review and adjust the judgement to resolve any
inconsistency [8]. This approach helps to identify any sources of inconsistency in the
decision-making process and correct them accordingly. We calculated the consistency index
(CI) using Equation (6) and determined it to be 0.035, signifying a strong level of consistency
in the pairwise comparisons.

CI = (λmax − n)/(n − 1) (6)

In Equation (6), n represents the total number of groundwater factors being compared
(n = 8) and λmax signifies the maximum principal eigenvalue of the pairwise comparison
matrix (λ = 8.25), which was calculated through the average sum and weight of the stan-
dardized matrix [6]. According to Equation (7), the corresponding CR value was calculated.

CR = CI/RI (7)

In Equation (7), RI refers to the random index, which was set at 1.41, as determined
from Table 5 for the size of matrix 8 in this case. The corresponding CR value obtained was
0.025, which is less than 0.10 and is acceptable.

Table 5. Random consistency matrix and ratio for the correspondence number of groundwater-
controlling parameters used for GWPM.

N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
Note: RI is Saaty’s random index or random consistency values for the matrix [5].

2.4. Normalizing Weight and Ranking of the Feature of the Subclasses

“The ranking of parameters helps to integrate information by expert judgement based
on the degree of the influence on groundwater potential” [6]. Table 6 presents the ranking
of each parameter subclass, where the ranking was based on user knowledge and previous
studies [5,10,17]. The measure of importance for the subclass to GWPZs ranged from very
low to very high for each thematic layer, where very low are those considered not important
for groundwater potential.
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Table 6. Groundwater-controlling parameters thematic layer relative weighting and ranking based
on AHP technique [5,6,17,23].

Thematic Layer Classes Rank Assigned Rank Weight

Precipitation (mm)

384–425 3 Very low

30.0%
425–447 4 Low
447–475 5 Moderate
475–508 6 High
508–546 7 Very high

LULC

Agriculture land 6 High

5.0%

Bare land 1 Very low
Forest 5 Moderate
Sand 6 High

Sparse vegetation 2 Low
Built-up 1 Very low

Water bodies 7 Very high

LD (km/km2)

0.00–0.15 2 Very low

12.1%
0.15–0.38 3 Low
0.38–0.57 4 Moderate
0.57–0.77 5 High
0.77–1.27 6 Very high

TWI

03–6.5 1 Very low

3.7%
6.5–8.1 3 Low
8.1–10.4 4 Moderate

10.4–13.5 5 High
13.5–23.5 6 Very high

DD (km/km2)

0.0–0.5 6 Very high

9.4%
0.5–0.8 5 High
0.8–1.1 4 Moderate
1.1–1.4 3 Low
1.4–1.9 1 Very low

Slope (◦)

0–3 6 Very high

6.1%
3–7 5 High

7–13 4 Moderate
13–22 3 Low
>22 2 Very low

Lithology

Limestone 4 Moderate

27.3%
Sandstone 3 Low

Seychelles/granite 1 Very low
Shale 5 High

Siltstone 6 Very high

Soil

Loamy sand 7 High

6.5%
Sand 9 Very high

Sandy clay 4 Very low
Sandy clay loam 5 Low

Sandy loam 6 Moderate

2.5. Weighted Overlay Model

Ultimately, the study process concluded by employing weighted overlay tools to
superimpose groundwater thematic factors, resulting in the delineation of a groundwater
potential zone map of the study region. The groundwater potential index (GWPI) was
calculated using Equation (8), and groundwater was classified based on its potential,
resulting in four distinct zones: very high, high, moderate, and low groundwater potential:

GWPI = Pw × Pr + LULCw × LULCr + LDw × LDr + TWIw × TWIr + DDw × DDr + Slw × Slr + Liw × Lir + Sow × Sor (8)
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where GWPI denotes the groundwater potential zone index, Pr denotes reclassified pre-
cipitation, LULCr denotes reclassified land use and land cover, LDr denotes reclassified
lineament density, TWIr denotes a reclassified topographic wetness index, DDr denotes
a reclassified drainage density, Slr denotes a reclassified slope, Lir denotes a reclassified
lithology, and Sor denotes reclassified soil. The indexed Pw, LULCw, LDw, TWIw, DDw,
Slw, Liw and Sow represent the normalized weighting for each thematic factor [44].

2.6. Random Forest

Nonparametric random forest (RF) has become widely popular and is extensively
utilized for tasks encompassing both classification and regression [45]. RF stands as an
ensemble of ML algorithms [11], originating as an extension of the classification and re-
gression tree algorithm (CART) [46]. Hence, it operates as a tree-based ML technique often
employed to analyze the intricate relationship among groundwater-influencing factors,
owing to its robust and accurate performance [27]. The model consists of the same building
process as CART, except that it built many trees, which results in a “forest” [42]. It can
handle data from various measurements with no statistical assumptions [45]. The RF model
is popular due to its ability to overcome what is known as the “black box”, which is often a
limitation of other ML techniques such as ANN, and it is robust in overcoming any out-
liers [45]. Distinct from decision tree (DT), RF constitutes an assemblage of multiple trees
that collectively generate predictions by assessing a randomly sampled vector drawn with
the same distribution across all forest trees [46]. Additionally, a randomized subset of vari-
ables is employed to partition each tree [45]. In the case of RF, each tree is created through
bootstrap sampling, reserving one-third of the total dataset for model validation, referred
to as the out-of-bag (OOB) sample [11]. The OOB sample serves as an unbiased measure
of the model’s generalization error [45,46]. The omitted OOB samples are subsequently
predicted using the bootstrap samples, and the aggregation of OOB predictions across all
models’ trees yields the calculation of mean square error (MSEOOB) [11,42]. The learning
error Eoob was calculated as expressed in Equation (9), integrating the mean square error of
each model decision tree alongside their corresponding OOB samples for evaluation.

EOOB =
1
n

n

∑
i=1

(y i − ŷi)
2 (9)

Here, “n” represents the total count of OOB samples, “yi” signifies the observed
output, while “ ŷi” stands for the model output of RF generated during training [11]. The
model output is the average result of all trees [45]. The RF model is defined by two key
parameters: “mtry”, which signifies the count of factors employed for constructing each
tree, and “ntree”, denoting the overall number of trees created [45]. RF has a benefit over
other ML techniques such that (i) it is capable of managing substantial volumes of data
with elevated dimensionality, (ii) it “avoids overfitting of a dataset in the model”, (iii) it
“does not require pre-assumptions regarding independent variables”, and (iv) it does not
require pre-existing data for rescaling and transformation [6,11,27,45]. Overall, the RF
model is more flexible than other algorithms such as SVM, robust against overfitting, and
makes no statistics assumptions, making it a valuable algorithm in various data-intensive
applications [45]. In our study, the notation for predictive variables is log 2 (M + 1), where
M signifies the total input count utilized by the algorithm [27]. The mean prediction of the
tree was calculated using the formulation in Equation (10).

Gp =
1
k ∑ kthvresponse (10)

Here, Gp stands for groundwater prediction and “k” indicates the individual trees
within the method [27].

A dataset comprising 1371 boreholes, inclusive of monitoring station data from the
Department of Water and Sanitation Services (DWS), was partitioned into a 70:30 ratio,
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resulting in 411 samples allocated for validation and 960 samples allocated for training
the model. This borehole dataset consists of extracted values at points from GWPM of
weighted overlay and single parameters. The training and prediction of groundwater
potential zones using random forest were carried out using the “randoForest” package
within RStudio. The RF model was trained using 200 trees and the mtry = 5. The values of
“ntrees” and “mtry” were chosen based on the empirical testing and optimization of the
model performance. The more accurate model training resulted in an out-of-bag estimate
error of 9.06%. This means that the model is expected to incorrectly predict approximately
9.06% of the observations in the dataset that it has not seen during the model training.
However, it is necessary to evaluate the model performance in predicting groundwater
potential to give a more reliable estimate.

2.7. Validation and Model Comparison for Groundwater Potential Zone

The validation of the groundwater potential zone map is a crucial step [27]. This study
utilizes the area under the receiver-operating characteristic (AU-ROC) curve, a metric that
assesses the model performance in diagnostic tests and is presented graphically [11]. The
model’s effectiveness is indicated by area under the curve (AUC) scores, as AUC methods
evaluate the binary classifier’s ability to accurately distinguish between classes. The model
can distinguish negative and positive classes if the AUC score is higher. An AUC value
of 1 signifies that the model can perfectly differentiate between negative and positive
values [27], whereas an AUC of 0 indicates that the classifier can accurately predict all
negative values as positive, and the opposite is true [11]. The ROC curve visually plots
1-specificity (false-positive rate) on the X-axis against the sensitivity (true-positive rate)
on Y-axis, illustrating the balance between true-positive rate (TPR) and false-positive rate
(FPR) [38]. Sensitivity and specificity can be calculated using Equations (11) and (12).

Sensitivity =
No of True Positive

No of True Positive + No of False Positives
(11)

Specificity =
No of True Negative

No of True Positive + No of False Positives
(12)

where a true positive refers to those GWPZs correctly classified as GWPZs; false negative
are non-GWPZs incorrectly classified as GWPZs; true negative are non-GPZs correctly
classified as non-GWPZs; and false negative are those GWPZs incorrectly classified as
non-GWPZs [38].

3. Results
3.1. Groundwater-Controlling Factors Spatial Variation

Precipitation in NMB is not evenly distributed, with a range of 162 mm from the
lowest precipitation of 384 mm in the north to the highest precipitation of 546 mm in the
south. This reveals that precipitation increases towards the south, as presented in Figure 3a.
Land Use and Land Cover in NMB were classified as surface water bodies (1.26%), built-up
areas (9.77%), sparse vegetation (35.42%), and (1.27%) which consists of mainly sand beach,
forest (36.41%), bare land (3.83%), and agricultural land (12.05%). The district is largely
covered in forest and sparse vegetation and with a high probability of finding groundwater
presence in the agricultural regions, as presented in Figure 3b. Lineament density in NMB
has a range of 1.27 km/km2, with a very high lineament density of 0.77–1.27 km/km2

and least lineament density of 0.00–0.15 km/km2. The area of the NMB dominated by
very low lineament density accounts for (28.15%), which could indicate a low probability
of groundwater presence. Anticipated high-permeability zones or areas with significant
groundwater potential are situated in the northern and central parts of the district, as
illustrated in Figure 3c.
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The topographic wetness index in NMB ranges between 3 and 23.5. The district is
least occupied by very high TWI, which account for 3.17% of the total area, and heavily
occupied by low TWI, which account for 39.41% of the total area. Regions with low TWI
indicate the potential for soil moisture accumulation, as presented in Figure 3d. Drainage
density has a range of 1.9 km/km2, with a very high drainage density of 1.4–1.9 km/km2

(3.85%) and a very low drainage density of 0.00–0.5 km/km2 (16.03%). Therefore, a large
portion of NMB is dominated by moderate drainage density (34.05%) and this portion has
moderate GWP, as presented in Figure 3e. The slope ranges between 0◦ of the flat, which
suggests a long water residual time, to a very steep slope at 55◦, which suggests that water
flows down quickly with less residual time. NMB is dominated by a flat slope that accounts
for approximately 52.80% of the total area, suggesting a high chance of groundwater
occurrence, as presented in Figure 3f. The lithological property of NMB was classified
as having the Table Mountain group, Bokkeveld group, and weak rock of the Uitenhage
group, which consists of limestone, sandstone, Seychelles, shale, and siltstone. Siltstone
makes up most of the district’s central region (19.52%), while sandstone dominates the
district’s southern and western portions (43.69%), as presented in Figure 3g. The resulting
soil map highlights that the southern and northern areas of the district predominantly
consist of sand (58.92%), suggesting a substantial potential for groundwater recharge with
a low water holding capacity. Other portions of the district are primarily composed of
sandy loam, loamy sand, and sandy clay, and the least of sandy clay loam, as presented
in Figure 3h.

3.2. Groundwater Potential Zone Mapping

Both AHP and RF models were applied to derive GWPZs in Nelson Mandela Bay,
where they both considered four zones. Nevertheless, variations in spatial area coverage
can be observed among the categories in the two models. Groundwater potential zones,
defined through the analytical hierarchical process, were established using weighted over-
lay geospatial techniques. The outcome reveals that the district primarily consists of low
(2.64%), moderate (29.88%), high (59.62%), and very high (7.86%) groundwater potential.
Results reveal that NMB is dominated by high GWPZs that are dominant in the southern
part of the district,. as presented in Figure 4a.
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Random forest algorithm reveals that the district predominantly consists of low
(0.05%), moderate (31.00%), high (62.80%), and very high (6.16%) groundwater poten-
tial. Results reveal that an extensive region of NMB is occupied by high GWP that is
largely dominant in the southern part of the district, as presented in Figure 4b. The spatial
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contrast evident in Figure 4a,b underscores the discrepancies in the distribution of ground-
water potential zones arising from the two modelling techniques. RF showed improved
performance in predicting GWPZs compared to AHP.

3.3. Validation of Groundwater Potential Zone Models

The AUC results for both RF and AHP show that the iteration values are 0.81 and 0.79,
respectively, which indicate the model’s prediction accuracy as 81% and 79%. Both models
used in this study are fairly accurate and capable of predicting groundwater potential
zones. The ROC-AUC plot suggests that both models have similar predictive performance
in terms of sensitivity, specificity, and accuracy in predicting groundwater potential in
NMB, as presented in Figure 5.
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4. Discussion

The results of this study reveal that NMB has predominantly moderate to high ground-
water potential zones, which is why most of the boreholes exist in these zones of the district,
as shown in Table 7. Such congruence in performance with previous studies is indica-
tive of the robustness and reliability of the AHP and RF models in accurately delineating
groundwater potential [10,38]. The result suggests a high potential of groundwater in
NMB and aligns with previous studies that have argued the high potential of groundwater
in southern Africa by Ndhlovu et al. [17]. This absence of borehole yield data poses a
limitation in fully assessing the accuracy of the models’ predictions, underscoring the
importance of more comprehensive data collection for future research. The distribution
of boreholes in NMB in Table 7 shows that out of 1371 boreholes, most of the boreholes in
NMB are found in regions of high groundwater potential.

Table 7. Spatial locations of borehole and potential of groundwater zones delineated by RF and AHP
models in Nelson Mandela Bay.

Code Class
AHP-GWPZs RF-GWPZs

Boreholes Boreholes

1 Low 3 1
2 Moderate 205 198
3 High 1000 1008
4 Very High 163 164
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The study findings indicate that boreholes can be drilled in NMB with a high prob-
ability of success, as supported by the study models. The groundwater potential map
serves as a reliable method that can guide borehole placement; however, an accurate in
situ method of validation is necessary. The outcomes of this study align with the obser-
vations made by Ndhlovu et al. [17], which emphasize that the application of geospatial
techniques for groundwater potential assessment has demonstrated its utility as a repli-
cable model across southern Africa and other global regions. Such an approach offers
straightforward and dependable results. This study closely aligns with the research con-
ducted by Moodley et al. [5] and shares similar objectives of contributing to a growing
body of knowledge. GWPZs were derived in KwaZulu Natal, and revealed that KZN is
dominated by moderate GWPZs, and Owolabi [25] where groundwater potential mapping
in Buffalo Catchment was derived. Likewise, earlier research has established the reliability
and endorsed the use of GIS and remote sensing methodologies for groundwater [5,17].

These maps provide valuable insights that can aid decision-markers, water managers,
and other stakeholders involved in formulating effective policies and strategies for sus-
tainable groundwater resources management, ultimately contributing to the long-term
resilience and sustainability of South Africa’s water systems.

Although this study yielded promising outcomes, it is important to acknowledge
certain limitations, such as insufficient data regarding groundwater level or specific yield
availability. Other researchers have recognized this limitation [47]. To mitigate this con-
straint, this study utilized the AHP technique for GWPZ delineation through weighted
overlay analysis. Additionally, values of GWPZs were extracted from borehole and pa-
rameter data to predict potential zones using RF. As a result, the validation of GWPZs
should be improved by using drilling data to better evaluate the reliability of the models.
Furthermore, a groundwater potential map was created using satellite images, district-
specific hydrogeological data, and other online resources. Some GIS datasets, such as
those for lithology and soil, were in vector format, while others were in raster format. The
vectorization and rasterization processes involved showed errors in a particular GIS system,
changing the spatial extent of layers. The lithology and soil datasets were limited in terms
of depth.

5. Conclusions

In the present study, the primary objective was to predict GWPZs using a combi-
nation of geographical information systems-based AHP and machine learning-based RF
techniques. Various hydrological, topographical, remote sensing-based and lithological fac-
tors were employed as the groundwater-controlling factors, which included precipitation,
land use and land cover, lineament density, topographic wetness index, drainage density,
slope, lithology, and soil properties. These factors were weighted and scaled by the AHP
technique and their influence on groundwater potential. A total of 1371 borehole samples
were divided into 70:30 proportions for the model training (960) and model validation
(411). Borehole location training data with groundwater factors were incorporated into
the RF algorithm to predict GWPM output, validated by ROC, and model efficiency was
compared by AUC score. The study results indicate that RF outperformed AHP, where
AUC scores were 0.81 and 0.79, respectively. Both models categorized GWPZs into four
distinct classes representing low, moderate, high and very high potential. The summarized
outcome indicates that AHP’s GWPZ classification encompasses low (2.64%), moderate
(29.88%), high (59.62%) and very high (7.86%) groundwater potential. On the other hand,
RF-derived GWPZ categories were low (0.05%), moderate (31.00%), high (62.80%) and very
high (6.16%) groundwater potential. Collectively, the study findings unveil that NMB is
characterized by prevalent moderate to high GWPZs. Given the model’s low cost and
ability to help with GWPZ prediction efficiency, groundwater potential mapping must be
used to define GWPZs. The study results can be used for strategic sustainable planning of
groundwater exploration, and we have addressed the GWPZs in the NMB successfully.
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While the current study has successfully developed GWPM using AHP and RF models
in NMB, there is a promising avenue for future research that can enhance the reliability
and accuracy of groundwater predictions. Embracing ML algorithms and integrating
reliable geophysical data and remote sensing information can lead to robust and accurate
groundwater prediction in NMB.
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