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Abstract: Assessing the impacts of climate change and land use/land cover changes on water
resources within a catchment is essential because it helps us understand how these dynamic factors
affect the quantity, quality, and availability of freshwater. This knowledge is crucial for making
informed decisions about water management, conservation, and adaptation strategies, especially in
regions facing increasing environmental uncertainties and challenges to water resource sustainability.
In Pakistan’s Kunhar River Basin (KRB), this investigation explores the potential effects of shifting
land use/land cover (LULC), and climate on stream flows. The SWAT (Soil and Water Assessment
Tool), a semi-distributed hydrological model, and the most recent Coupled Model Intercomparison
Project phase 6 (CMIP6) dataset from multiple global climate models (GCMs) were used to evaluate
these effects. The temperature and precipitation data were downscaled using the CMhyd software;
for both shared socioeconomic pathways (SSP2 and SSP5), the top-performing GCM out of four was
required to produce downscaled precipitation and temperature predictions while taking future land
use characteristics into account. The output from the chosen GCM indicated that by the conclusion
of the 21st century, relative to the reference period (1985–2014), the study area’s average monthly
precipitation, highest temperature, and lowest temperature will be increasing. Precipitation is
anticipated to increase between 2015 and 2100 by 20.5% and 29.1% according to the SSP2 and SSP5
scenarios, respectively. This study’s findings, which emphasize the need for project planners and
managers taking into account the effects of climate and land cover changes in their management
techniques, show that climate change can have a significant impact on the changing seasons of flows
in the Kunhar River basin.

Keywords: land use change; climate change; streamflow; SWAT; CA_MARKOV; GCMs; CMIP6; Pakistan

1. Introduction

Human progress has recently experienced a significant acceleration, which has led
to notable changes in land cover and climate [1]. The climate and LULC changes have
the potential to have a domino effect on many different aspects, such as crop productivity,
hydropower generation, and the hydrological cycle [2,3]. Global warming is to blame for
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the harsh climatic and weather conditions [4,5]. The Intergovernmental Panel on Climate
Change (IPCC) concluded that greenhouse gas (GHG) emissions from the actions of hu-
mans have increased to previously unheard-of levels, which is causing climate change.
These emissions, considered the highest ever recorded, have a significant impact on meteo-
rological parameters [6,7]. The temperature of Earth has risen by 0.85 ◦C between 1880 and
2012, and this increase has been accompanied by changes in precipitation patterns. These
variations in precipitation and temperature are a result of the environment’s increasing
GHG concentration. Changes in temperature and precipitation have a direct effect on
quantity, speed, and hour of the peak river flow [8]. Along with other essential aspects
of the flow regime, these modifications also have an impact on peak and baseline flow
dynamics [9]. The hydrological cycle is significantly affected by changes in climate and
LULC [10,11].

Diverse LULC conditions lead to variations in the losses encountered during
precipitation–runoff events. Evaporation, interception, evapotranspiration, infiltration,
transpiration, and watershed leakage are only a few of the factors that make up these
losses. Various LULC scenarios show various loss patterns in the transformation of rainfall
into runoff events [12]. According to Rahman [8], the variations in losses brought on
by different LULC conditions have an impact not only on the total amount of runoff
produced during rainfall events but also on flow velocity and the amount of time that it
takes for surface water flow to reach its peak. The exponential growth of the population
has a notable impact on land conversion, particularly the transformation of forested areas
into non-forest or agricultural zones [13–15]. Therefore, it is essential to put into practice
appropriate planning techniques for climate as well as land use variations to increase
the catchment regions’ capacity to sustain water supplies, meet a variety of needs, and
eventually benefit the larger community.

Researchers have been actively involved in measuring each impact on the availability
of water and flow characteristics in order to understand how these factors affect them.
Individual studies [9,16–21] have looked into the consequences of LULC changes. Similar
to this, a few studies [22–25] have concentrated on examining the influence of changing
climate on runoff. However, there has not been much discussion on the combined influence
of CC and LULC in the literature [8,26–32].

The hydrological system and a variety of linked operations, including the generation
of hydroelectricity, the management of water resources, and tourism-related activities,
depend heavily on mountainous watersheds [33]. The assessment of climate change and
land use/land cover change impacts on water resources within a catchment is of paramount
importance in contemporary environmental research. This multifaceted examination is
indispensable for comprehending the intricate dynamics that underlie water resource
availability and quality. It plays a pivotal role in developing strategies for sustainable
water management, conservation, and adaptation, particularly in regions grappling with
escalating environmental uncertainties. However, despite its critical relevance, there exists
a notable research gap in this domain, with a limited number of comprehensive studies
conducted to date. This research gap underscores the urgency of further exploration
and investigation in order to fill critical knowledge voids and inform evidence-based
decision making for the preservation and efficient utilization of water resources in the
face of evolving climate and land use patterns. Particularly, the Kunhar River basin in
Pakistan’s north has significant hydropower, water resource, and tourism potential [2]. As
a result of the Kunhar river basin’s major contribution to the water, energy, agriculture, and
tourist industries in Pakistan, this study concentrates on this. In the Kunhar river basin,
only a limited number of studies [24,34,35] have observed the influence of CC on stream
flows. Noteworthy is the fact that no earlier research has been performed to evaluate the
combined effects of climatic and LULC changes on discharge in this basin. The Sustainable
Development Goals (SDGs) are directly line with the goals of this research, especially SDG
6.6.1, which deals with the evolution of water-related ecosystems. Additionally, it helps
with the assessment of land degradation in relation to overall land coverage (SDG 15.3.1)
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and the incorporation of climate change measures into initiatives, plans, and planning
(SDG 13.2) [36,37].

In this research, several hypotheses were posited to guide our investigation into the
impacts of climate change and land use/land cover changes on water resources within the
Kunhar River basin. Firstly, it was hypothesized that the basin will undergo alterations in its
hydrological regime, including changes in precipitation patterns, increased temperatures,
and shifts in runoff events as climate change intensifies. Secondly, evolving land use
and land cover patterns within the catchment are expected to impact both the quantity
and quality of water resources, influencing surface and groundwater availability. It was
further hypothesized that these combined effects of climate change and land use changes
will challenge the sustainability of water resources in the Kunhar River basin, potentially
affecting water availability for various purposes. Additionally, ecological consequences
were anticipated, with impacts on aquatic habitats, biodiversity, and overall ecosystem
health. Lastly, it was hypothesized that our integrated assessment of these impacts will
provide invaluable insights for policy makers, resource managers, and local communities,
facilitating the development of effective strategies for resilient water resource management
and conservation in the face of ongoing environmental changes.

The objectives of this study were established in light of the knowledge gap that
exists and the importance of this study in relation to various Sustainable Development
Goals (SDGs) are as follows: (a) to investigate the LULC temporal variations across KRB,
(b) to examine the influence of both LULC alterations and CC on KRB’s streamflow. To
accomplish these goals, two distinct land cover maps were examined using Arc GIS 10.5
software, and the impact of LULC modifications on streamflow was evaluated using the
SWAT model. Hydro-climatic data from various sources were compiled using the SWAT
model to investigate influence of CC on stream flows. The devoted section contains a
thorough explanation of methodology, while section on hydrological modelling contains
thorough information about the hydrological model used.

2. Materials and Methods
2.1. Study Area

The geographical coordinates of Kunhar watershed covering an area of approximately
2359 km2 are displayed in Figure 1. The river originates from the Babusar Top and even-
tually joins the River Neelam [38]. The Kunhar River’s main stretch extends for 141 km
till it reaches Ghari Habibullah. The elevation map of the basin, as illustrated in Figure 1,
demonstrates a significant elevation difference between the lowest and highest points,
amounting to approximately 4388 m. The Kunhar watershed has a slope that varies from
the basin’s average slope of about 53% to other slope characteristics.

The Kunhar River basin, located in Pakistan, is a region of remarkable geographical
and hydrogeological diversity. The Kunhar basin is located in a humid, subtropical zone. In
the present study, hydro-climatic data were processed for the period of 1961–2000 to extract
some basic information about the hydro-climatic conditions in the basin. The average
annual temperature in the basin is about 13 ◦C (2–23 ◦C). February is the coldest and July
is the warmest month here. This was calculated from the data of the Naran and Balakot
climate stations available for the period of 1961–2000. At Balakot, located in the lower part
of basin, minimum temperature ranges from 2 ◦C (January) to 23 ◦C (July) and maximum
temperature from 14 ◦C (January) to 35 ◦C (June). At Naran, located in the upper part
of the basin, minimum temperature ranges from −9 ◦C (February) to 13 ◦C (July) and
maximum temperature from −1 ◦C (February) to 23 ◦C (July). The Kunhar basin has
an annual precipitation of about 1500 mm with two peaks. The first peak occurs in the
upper part of the basin in the month of March because of the Western Disturbances (WDs)
system in winter. Most parts of Pakistan, and its northwestern parts primarily, obtain
precipitation due to WDs. WDs are caused by depressions over Mediterranean regions,
resulting in precipitation over central and southwest Asia in the months of December to
March. The second peak happens in the month of July and in the lower parts of the basin
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due to the summer monsoons, which are the result of the saturated south western winds
from the Bay of Bengal and Arabian Sea. It can be concluded that the monsoons do not
reach the upper part of the basin, although WDs affect the whole basin. On the other hand,
there is only one big streamflow peak, both in the upper (Naran) and lower parts (Gari
Habibullah) of the basin, that occurs in the month of July. This means the precipitation
from December to March (winter) accumulates as snow cover, especially in the upper parts
of the basin, and then starts melting after March and lasts till July when it overlaps with
monsoon precipitation and results in one big peak. An average flow of about 1350 mm
(103 m3/s) has been measured at Gari Habibullah near the mouth of the basin for the period
of 1961–2000.The topography of the basin is equally striking, with the northern portion
dominated by the towering Himalayan and Karakoram mountain ranges, including the
imposing Nanga Parbat, which stands at an elevation of 8126 m. This mountainous region
is the source of numerous tributaries, glaciers, and snowfields that feed into the Kunhar
River. As one ventures southward, the terrain gradually becomes less steep, giving way to
fertile valleys and plateaus that are conducive to agriculture and human settlement.
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In terms of hydrogeology, the Kunhar River basin’s complexity is influenced by its
geological diversity. The basin comprises a mosaic of sedimentary, metamorphic, and
igneous rock formations. This geological heterogeneity results in a multifaceted aquifer
system, with groundwater storage and flow patterns varying across the basin. Geological
fault lines and fractures further complicate the movement of groundwater. A significant
hydrological feature is the presence of glaciers in the upper reaches of the basin. These
glaciers, which melt during the warmer months, contribute substantially to the flow of the
Kunhar River and its tributaries, impacting the basin’s overall hydrology. Together, these
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factors make the Kunhar River basin an intriguing area of study for assessing the effects of
climate change and land use/land cover changes on its valuable water resources, given its
dynamic environment and wealth of geological and hydrological data.

2.2. Dataset
2.2.1. Soil Classification

The input of soil classifications is regarded as an essential component for building
the hydrological model (SWAT). The model depends on a number of soil surface parame-
ters, including texture, biochemical potentials, and physical features including hydraulic
conductivity, bulk density and available moisture content (AMC). The soil map of Kunhar
basin was created using IPCC Global Soil Classification dataset. There are four major soil
types in the basin, with Gleyic Solonchaks making up the majority (76%) of the basin’s
surface. Figure 2 shows spatial distribution of soil categorization has been produced using
the SWAT model. Table 1 and Figure 2 provides more information on these soil classes,
particularly their given names and distribution across the study area.

Table 1. Description and spatial distribution of soil classes over Kunhar River basin.

Sr No. Soil Classes Area Covered (km2) Percent Area

1 Calcaric Phaoeozms 339.4 13.3

2 Calcic Cherenozems 224.3 8.8

3 Gleyic Solonchaks 1944.7 76.0

4 Gelysol 49.7 1.9
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2.2.2. GCM-Based Climate Data

The CMIP6 was utilized to gather the precipitation (Pr), minimum temperature (Tmin)
and maximum temperature (Tmax) data for four GCMs with respect to SSP2 and SSP5
scenarios. The outputs from the chosen GCMs were then downscaled to enable analysis at a
similar resolution, notably at river basin magnitude, this is used for projected precipitation
and temperature. Following methods was used by Babur et al. [23]. The selection of GCMs
considered elements such as spatial accuracy, era, validity, and representation of simula-
tions. Out of the initial four GCMs used for this study. One GCM was chosen because of its
superior performance in accurately simulating temperatures and precipitation for baseline
time frame of 1985–2015. To determine best method for downscaling temperature and
precipitation data, various statistical downscaling strategies were examined. The Kunhar
River Basin’s future flows were subsequently modelled using the chosen approach. The se-
lected GCMs supplied the simulated climatic variables for two distinct intensities: medium
(SSP2) and high (SSP5), including Tmin, Tmax and Pr. Detailed review of GCMs used in
present investigation is provided in Table 2. The low radiation forcing scenario (SSP1) was
excluded from this investigation. It is difficult to achieve a considerable and rapid decrease
in greenhouse gas emissions given the degree of industrialization, which makes it difficult
to meet the aforementioned mitigation scenario [39]. Instead, the extremely high radiation
forcing scenario (SSP5) and the medium stabilization forcing scenario (SSP2) were taken
into account. For the time period covering 1985 to 2100, projected climate parameters based
on the chosen GCMs under SSP2 and SSP5 were obtained. The baseline era of 1985 to
2014 and the future period of 2015 to 2100 were used to divide this time period into two
separate halves.

Table 2. Features of GCMs for this study.

No. Model Name Institute Nominal Resolution Release Year

1 MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 100 km 2017

2 MRI-ESM2-0 Meteorological Research Institute (MRI) of the
Japan Meteorological Agency (JMA) 100 km 2017

3 ACCESS-CM2 Australian Community Climate and Earth
System Simulator-coupled model (Australia) 250 km 2016

4 MIROC6
National Institute for Environmental Studies, and

Japan Agency for Marine-Earth Science and
Technology (MIROC), Japan

250 km 2017

2.3. Methodology

The methodology adopted in this study refers to specific approach or set of procedures
used to collect and analyze data, conduct experiments, or explore a research question. The
accompanying Figure 3 provides a visual representation of the methodology flowchart,
outlining the step-by-step sequence and activities involved in this study’s methodology.

2.3.1. Statistical Downscaling

In order to address bias between temperature and precipitation forecasts obtained
from four different models with respect to the SSP2 and SSP5 scenarios, CMhyd model
was utilized to supply bias correction at the river basin scale [39,40]. CMhyd model has
successfully been applied in numerous places across the globe by successfully bridging the
gaps between observed climate variables collected from gauges and simulated data based
on GCMs [41]. Anandhi et al.’s [41] hydro-climatological research at the river basin scale
has shown CMhyd model to be a trustworthy and dependable method for downscaling
GCM results. The CMhyd model offers numerous statistical downscaling techniques for
temperature and precipitation. In this investigation, under the constraints of SSP2 and
SSP5, these various techniques were used to downscale GCM results for future time frame
spanning from 2015 to 2100. This was carried out by merging predicted estimates from
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the GCMs with information on daily precipitation, maximum temperature, and lowest
temperature that was gathered during baseline period of 1985 to 2014.
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2.3.2. The SWAT Model’s Description and Setup

The SWAT was used in this work to project river discharge according to influence of
both climate change and land cover. The SWAT is a hydrological model with a physical
foundation that uses a framework with semi-distributed parameters [41,42]. This model
has ability to simulate and evaluate influence of CC and land management practices on a
variety of hydrological parameters, such as river water quality, discharge and sediment
production, across basins of varied sizes [43]. The main channel is connected to each of the
sub-catchments that the SWAT splits a river basin into. The smallest unit within the basin is
a Hydrological Response Unit (HRU) in the SWAT, which is based on a combination of soil
type, slope, and land cover. The SWAT’s capacity to figure out inputs from snowfall and
melting glaciers utilizing the TIA (temperature index algorithm) is one of its computational
strengths. This method, which splits watersheds into several elevation zones, works well
for modelling the hydrological consequences of watersheds characterized by snow and
glaciers. The SWAT enables a more thorough portrayal of the hydrological procedures
inside the model by further dividing elevation of each of the sub-catchment into ten zones.
A number of academics have used the TIA to simulate flow rates in glaciated watersheds



Water 2023, 15, 3421 8 of 26

in the past. Here are a few examples: Babur et al.’s [23] study in Jhelum River basin
(Himalayan Region), Garee et al.’s [44] study in Hunza River basin (Karakoram Region),
and Zhang et al.’s [45] study in Yellow River source area (Tibetan Plateau). Similar to that,
the TIA technique was used in our work to calculate how much meltwater contributed to the
total river flow. The study region was separated into 10 elevation zones for each subbasin,
allowing for estimating the amount of Pr, Tmax and Tmin for every region using the lapse rate
method. The SWAT model incorporates a number of evapotranspiration (ET) estimation
methods, including the Priestley- Hargreaves, Taylor and Penman-Monteith approaches.
This study estimated ET using the Hargreaves approach. The terrain/topography data,
climate data (such as Pr, Tmax, Tmin, wind speed, solar radiation and relative humidity), soil
characteristics, land cover information, and land-use management data are all necessary
input parameters for the SWAT model to run [46]. According to earlier studies [43,46,47], the
SWAT has been widely used to successfully mimic hydrological and landscape dynamics
at a worldwide scale. The SWAT model incorporates the WXGEN weather generator
model [48,49], which could produce meteorological data or fill up any empty spots in the
observations. In this study, the Kunhar River basin’s river discharge was simulated using
the SWAT model with respect to two different scenarios: (a) present LULC and future CC,
and (b) both future LULC and CC. Digital Elevation Model (DEM) with a spatial scale of
90 m, acquired using the SRTM (Shuttle Radar Topographic Mission), was used to build the
river stream network and basin delineation. Based on changes in land cover and soil type,
the KRB was divided into three sub-basins, resulting in 71 Hydrological Response Units
(HRUs). Each sub-catchment was further separated into 10 elevation bands to account
for orographic influences on precipitation and temperature data. The WXGEN weather
generator was used to simulate prospective weather conditions, including wind speed
(WS), sun radiation (SR), and relative humidity (RH), using the methods described in the
reference [50].

2.3.3. Calibration and Validation of the SWAT Model

The SWAT Calibration and Uncertainty Programme (SWAT-CUP) was utilized to
calibrate and validate model using procedure outlined in Garee et al.’s [44] study. The
model’s performance and parameters were assessed for uncertainty using the SWAT-CUP’s
Sequential Uncertainty Fitting (SUFI-2) approach. During model calibration process, the
SWAT-CUP programme was run 10,000 times to determine the sensitive parameters for the
hydrological model. In order to compare simulated results with observed data, the monthly
flow data collected over the Ghari Habibullah gauge station were used as calibration time
frame from 2001 to 2007. After that, observable data from 2008 to 2014 were used to validate
the model.

2.3.4. Evaluating the Performance of Model

A number of assessment indicators, such as the PBIAS (percentage of bias), R2 (coeffi-
cient of determination), and NSE (Nash-Sutcliffe efficiency), were used to gauge the SWAT
model’s efficacy [51]. Higher values suggest greater concordance with both simulated
and observed findings. The R2 value can range from −1 to 1. These assessment measures
were used to gauge the accuracy and dependability of the model-simulated outcomes
offered by the hydrological model. NSE, a performance evaluating indicator with a range
of 0–1, indicates how well the simulated and observed data agree. Higher figures indicate
better agreement. Values greater than 0.50 are typically regarded as acceptable, indicating
a reduced amount of simulation error [52]. The percent bias (PBIAS), on the other hand,
is a different evaluation metric that gauges the typical propensity of the values that are
simulated to depart from what has been observed. Acceptable PBIAS levels typically range
from −15% to +15%, suggesting that the simulation results are biased only slightly [43].
The R2 and NSE equations are shown below:
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R2 =

[
∑
(
Qm − Qm

)(
Qs − Qs

)]2

∑
(
Qm − Qm

)2
∑
(
Qs − Qs

)2 (1)

NSE = 1 − ∑
(
Qm − Qs

)2

∑
(
Qm − Qm

)2 (2)

where, Qs, Qm, Qm, and Qs stand for simulated flows, measured flows, mean measured
flows, and mean simulated flows, accordingly.

2.3.5. Present Land Cover Maps and Future Land Cover Projections

The current research examined expected and present land cover trends. Landsat
imagery has already been used to produce maps of land cover for the years 2000, 2010, and
2022. Then, in order to track changes throughout the specified years, a plot of the regions
included within every category of land cover was created. Maps were made to analyze
patterns and use as inputs for the SWAT model, combining future land cover conditions
with projected climatic conditions. Projected land use maps were simulated using TerrSet,
especially the Land Change Modeller (LCM). In the present research, a combined Markov
and Cellular Automata (CA) method known as CA Markov was used to estimate variations
in land cover for the years 2040, 2070, and 2100. The Markov and CA Markov modules
were employed in two steps of the modelling procedure to run the model and produce the
simulated maps of land cover.

2.3.6. Markov Chain Analysis

Markov Chain Analysis (MCA) is a predictive modeling technique that utilizes his-
torical data to forecast future land use changes. It is a stochastic modeling procedure
that provides insights into likelihood of land use transitions with respect to the measured
data from past time frames. The odds of cells changing from present land cover class
to the next during a given time frame are calculated using MCA whenever used for a
geographic region divided into cells representing various land use classes. These transition
probabilities help us comprehend how circumstances might alter throughout time. By
measuring projected pixel changes and the chances of one land cover class switching to
another, MCA develops a transition matrix [53]. A Markov transformation grid P can be
written as shown below:

∥∥Pij
∥∥ =

∥∥∥∥∥∥
P1,1 P1,2 P1,N
P2,1 P2,2 P2,N
PN,1 PN,2 PN,N

∥∥∥∥∥∥ (0 ≤ Pij ≤ 1) (3)

where, Pij = the first and second time periods’ land cover types, P = Probability of transi-
tioning from one land cover class to another. After a given number of time units, a set of
conditionally probable maps called transitional potential pictures were produced. These
maps display the probabilities of every kind of land cover in a certain pixel. It is impor-
tant to note that Markov analysis does not consider reasons behind land-cover changes.
Additionally, one limitation of Markov analysis is its lack of spatial sensitivity, as it does
not account for geographical context. To address this limitation, cellular automata were
employed to introduce a spatial component the modelling procedure.

2.3.7. CA_MARKOV

To project the future land cover image, Cellular Automata and the integrated
CA-MARKOV component within the TERRSET package were coupled. The CA-MARKOV
model combines methods of Markov Chain, Cellular Automata, Multi-Objective Land
Allocation (MOLA) and Multi-Criteria. The Markov chain analysis may now take into
account geographical contiguity and information about the expected geographic spread of
land use shifts thanks to this integration. The algorithm functions as follows: The transition
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file contains the projected changes in LULC from every present class to every other class in
the upcoming time period, which were computed using a Markov Chain evaluation of
two land cover maps from past. The latter land cover image, which was used for Markov
Chain analysis, is used as the base of operations for the alteration projection utilizing the
initial land cover image. To assess a pixel’s inherent suitability for different types of land
cover, appropriateness or transition maps are utilized. These maps apply weights based
on characteristics such as proximity to existing places with a certain land cover class. A
contiguity filter is typically used to down weight pixels that are situated far from current
boundaries of that class in favor of contiguous appropriate areas.

3. Results
3.1. Downscaling Future Climate Data

GCMs are intricate numerical depictions of the planet’s climate and its plethora of
linkages [54]. To create grid-like compartments in the atmosphere, often with a spatial
resolution of 100–200 km. Within each grid, equations that describe atmospheric dynamics
are solved. This coarse resolution, however, may result in inaccurate simulations of some
significant physical processes and climatic phenomena. Bias correction methods must
therefore be applied in order to improve dependability and precision of downloaded
GCMdata, .

3.2. Selection of the GCM

This coarse resolution, however, may result in inaccurate simulations of some significant
physical processes and climatic phenomena. Therefore, in order to increase dependability and
precision of downloaded GCM data, bias correcting techniques must be used.

Choosing a GCM for a study often entails taking into account a number of variables,
including resolution, data accessibility, results from previous research, and performance
metrics. Four fundamental techniques were used to choose the GCMs for the present
investigation based on these features. By contrasting historical GCM data with actual
ground data collected at the Balakot station, statistical measures including the R2 (coefficient
of determination), MAE (mean absolute error) and RMSE (root mean square error) were
used to assess performance of the chosen GCMs. The effectiveness of four CMIP6 GCMs at
Balakot station is displayed in the tables below.

According to an analysis of the R2, NSE, and RMSE values shown in Tables 3–5, the
performance of the climate simulation model “MPI-ESM1” was comparatively better. As a
consequence, it was chosen as a climate simulation tool to evaluate potential changes in the
region under study’s climate. This study concentrated on climate projections for the years
2015 to 2100, specifically those for precipitation, minimum temperature, and maximum
temperature from the MPI-ESM1 model with respect to two distinct SSP2 and SSP5. To
ensure accurate representation, bias adjustment using the CMhyd has been applied to
each dataset.

Table 3. Evaluating performance of GCMs in projecting Pr.

Model R2 NSE PBIAS MAE RMSE

MPI-ESM1-2-HR 0.19 0.03 0.28 61.11 86.75
MIROC6 0.13 −0.45 −0.22 73.97 93.32

Access-CM2 0.07 −0.8 0.71 71.9 114.1
MRI-ESM2 0.15 −0.68 −0.64 68.92 104.21

Table 4. Evaluating the performance of GCMs in simulating Tmax.

Model R2 NSE PBIAS MAE RMSE

MPI-ESM1-2-HR 0.22 −0.59 0.05 7.7 9.15
MIROC6 0.25 −1.6 0.44 10.2 19.52

Access-CM2 0.19 −1.72 0.3 9.84 11.4
MRI-ESM2 0.21 −1.53 0.25 8.67 11.22
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Table 5. Evaluating the performance of GCMs in simulating Tmin.

Model R2 NSE PBIAS MAE RMSE

MPI-ESM1-2-HR 0.21 −0.12 0.24 7.47 9.51
MIROC6 0.16 −1.89 0.78 16.42 18.7

Access-CM2 0.19 −0.9 0.41 12.58 12.49
MRI-ESM2 0.11 −1.53 0.25 8.67 11.22

3.3. Selecting Bias Correction Methods

Modelling data are observed at a large scale, GCMs often perform well, but when
examined at the basin level, they frequently exhibit significant biases. The variance, quan-
tiles and mean of model’s time-series parameters are to be adjusted by applying specified
correction factors as part of the bias correction strategy. This adjustment seeks to reduce
the bias at the scale of the basin by bringing the corrected model data series nearest to the
observed variable. Five correction methods for precipitation and four correction methods
for temperature were examined in Table 6 to find the best downscaling method for the
downloaded GCM data. These methods were used to adjust the temperature and precipita-
tion data from Balakot station. Following that, a time-series analysis was used to assess
each strategy’s efficacy, illustrated in Tables 7 and 8.

Table 6. Techniques for bias correction of temperature and precipitation.

Bias Correction for Precipitation Bias Correction for Temperature

• Distribution mapping (DM)
• Delta Change (DC)
• Local intensity scaling (LOCI)
• Power transformation (PT)
• Linear scaling (LS)

• Variance scaling (VS)
• Distribution mapping (DM)
• Linear scaling (LS)
• Delta Change (DC)

Table 7. Comparison of precipitation downscaling methods.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1 Raw (Model Simulated Historical) 0.35 0.05 0.27 60.8 86.45
Delta Change 0.73 0.66 0.14 31.87 47.1

Distribution Mapping 0.77 0.75 0.08 28.9 40.1
Linear Scaling 0.67 0.61 0.15 42.71 60.44

Power Transformation 0.72 0.75 0.06 19.63 29.66
Local Intensity Scaling 0.72 0.65 0.17 36.4 53.4

Table 8. Comparison of minimum and maximum temperature downscaling methods.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1

Maximum Temperature

Raw (Model Simulated Historical) 0.4 −0.54 0.07 7.78 9.17

Delta Change 0.63 0.39 0.22 3.73 5.76

Distribution Mapping 0.81 0.76 0.01 2.5 3.79

Linear Scaling 0.72 0.62 0.13 2.91 4.78

Variance Scaling 0.72 0.44 0.2 3.28 5.1

Minimum Temperature

Raw (Model Simulated Historical) 0.37 −0.59 0.29 7.4 9.43

Delta Change 0.67 0.33 0.12 3.66 6.45

Distribution Mapping 0.9 0.72 0.06 2.26 3.79

Linear Scaling 0.83 0.62 0.21 3.22 5.26

Variance Scaling 0.85 0.67 0.14 2.88 4.71

It was shown after analyzing the performance metrics that all bias correction tech-
niques considerably enhanced the raw GCM simulations. The adjustments of monthly
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averages for precipitation as well as temperature was achieved by the execution of these
procedures. The “Distribution Mapping” strategy outperformed the others in terms of
temperature correction, whereas the “Power Transformation” technique produced the best
outcomes for precipitation. Using these techniques, the variability of the raw GCM simula-
tions was successfully decreased, and the median was brought closer to the actual data.

3.4. Projected Variations in the Temperature and Precipitation

Projected data were downscaled to cover the full 21st century until the year 2100 after
the relevant GCMs and downscaling methods for Pr, highest and lowest temperature were
selected. The baseline period, which included years 1985 to 2014, and the future scenarios,
which encompassed the years 2015 to 2100 under SSP2 and SSP5 scenarios, were created as
two independent datasets for the projected precipitation and temperature.

3.5. Projection of Mean Maximum Temperature

By examining downscaled estimations of GCMs at both the annual and seasonal scales,
involving winter, spring, summer, and autumn, the future of maximum temperature (Tmax)
were assessed. Based on results in Table 9, it was concluded that SSP2 scenario would
result in a rise in Tmax of KRB of 14.3%, from 18.3 ◦C during the baseline time period of
1985–2014 to 20.9 ◦C in future time frame of 2015–2100. Additionally, the increase in Tmax,
from 18.3 ◦C to 22.1 ◦C in the direr SSP5 scenario, is anticipated to be 20.5%.

Table 9. Variables changing due to CC scenarios.

Parameters Statistics Historical SSP2 SSP5

Precipitation mm 1606.4 1928.5 2074.1
% Change - 20.5% 29.1%

Max Temperature
◦C 18.3 20.9 22.1

% Change - 14.3% 20.5%

Min Temperature
◦C 7.8 9.4 10.2

% Change - 20.9% 30.8%

As shown in Figure 4, the examination of temperature change was performed on a
seasonal basis, comprising spring, winter, fall and summer. The findings show that the
mean maximum temperature has risen during each of the four seasons. With a rise of
26.4% from 10.2 ◦C throughout the baseline era to 12.9 ◦C in the SSP5 scenario, the spring
season shows the largest increase (Figure 4). The average maximum temperature during the
spring season increases by 17.5% in the SSP2 scenario, from 10.2 ◦C to 12 ◦C (Figure 4). The
summer season showed the least rise in the average maximum temperature, rising by 13.8%
under the SSP2 scenario from 27.1 ◦C to 30.8 ◦C and by 19.2% under the SSP5 scenario from
27.1 ◦C to 32.2 ◦C (Figure 4). Similar to how the maximum temperature increased in the
winter and autumn seasons in SSP2 and SSP5 scenarios, with greater magnitudes shown
in the SSP5 scenario. In the SSP2 and SSP5 scenarios, wintertime temperature increased
by 13.6% and 21.4% from 11.1 ◦C to 12.6 ◦C and 13.4 ◦C, respectively. Additionally, as
predicted by model, average maximum temperature rose by 13.9% and 19.3% in the autumn
(Figure 4).

3.6. Projected Mean Minimum Temperature

Future estimates from downscaled GCMs were examined at both the seasonal and
annual scales to ascertain the likelihood of hydrological changes linked to Tmin. Winter
(December, January, and February), spring (March, April, and May), summer (June, July,
and August), and autumn (September, October, and November) were all included in
seasonal study. According to data in Table 9, Tmin in KRB rose by 20.9% under the SSP2
scenario, from 7.8 ◦C over the base period of 1985–2014 to 9.4 ◦C in future time frame
of 2015–2100. With temperatures increasing from 7.8 ◦C to 10.2 ◦C under the direr SSP5
scenario, the rise in average minimum temperature is considerably larger at 30.8%.
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Figure 4. Maximum temperature seasonal variation in the Kunhar River watershed for the observed
period 1985–2014 and for SSP2 and SSP5 from 2015–2100, respectively.

Figure 5 shows seasonal variations in the Kunhar River basin’s mean lowest tem-
perature. The data show that mean lowest temperature has gone up in all four seasons.
With temperatures increasing from 0.2 ◦C during the baseline time frame to 1.3 ◦C in the
SSP5 scenario (Figure 5) and to 0.9 ◦C within the SSP2 scenario (Figure 5), the winter
season shows the largest rise. The fall season experiences the lowest increase, rising 12.1%
according to the SSP2 scenario from 13.2 ◦C to 14.8 ◦C and 19.1% according to the SSP5
scenario from 13.2 ◦C to 15.7 ◦C (Figure 4). Similarly, both the SSP2 and SSP5 scenarios
show a rise in Tmin during the spring and summer seasons, albeit the SSP5 scenario shows
a larger increase. Compared to the baseline value of 0.8 ◦C, the increase in temperatures
during spring for the SSP2 and SSP5 scenarios ranges from 2.7 ◦C to 3.3 ◦C. The minimum
summer temperature will have increased by 12.4% and 19.4%, respectively, over a baseline
average temperature of 15.1 ◦C by end of the 21st century (2100), as represented in Figure 5.
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Figure 5. Minimum temperature seasonal variation in Kunhar River watershed for observed period
1985–2014 and for SSP2 and SSP5 from 2015–2100, respectively.

3.7. Projection of Precipitation

By examining downscaled GCM estimates at both the annual and seasonal scales, the
hydrological circumstances of precipitation in the future were assessed. The four seasons
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taken into account for the analysis were wintertime (December, January and February),
springtime (March, April and May), summertime (June, July, and August), and the fall
season (September, October and November). Table 9 shows catchment’s mean annual
precipitation increased by 20.5% under the SSP2 scenario, rising from 1606.4 mm during
the period used for baseline (1985–2014) to 1928.5 mm in future time span (2015–2100). The
increase in average annual precipitation in the direr SSP5 scenario is larger, rising by 29.1%,
from 1606.4 mm to 2074.1 mm.

Winter, autumn, summer and spring and seasons are all included in the examination
of precipitation change. The KRB’s seasonal variance precipitation is presented in Figure 6.
The amount of precipitation per month rises during each of four seasons. In the fall (winter),
precipitation increases from 109.9 mm in baseline time frame to 142.5 mm (Figure 6)
according to the SSP5 scenario and to 132.3 mm (Figure 6) according to the SSP2 scenario.
This is the season with the biggest increase. The wintertime increase, on the other hand,
is the smallest, with precipitation rising from 94.7 mm to 113.4 mm under SSP2 and to
120.6 mm (Figure 6) under SSP5. The SSP2 and SSP5 scenarios, respectively, both depict
an increase in precipitation across the spring and summer seasons. Spring precipitation
increased from 193.6 mm to 232 mm and 249.3 mm, respectively, according to the SSP2
and SSP5 scenarios. Figure 5 shows how summer precipitation increased at the end of the
21st century (2100), going from 137.3 mm to 165.1 mm and 177.7 mm.
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Figure 6. Seasonal variations in precipitation for the observed periods of 1985 to 2014 and for SSP2
and SSP5, respectively, from 2015 to 2100, in the KRB.

3.8. Land Cover Change Trends

The Landsat images from 2000, 2010, and 2022 were combined and classified using the
ArcGIS imagery classification tool. Nine land cover classes are represented by the resulting
classified maps, which are displayed in Figure 7. Landcover change trends for the century
were shown in Figure 8. These classes are Water, Forest, Vegetation, Flooded Vegetation,
Crops, Shrub and Scrub, Built-up Area, Bare Ground, and Snow and Ice. The SWAT model
was then fed these categorized maps as data. Future land cover conditions were taken into
account when making land cover maps for the years 2040, 2070, and 2100 using TerrSet’s
integrated Land Change Modeller. Prof. J. Ronald of Clark University created TerrSet in
1987, a thorough Geospatial Monitoring and Modelling System that makes use of the Cellular
Automata-Markov Chain Model (CA-MCM) to project future changes in land cover.

Figure 7 illustrates the classified and projected land cover maps of study area. The
results indicate a notable 21.4% increase in built-up area within the KRB from 2000 to 2100.
On the other hand, the land cover classes of Water, Forest, Vegetation, Flooded Vegetation,
Crops, Shrub and Scrub, Bare Ground, and Snow and Ice have experienced varying degrees
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of decline, with decreases of 4.4%, 2.8%, 2.4%, 1.8%, 1.6%, 0.1%, 1.7%, and 6.6%, respectively.
Table 10 provides a comprehensive overview of these changes in land cover classes.
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Table 10. Land cover trends from 2000 to 2100.

LULC Classes
2000 2010 2022 2040 2070 2100

% Change
Km2 % Km2 % Km2 % Km2 % Km2 % Km2 %

Water 235 9.2 218 8.5 209 8.2 180 7.0 148 5.8 123 4.8 −4.4

Forest 742 29.0 731 28.6 723 28.3 705 27.6 688 26.9 671 26.2 −2.8

Vegetation 188 7.3 180 7.0 172 6.7 157 6.1 137 5.4 126 4.9 −2.4

Flooded vegetation 63 2.5 55 2.2 47 1.8 39 1.5 26 1.0 16 0.6 −1.8

Crops 182 7.1 175 6.8 166 6.5 159 6.2 148 5.8 141 5.5 −1.6

Shrub and Scrub 307 12.0 292 11.4 284 11.1 265 10.4 332 13.0 304 11.9 −0.1

Built up area 245 9.6 351 13.7 418 16.3 542 21.2 655 25.6 792 31.0 21.4

Bare ground 74 2.9 66 2.6 62 2.4 61 2.4 43 1.7 31 1.2 −1.7

snow and ice 522 20.4 490 19.2 477 18.6 450 17.6 381 14.9 354 13.8 −6.6

3.9. SWAT Model Calibration and Validation

Optimizing a number of delicate factors linked to groundwater recharge, soil, snow
and evapotranspiration is essential for calibrating the SWAT model. Table 11 shows statistics
for month’s hydrological model calibration and validation. This study found 17 variables
that significantly affect the predicted outflow from the Kunhar River basin (Table 12).
These modelling variables were chosen in consideration of their significant contributions
to evapotranspiration, runoff from snow melt, and recharge from groundwater, as well
as the research on application of the SWAT model in glaciated watersheds [43,55,56]. In
the basin’s northern regions, a considerable portion of precipitation falls as snow during
winter. Based on 30 years of river flow data from 1985 to 2014, the Kunhar River has an
average annual discharge of 111.4 cubic meters per second (cumecs) as recorded at the
Ghari Habibullah gauge. For the years 2001 to 2007, the model was calibrated (Figure 9),
primarily utilizing the monthly flow data gathered at the Ghari Habibullah gauge station.
The model was then validated (Figure 10) using data collected from observations between
2008 and 2014. It has been noted that the highest reported discharge occurs in month of
July. R2 and NSE values were employed to assess calibration and validation periods, as
represented in Table 11.

Table 11. Statistics for the Month’s Hydrological Model Calibration and Validation.

Parameters Calibration Validation

NSE 0.80 0.77
R2 0.79 0.78

RMSE 1.76 2.41

Table 12. Parameters fitted values and ranges for calibration.

Parameter Name Fitted Value Min Value Max Value
ESCO.hru 0.532 0.1 0.9

HRU_SLP.hru 0.0062 0 0.1
SLSUBBSN.hru 45.15 50 70

CH_K2.rte 126.49 120 152
SMFMN.bsn 0.065 0 10
SURLAG.bsn 15.12 10 18

CN2.mgt 90.45 60 92
SFTMP.bsn 4.10 0 5
OV_N.hru 0.075 0 0.1

SOL_BD(..).sol 1.71 0.6 2.8
SOL_K(..).sol 0.21 0.1 0.3
TLAPS.sub −0.82 −1 0.2
TIMP.bsn 0.0405 0 0.1

PLAPS.sub 42.51 15 60
GW_DELAY.gw 277.72 240 290

SMFMX.bsn 0.42 0 5
SOL_AWC(..).sol 0.15 0.1 0.6
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3.10. Effects of Climate on Stream Flows

After hydrological model was successfully calibrated and confirmed, the generated
hydrological model was then utilized to project future streamflow patterns on a yearly time-
frame for the period from 2015 to 2100. Two scenarios with various forecasted conditions
each had their future flows evaluated.

Scenario-A: Taking into account the expected effects of CC, the first scenario’s forecast
of flows was centered on an amalgam of the condition of the land cover currently and the
predicted future climate.

Scenario-B: In this scenario, future land cover conditions and projected climatic con-
ditions were utilized to examine the influence of future LULC and CC. This method made
it possible to evaluate all potential consequences brought on by changes in both land cover
and climate.
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3.11. Scenario-A: Only Climate Change

Using the calibrated model, flow predictions were made for the next three decades,
taking into account climate change. The results indicated a 20.5% increase in precipitation
under the SSP2 scenario and a 29.1% increase under the SSP5 scenario. Moreover, the
maximum temperature showed a rise of 14.3% under SSP2 and 20.5% under SSP5, while
the minimum temperature exhibited an increase ranging from 20.9% to 30.8% under SSP2
and SSP5 scenarios, respectively. The anticipated flows increased when the variations
in temperature and precipitation were included in the calibrated SWAT model under
assumption that land cover remained constant. The flows were specifically forecast to
increase from 111.4 cumecs during base period (1999–2014) to 131.5 cumecs (a rise of 18.1%)
under the SSP2 scenario and to 138.2 cumecs (an increase of 24%) under the SSP5 scenario
in the future time frame (2015–2100).

Figure 11 compares monthly average flows for the base period (1999–2014) and future
time period with respect to the SSP2 and SSP5 scenarios. KRB’s mean monthly flows will
be examined for temporal fluctuations. Overall, both SSP scenarios suggest a tendency
for flow to increase during the months that are historically characterized by low flow and
high flow months. The mean seasonal flow is forecast to increase throughout the entire
year, according to SSP2 and SSP5 scenarios. Notably, peak flows at dam site appear to
have increased under both scenarios, which may be due to the influence of the westerlies
circulation pattern. The higher flows during the winter season are probably a result of the
increase in winter precipitation. It is important to note that both SSP scenarios predict July
and January to have the highest and lowest flows, respectively.
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Figure 11. Average monthly flows at Kunhar River basin for present-day land cover and the
foreseeable future.

3.12. Scenario-B: Climate and Land Cover Change

After the flows were anticipated based on CC, the calibrated hydrological model was
utilized to project flows accounting for both land cover and climate change.

According to an estimate of land cover patterns, between 2000 and 2100, the populated
area of KRB significantly increased by 21.4%. Conversely, other land cover classes such
as Water, Forest, Vegetation, Flooded Vegetation, Crops, Shrub and Scrub, Bare Ground,
and Snow and Ice showed varying degrees of decline, with magnitudes ranging from 0.1%
to 6.6%. According to the SSP2 and SSP5 scenarios, precipitation increased to 20.5% and
29.1% as a result of climatic factors, respectively. Additionally, there was an upward trend
in the maximum temperature, which increased by 14.3% and 20.5% according to the same
conditions. SSP2 and SSP5 showed that the minimum temperature rose by 20.9% and 30.8%,
respectively. The forecasts show an anticipated increase in flows when the future land cover
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conditions are incorporated into the calibrated SWAT model together with the changes in
land cover and climate. The baseline era (1985–2014) recorded a flow of 111.4 cumecs, while
the SSP2 and SSP5 scenarios project flows of 137 cumecs (a 23% increase) and 148.6 cumecs
(a 33.4% increase) over the future time frame (2015–2100), respectively.

Figure 12 contrasts the average monthly flows for the base period (1999–2015) and
future period according to the SSP2 and SSP5 scenarios. Analyzing the temporal variations
in average monthly flows across the Kunhar River basin is the goal of this study. Both
SSPs often show a rise in flow during both high and low flow months. Additionally, it
is projected that the mean seasonal flow would continue to rise year-round. This rise in
winter precipitation will likely result in higher winter flows. It is important to note that
under both SSPs, July and January have the biggest and lowest flows, respectively.
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Figure 12. Mean monthly flows at Kunhar River basin under future climate and future land
cover conditions.

4. Discussion

In the Hindukush Mountains, the Kunhar River watershed is located in a subtropical
humid zone that is extremely susceptible to hydro-climatic changes [52,53]. Numerous
CMIP6 GCMs have been used to evaluate effects of climate change on river flow patterns,
offering important insights into probable future scenarios [23,57–59]. The objective of this
study is to assess the impact of projected land cover and climate change on flow patterns
of KRB, situated within UIB region. This was accomplished by using the output from
the most trustworthy GCM out of four distinct models to calibrate a hydrological model.
The calibrated model was then utilized to evaluate temporal implications of anticipated
changes in land cover and climate on the basin’s hydrological characteristics. Based on the
chosen GCM (MPI-ESM1-2-HR), the downscaled precipitation and temperature forecasts
for the base period (1985–2014) demonstrated a satisfactory match with the gauge-based
readings. This alignment could be attributed to the improved capability of CMIP6 models in
accurately projecting temperature and precipitation patterns in HKH Region, as highlighted
in previous studies [43,46].

Throughout the 21st century, the catchment region of KRB showed a consistent trend of
long-term warming at both the annual and seasonal scales, according to the study of GCM
outputs (MPI-ESM1-2-HR) [60]. These findings align with previous studies conducted in
neighboring regions of the Tibetan Plateau [61,62] and Himalayas [48,63,64] indicating a
widespread trend of increasing temperatures in South Asian regions. The increasing con-
centrations of greenhouse gases and aerosols in area can be blamed, at least in part, for the
higher temperatures reported in the HKH Mountains [52,53,65]. According to research by
Bollasina et al. [66] and Gohar et al. [67], there is a rise in the concentration of atmospheric
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aerosols throughout Asia, which has been linked to significant temperature spikes in China.
Furthermore, future projections suggest an expected increase in annual precipitation from
2015 to 2100, with evidence of increased flow in headwaters of the Yellow River basin
during the same period [68]. Precipitation is forecast to rise across the board throughout
the upcoming year, while the summer and fall seasons are expected to experience the
largest increases. These findings diverge from research performed in Malaysia’s Kelantan
River basin and upper Cruz River basin, which found various precipitation patterns [57,69].
Furthermore, Ozturk et al. [58] discovered a counterintuitive pattern of summer precipita-
tion declines in westerly influenced areas such as Iran and Afghanistan. The seasonal Pr
patterns, however, are in agreement with those observed in the Karakoram and Himalayan
Mountain ranges and were found in the research areas. According to Babur et al. [23],
there is a persistent upward trend in seasonal and annual Pr for Jhelum River watershed,
which is situated in Himalayan Range. Similar predictions were made by Garee et al. [44]
for Hunza River basin, which is close to Karakoram Range, about an increase in seasonal
and annual precipitation. The consistency in results could be attributed to the Hindukush
Range’s main westerlies circulation pattern [65,70,71]. The rising level of anthropogenic
absorbent aerosols in southern Asian atmosphere provides another explanation for the
observed parallelism in precipitation patterns [58,66,72].

According to the SWAT model research, SSP2 and SSP5 scenarios will both cause
the annual average flow to rise in the future [73,74]. The anticipated increase in an-
nual precipitation along with higher temperatures are to blame for this increase in flow.
Immerzeel et al. [73] have also predicted an increase in Indus River flow. Additionally,
the anticipated research suggests that peak flows may change, moving from July to June
by one month. This trend is result of a significant increase in precipitation right through
springtime and wintertime months. A delay in Jhelum River’s peak flow, that normally
happens between July and August, was noted by Babur et al. [23]. The opposing expected
patterns in summer and winter precipitation in the Hindukush and Himalayan Mountains
may be to blame for this mismatch in findings.

This study holds significant practical implications; firstly, the findings can inform sus-
tainable water resource management practices, aiding local authorities and policy makers
in developing strategies to mitigate potential water scarcity issues [75–82]. Moreover, the
results can guide the establishment of adaptive measures to safeguard water availability for
agriculture, drinking water supply, and industrial use, particularly in the face of changing
climate patterns [83–92]. Furthermore, this research can serve as a valuable resource for
local communities, enabling them to make informed decisions about water usage and
conservation. Additionally, this study contributes to the broader scientific understanding
of how climate change interacts with land use dynamics to impact water resources, offering
insights applicable to other regions facing similar challenges. Ultimately, the research
not only addresses a critical gap in the literature but also equips stakeholders with the
knowledge needed to navigate the complex and evolving landscape of water resource
management in the Kunhar River basin and beyond.

5. Theoretical and Practical Implications

Firstly, the research advances our theoretical understanding of climate change dy-
namics in mountainous river basins. By revealing that both maximum and minimum
temperatures are increasing alongside rising precipitation, it contributes to the body of
knowledge on regional climate change patterns. This information can enrich climate mod-
els and theories, helping scientists and researchers better comprehend the complexities of
climate change in such geographies. Secondly, this study delves into the intricate hydro-
logical processes at play in mountainous river basins. It highlights the interplay between
temperature, precipitation, and river flow, adding depth to our theoretical framework
for comprehending how climate impacts water resources within these regions. This en-
hanced understanding is invaluable for predicting future changes and designing effective
mitigation and adaptation strategies [93–98].
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On the practical front, this study’s findings have several crucial implications. Firstly,
the indication of increased flows underscores the importance of proactive water resource
management. It suggests the need for adaptive measures to harness and manage the
additional water resources effectively. This might involve optimizing reservoir manage-
ment, implementing flood control measures, and ensuring sustainable water allocation
practices. Secondly, the research contributes to building climate resilience in the region.
Understanding the impacts of climate change is pivotal for crafting robust adaptation plans.
This study’s insights can inform the development of climate-resilient infrastructure, such
as improved flood defenses and water storage facilities, which are essential for coping
with changing temperature and precipitation patterns. Thirdly, this study emphasizes
the significance of responsible urban planning amidst increasing urbanization. As urban
areas expand, their impact on river flows becomes more pronounced. Practical solutions,
such as green infrastructure and sustainable land development practices, can help mitigate
these impacts and ensure the sustainable growth of urban centers. Lastly, the research
findings hold relevance for policymaking at various levels. They provide a foundation for
evidence-based policies aimed at climate change mitigation and adaptation. Policy makers
can use this information to draft regulations for reducing greenhouse gas emissions and
formulate land use policies that minimize adverse effects on water resources.

In summary, this study’s theoretical implications advance our knowledge of climate
change dynamics and hydrological processes, while its practical implications offer valu-
able guidance for water resource management, climate resilience building, urban plan-
ning, and policymaking in the Kunhar River basin and similar regions grappling with
analogous challenges.

6. Conclusions

The goal of this study was to evaluate how the Kunhar River basin’s flows were
affected by changing climatic conditions and land use. Two scenarios were considered:
one focusing solely on climate change and the other incorporating both climate and land
cover change. The investigation used two alternative shared socioeconomic pathways
(SSP2 and SSP5) as baseline frameworks and covered the years 2015 to 2100. To project
climate change, data from four GCMs were compared, with selection of the best-performing
model. The following conclusions have been drawn from an examination of streamflow’s
at Ghari Habibullah in the Kunhar River watershed under simulated future climate and
land cover conditions:

â The Kunhar River basin’s future time horizon (2015–2100) shows persistent rises in
annual Tmax, Tmin and average temperature (Tavg) as well as Pr when compared to
baseline period of 1985–2014. The rise in precipitation is expected to result in higher
stream flows in future.

â The mean daily flow at Kunhar River basin has increased under the current land
cover conditions, rising from 111.4 cumecs between 1985 and 2014 to 131.5 cumecs
according to SSP2 and 138.2 cumecs under SSP5.

â According to the future land cover change scenario, the Kunhar River basin site’s
flow is projected to increase from 111.4 cumecs (1999–2015) to 137 cumecs and 148.6
cumecs under SSP5.

â The results show that the mean monthly flows are anticipated to rise under both SSPs
by a range of 18–33.4% under the land cover and climate change scenarios.

â The observed climate changes have translated into notable hydrological impacts,
notably an increase in river flows. This change in flow patterns affects the timing
and availability of water resources within the basin, with potential consequences for
agriculture, ecosystems, and water supply.

â This study has underscored the growing influence of urbanization on the basin’s
hydrology. The expansion of urban areas has led to altered land use patterns, resulting
in increased impervious surfaces and modifications to runoff processes. These changes
add complexity to the basin’s hydrological dynamics.
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The major goal of this study was to investigate anticipated fluctuations in Tmax,
Tmin, and Pr and their possible effect on stream flows in the KRB. Certainly, this study’s
integration of GCM simulations, statistical downscaling with CMhyd, and hydrological
modeling with the SWAT represents a valuable approach to understanding the impacts
of climate change and land use changes on water resources. However, it’s important to
acknowledge several key limitations that can guide future research endeavors. Firstly,
this study’s reliance on GCMs introduces inherent uncertainties associated with climate
projections. These models provide a broad-scale view of future climate patterns, but their
resolution may not capture regional variations adequately. Future research can explore
ensemble modeling techniques to better quantify uncertainty and provide a range of
possible outcomes.

Secondly, while statistical downscaling techniques such as CMhyd help bridge the
gap between global climate models and local hydrological impacts, they are not immune
to error. Further refinement and validation of downscaling methods, especially in regions
with complex terrain or sparse observational data, are essential for improving accuracy.
Additionally, addressing the limitations of input data quality, such as land cover maps and
terrain information, should be a priority to enhance the reliability of model outputs. In
terms of potential future developments, researchers can explore advanced model integra-
tion approaches that combine multiple GCMs, downscaling techniques, and hydrological
models to reduce uncertainties. This ensemble modeling can provide a more comprehensive
understanding of potential future scenarios and their associated risks.

Furthermore, future studies can delve into scenario analysis by considering a broader
range of socioeconomic and policy scenarios. These scenarios can encompass various land
use and climate change mitigation strategies, helping decision-makers plan for multiple
futures. Additionally, involving local stakeholders and communities in the research process
can offer valuable insights and ensure that study findings are tailored to address regional
challenges effectively. By adopting a holistic approach that includes improved data quality,
advanced modeling techniques, and scenario analysis, future research can provide more
robust and actionable insights for sustainable water resource management in the face of cli-
mate and land use changes. The findings of this study are essential for formulating regional
development strategies, implementing adaptation plans, and organizing and administering
water management projects such as irrigation and hydropower in a sustainable manner.

Author Contributions: All authors were involved in the intellectual elements of this paper. S.H. and
M.U.M. designed the research. S.H., M.U.M., C.B.P. and M.R. conducted the research and wrote the
manuscript. S.H. and C.B.P., writing—review and editing, writing—original draft, and helped in the
data arrangement and analysis. F.A., funding, investigation and writing—review editing. O.M.K.,
writing—review editing and formal analysis. R.C., formal analysis and writing review editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Abdullah Alrushaid Chair for Earth Science Remote Sensing
Research at King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: The runoff data were provided by SWHP (WAPDA) are not
publicly available.

Acknowledgments: The authors extend their appreciation to Abdullah Alrushaid Chair for Earth
Science Remote Sensing Research for funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lamichhane, S.; Shakya, N.M. Integrated Assessment of Climate Change and Land Use Change Impacts on Hydrology in the

Kathmandu Valley Watershed, Central Nepal. Water 2019, 11, 2059. [CrossRef]
2. Akbar, H.; Gheewala, S.H. Effect of Climate Change on Cash Crops Yield in Pakistan. Arab. J. Geosci. 2020, 13, 337. [CrossRef]
3. Yesuph, A.Y.; Dagnew, A.B. Land Use/Cover Spatiotemporal Dynamics, Driving Forces and Implications at the Beshillo

Catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environ. Syst. Res. 2019, 8, 21. [CrossRef]

https://doi.org/10.3390/w11102059
https://doi.org/10.1007/s12517-020-05333-7
https://doi.org/10.1186/s40068-019-0148-y


Water 2023, 15, 3421 23 of 26

4. Haider, S.; Masood, M.U. Analyzing Frequency of Floods in Upper Indus Basin under Various Climate Change Sce-
narios. In Proceedings of the 2nd National Conference on Sustainable Water Resources Management, Lahore, Pakistan,
16 November 2022; pp. 137–141.

5. Mahmood, S.; Kiliç, Z.; Saeed, M.M.; Rehman, H.A.; Aslan, Z.; Elsarag, E.I.; Ahmad, I.; Haider, S. Environmental and Hydrological
Consequences of Agriculture Activities: General Review & Case Study Centre of Excellence in Water Resources Engineering,
Lahore, Pakistan. In Proceedings of the 2nd National Conference on Sustainable Water Resources Management, Lahore, Pakistan,
16 November 2022; Volume 11, pp. 43–61.

6. Nagra, M.; Masood, M.U.; Haider, S.; Rashid, M. Assessment of Spatiotemporal Droughts Through Machine Learning Algorithm
Over Pakistan Investigating the Groundwater Recharge Potential in the Upper Rechna Doab. In Proceedings of the 2nd National
Conference on Sustainable Water Resources Management, Lahore, Pakistan, 16 November 2022.

7. Jaffry, A.H.; Raza, H.; Haider, S.; Masood, M.U.; Waseem, M.; Shahid, M.A.; Ali, B. Comparison between the Remote Sensing-
Based Drought Indices in Punjab, Pakistan. In Proceedings of the 2nd National Conference on Sustainable Water Resources
Management, Lahore, Pakistan, 16 November 2022; pp. 94–99.

8. Rahman, K.; da Silva, A.G.; Tejeda, E.M.; Gobiet, A.; Beniston, M.; Lehmann, A. An Independent and Combined Effect Analysis
of Land Use and Climate Change in the Upper Rhone River Watershed, Switzerland. Appl. Geogr. 2015, 63, 264–272. [CrossRef]

9. Gessesse, A.A.; Melesse, A.M.; Abiy, A.Z. Land Use Dynamics and Base and Peak Flow Responses in the Choke Mountain Range,
Upper Blue Nile Basin, Ethiopia. Int. J. River Basin Manag. 2021, 19, 109–121. [CrossRef]

10. Kairong, H.; Chen, X.Y.L. Effect of Land Use and Climate Change on Runoff in the Dongjiang Basin of South China.
Math. Probl. Eng. 2013, 2013, 429. [CrossRef]

11. Pakparvar, M. Evaluation of the Effect of Land Use Change on Runoff Using Supervised Classified Satellite Data. Glob. Nest J.
2019, 21, 245–252. [CrossRef]

12. Raghunath, H. Hydrology (Principles, Analysis Design), 2nd ed.; New Age International (P) Ltd.: New Delhi, India, 2006.
13. Sukendi, N.B.S.Z. Hydrological Characteristics Analysis Due to Changes in Land Use with the SWAT Model in the Koto Panjang

Hydropower Catchment Area. Int. J. Civ. Eng. Technol. 2019, 10, 330–340.
14. Raza, H.; Jaffry, A.H.; Waseem, M.; Haq, F.; Rashid, M. A Comparative Study of Different Optimization Techniques for Agricultural

Water Allocations. Int. J. Appl. Eng. Res. 2022, 14, 8670.
15. Shabahat, S.; Raza, A.; Haider, S.; Masood, M.U.; Rashid, M. Investigating the Groundwater Recharge Potential in the Upper

Rechna Doab. In Proceedings of the 2nd National Conference on Sustainable Water Resources Management, Lahore, Pakistan,
16 November 2022; pp. 100–107.

16. Abbas, T.; Nabi, G.; Boota, M.; Hussain, F.; Faisal, M.; Ahsan, H. Impacts of landuse changes on runoff generation in simly
watershed. Arab. J. Geosci. 2015, 239, 3185–3191.

17. Abdulkareem, J.; Sulaiman, W.; Pradhan, B.; Jamil, N. rohaizah Relationship between Design Floods and Land Use Land Cover
(LULC) Changes in a Tropical Complex Catchment. Arab. J. Geosci. 2018, 11, 24. [CrossRef]

18. Welde, K.; Gebremariam, B. Effect of Land Use Land Cover Dynamics on Hydrological Response of Watershed: Case Study of
Tekeze Dam Watershed, Northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 2. [CrossRef]

19. Sajikumar, N.; Remya, R.S. Impact of Land Cover and Land Use Change on Runoff Characteristics. J. Environ. Manag. 2015,
161, 460–468. [CrossRef] [PubMed]

20. Wangpimool, W.; Pongput, K.; Tangtham, N.; Prachansri, S.; Gassman, P.W. The Impact of Para Rubber Expansion on Streamflow
and Other Water Balance Components of the Nam Loei River Basin, Thailand. Water 2017, 9, 1. [CrossRef]

21. Younis, S.M.Z.; Ammar, A. Quantification of Impact of Changes in Land Use-Land Cover on Hydrology in the Upper Indus Basin,
Pakistan. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 255–263. [CrossRef]

22. Al-Mukhtar, M.; Dunger, V.; Merkel, B. Assessing the Impacts of Climate Change on Hydrology of the Upper Reach of the Spree
River: Germany. Water Resour. Manag. 2014, 28, 752. [CrossRef]

23. Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of Climate Change Impact on Reservoir Inflows
Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water 2016, 8, 389. [CrossRef]

24. Mahmood, R.; Jia, S.; Babel, M.S. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan.
Water 2016, 8, 23. [CrossRef]

25. Al-Ansari, N. Assessment of Climate Change Impact on Water Resources of Lesser Zab, Kurdistan, Iraq Using SWAT Model.
Engineering 2016, 8, 697–715.

26. Mushtaq, F.; Pandey, A. Assessment of Land Use/Land Cover Dynamics Vis-??-Vis Hydrometeorological Variability in Wular
Lake Environs Kashmir Valley, India Using Multitemporal Satellite Data. Arab. J. Geosci. 2013, 7, 921. [CrossRef]

27. Mango, L.; Melesse, A.; McClain, M.; Gann, D.; Setegn, S. Land Use and Climate Change Impacts on the Hydrology of the Upper
Mara River Basin, Kenya: Results of a Modeling Study to Support Better Resource Management. Hydrol. Earth Syst. Sci. 2011,
15, 2245. [CrossRef]

28. Neupane, R.; Kumar, S. Estimating the Effects of Potential Climate and Land Use Changes on Hydrologic Processes of a Large
Agriculture Dominated Watershed. J. Hydrol. 2015, 529, 418–429. [CrossRef]

29. Strasser, U.; Förster, K.; Formayer, H.; Hofmeister, F.; Marke, T.; Meißl, G.; Nadeem, I.; Stotten, R.; Schermer, M. Storylines of
Combined Future Land Use and Climate Scenarios and Their Hydrological Impacts in an Alpine Catchment (Brixental/Austria).
Sci. Total Environ. 2018, 657, 77. [CrossRef] [PubMed]

https://doi.org/10.1016/j.apgeog.2015.06.021
https://doi.org/10.1080/15715124.2019.1672700
https://doi.org/10.1155/2013/471429
https://doi.org/10.30955/gnj.002631
https://doi.org/10.1007/s12517-018-3702-4
https://doi.org/10.1016/j.iswcr.2017.03.002
https://doi.org/10.1016/j.jenvman.2014.12.041
https://www.ncbi.nlm.nih.gov/pubmed/25575849
https://doi.org/10.3390/w9010001
https://doi.org/10.1016/j.ejrs.2017.11.001
https://doi.org/10.1007/s11269-014-0675-2
https://doi.org/10.3390/w8090389
https://doi.org/10.3390/w8010023
https://doi.org/10.1007/s12517-013-1092-1
https://doi.org/10.5194/hess-15-2245-2011
https://doi.org/10.1016/j.jhydrol.2015.07.050
https://doi.org/10.1016/j.scitotenv.2018.12.077
https://www.ncbi.nlm.nih.gov/pubmed/30677940


Water 2023, 15, 3421 24 of 26

30. El-Khoury, A.; Seidou, O.; Lapen, D.R.; Que, Z.; Mohammadian, M.; Sunohara, M.; Bahram, D. Combined Impacts of Future
Climate and Land Use Changes on Discharge, Nitrogen and Phosphorus Loads for a Canadian River Basin. J. Environ. Manag.
2015, 151, 76–86. [CrossRef]

31. Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Zheng, W. U-Net-STN: A Novel End-to-End Lake Boundary Prediction Model.
Land 2023, 12, 1602. [CrossRef]

32. Hassan, S.; Masood, M.U.; Haider, S.; Anjum, M.N.; Hussain, F.; Ding, Y.; Shangguan, D.; Rashid, M.; Nadeem, M.U. Investigating
the Effects of Climate and Land Use Changes on Rawal Dam Reservoir Operations and Hydrological Behavior. Water 2023,
15, 2246. [CrossRef]

33. Schaefli, B. Projecting Hydropower Production under Future Climates: A Guide for Decision-Makers and Modellers to Interpret
and Design Climate Change Impact Assessments. Wiley Interdiscip. Rev. Water 2015, 2, 83. [CrossRef]

34. Azim, F.; Shakir, A.; Mughal, H.-U.-R.; Kanwal, A. Impact of Climate Change on Sediment Yield for Naran Watershed, Pakistan.
Int. J. Sediment Res. 2016, 31, 2. [CrossRef]

35. Ali, S.; Shah, S. Climate Change Impact on Flow Discharge of Kunhar River Catchment Using Snowmelt Runoff Model. J. Basic
Appl. Sci. 2015, 11, 184–192. [CrossRef]

36. Dallimer, M.; Stringer, L. Informing Investments in Land Degradation Neutrality Efforts: A Triage Approach to Decision Making.
Environ. Sci. Policy 2018, 89, 4. [CrossRef]

37. Sims, N.; England, J.; Newnham, G.; Alexander, S.; Green, C.; Minelli, S.; Held, A. Developing Good Practice Guidance for Estimating
Land Degradation in the Context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 2018, 92, 14. [CrossRef]

38. Mahmood Shaofeng, R.J. Assessment of Impacts of Climate Change on the Water Resources of the Transboundary Jhelum River
Basin of Pakistan and India. Water 2016, 8, 246. [CrossRef]

39. Basheer, A.K.; Lu, H.; Omer, A.; Ali, A.B.; Abdelgader, A.M. Impacts of Climate Change under CMIP5 RCP Scenarios on
the Streamflow in the Dinder River and Ecosystem Habitats in Dinder National Park, Sudan. Hydrol. Earth Syst. Sci. 2016,
20, 1331–1353. [CrossRef]

40. Iqbal, M.; Wen, J.; Masood, M.; Masood, M.U.; Adnan, M. Impacts of Climate and Land-Use Changes on Hydrological Processes
of the Source Region of Yellow River, China. Sustainability 2022, 14, 908. [CrossRef]

41. Anandhi, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.G.; Matonse, A.H.A.F. Examination of Change Factor
Methodologies for Climate Change Impact Assessment. Water Resour. Res. 2011, 47, 104. [CrossRef]

42. Zhang, F.; Zhenchun, H.; Chong-Yu, X.; Zhongbo, Y.; Lu, W.; Tong, K.Y.S. Impact of Projected Climate Change on the Hydrology
in the Headwaters of the Yellow River Basin. Hydrol. Process. 2015, 29, 4379–4397. [CrossRef]

43. Muhammad, A.; Iftikhar, A.Z.H. Hydrology of Mountainous Areas in the Upper Indus Basin, Northern Pakistan with the
Perspective of Climate Change. Environ. Monit. Assess. 2011, 184, 5255–5274. [CrossRef]

44. Garee, K.; Chen, X.; Bao, A.; Wang, Y.; Meng, F. Hydrological Modeling of the Upper Indus Basin: A Case Study from a
High-Altitude Glacierized Catchment Hunza. Water 2017, 9, 17. [CrossRef]

45. Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal Analysis of Precipitation
Variability in Annual, Seasonal and Extreme Values over Upper Indus River Basin. Atmos. Res. 2018, 213, 346–360. [CrossRef]

46. Khan, A.; Naz, B.S.; Bowling, L.C. Separating Snow, Clean and Debris Covered Ice in the Upper Indus Basin, Hindukush-
Karakoram-Himalayas, Using Landsat Images between 1998 and 2002. J. Hydrol. 2015, 521, 46–64. [CrossRef]

47. Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate Change Impacts under CMIP5 RCP Scenarios on Water
Resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 8. [CrossRef]

48. Yang, T.; Hao, X.; Shao, Q.; Xu, C.-Y.; Zhao, C.; Chen, X.; Wang, W. Multi-Model Ensemble Projections in Temperature and
Precipitation Extremes of the Tibetan Plateau in the 21st Century. Glob. Planet. Change 2012, 80, 1–13. [CrossRef]

49. Almazroui, M.; Islam, M.N.; Saeed, F.; Alkhalaf, A.K.; Dambul, R. Assessing the Robustness and Uncertainties of Projected
Changes in Temperature and Precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 2017,
194, 202–213. [CrossRef]

50. Kumar, K.; Padma, B.P.; Udaya, K.S.K. Application of Markov Chain & Cellular Automata Based Model for Prediction of Urban
Transitions. In Proceedings of the 2016 International Conference Electrical, Electronics, and Optimization Techniques (ICEEOT),
Chennai, India, 3–5 March 2016; pp. 4007–4012.

51. Yan, L.; Liu, Z.; Chen, G.; Kutzbach, J.E.; Liu, X. Mechanisms of Elevation-Dependent Warming over the Tibetan Plateau in
Quadrupled CO2 Experiments. Clim. Change 2016, 135, 509–519. [CrossRef]

52. You, Q.; Min, J.; Kang, S. Rapid Warming in the Tibetan Plateau from Observations and CMIP5 Models in Recent Decades.
Int. J. Climatol. 2015, 36, 2660–2670. [CrossRef]

53. Dimri, A.; Kumar, D.; Choudhary, A.; Maharana, P. Future Changes over the Himalayas: Maximum and Minimum Temperature.
Glob. Planet. Change 2018, 162, 212–234. [CrossRef]

54. Masood, M.U.; Khan, N.M.; Haider, S.; Anjum, M.N.; Chen, X.; Gulakhmadov, A.; Iqbal, M.; Ali, Z.; Liu, T. Appraisal of Landcover and
Climate Change Impact on Water Resources: A Case Study of Mohmand Dam Catchment, Pakistan. Water 2023, 15, 1313. [CrossRef]

55. Cheema, M.; Immerzeel, W.; Bastiaanssen, W. Spatial Quantification of Groundwater Abstraction in the Irrigated Indus Basin.
Ground Water 2013, 52, 25–36. [CrossRef]

56. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

https://doi.org/10.1016/j.jenvman.2014.12.012
https://doi.org/10.3390/land12081602
https://doi.org/10.3390/w15122246
https://doi.org/10.1002/wat2.1083
https://doi.org/10.1016/j.ijsrc.2015.08.002
https://doi.org/10.6000/1927-5129.2015.11.27
https://doi.org/10.1016/j.envsci.2018.08.004
https://doi.org/10.1016/j.envsci.2018.10.014
https://doi.org/10.3390/w8060246
https://doi.org/10.5194/hess-20-1331-2016
https://doi.org/10.3390/su142214908
https://doi.org/10.1029/2010WR009104
https://doi.org/10.1002/hyp.10497
https://doi.org/10.1007/s10661-011-2337-7
https://doi.org/10.3390/w9010017
https://doi.org/10.1016/j.atmosres.2018.06.019
https://doi.org/10.1016/j.jhydrol.2014.11.048
https://doi.org/10.1016/j.atmosres.2017.01.008
https://doi.org/10.1016/j.gloplacha.2011.08.006
https://doi.org/10.1016/j.atmosres.2017.05.005
https://doi.org/10.1007/s10584-016-1599-z
https://doi.org/10.1002/joc.4520
https://doi.org/10.1016/j.gloplacha.2018.01.015
https://doi.org/10.3390/w15071313
https://doi.org/10.1111/gwat.12027
https://doi.org/10.13031/2013.23153


Water 2023, 15, 3421 25 of 26

57. Xin, J.; Gong, C.; Wang, S.; Wang, Y. Aerosol Direct Radiative Forcing in Desert and Semi-Desert Regions of Northwestern China.
Atmos. Res. 2016, 171, 56–65. [CrossRef]
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