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Abstract: Reservoirs play an important function in human society due to their ability to hold and
regulate the flow. This will play a key role in the future decades due to climate change. Therefore,
having reliable predictions of the outflow from a reservoir is necessary for early warning systems
and adequate water management. In this sense, this study uses three approaches machine learning
(ML)-based techniques—Random Forest (RF), Support Vector Machine (SVM) and artificial neural
network (ANN)—to predict outflow one day ahead of eight different dams belonging to the Miño-Sil
Hydrographic Confederation (Galicia, Spain), using three input variables of the current day. Mostly,
the results obtained showed that the suggested models work correctly in predicting reservoir outflow
in normal conditions. Among the different ML approaches analyzed, ANN was the most appropriate
technique since it was the one that provided the best model in five reservoirs.

Keywords: reservoir; outflow; machine learning; random forest; support vector machine; artificial
neural network; prediction

1. Introduction

Reservoirs can be defined as high, open-air storage areas formed from the construction
of structures known as dams, capable of retaining and controlling the water flow [1]. Dams
have been built since the first civilizations [2]. The uses of these bodies of water are very
numerous: hydroelectric energy production; flood control; industrial and urban water
supply; and irrigation systems, among others [3]. According to Hao et al. (2023), the main
source of renewable energy in the world is hydropower [4], and, according to Gemechu
and Kumar (2022) [5], it contributed around 16% of the total electricity supply in 2018 [6].
However, criticism of the construction of dams has increased considerably in recent decades
due to their adverse social and environmental impacts [7]. In fact, dams lead to a loss
of longitudinal connectivity of rivers [8]. According to Grill et al. (2019), only 37% of
the rivers longer than 1000 km present in the world flow freely throughout their entire
length [9]. For this reason, and according to García-Feal et al. (2022) [1], a crucial aspect for
adequate water management and to resolve the problems caused by these infrastructures
in relation to flow variability is the coordination between reservoirs [10–13] aided by more
recent research [14,15]. However, there are aspects that can lead to the prevention of this
coordination because (i) numerous rivers flow through different countries with different
regulations, (ii) most of the dams are controlled by private businesses with different rules
and (iii) the proper operation of the dams depends on natural factors, the correct application
of operating standards and external demand [1]. According to García-Feal et al. (2022) [1],
all these mentioned aspects also lead to complications in using the rules for the operation
of water bodies.

Flood protection is an important role played by dams [1]. According to Kundzewicz
et al. (2014) [16], intense precipitation, among other characteristics of the climate system,
is the main source that leads to the generation of floods. The drastic consequences of
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this phenomenon are the loss of human life, economic and agricultural production and
worsening socioeconomic well-being [17]. Worldwide, flood events during the period from
1992 to 2012 caused up to 2437 million people to be affected, of which around 155,799 people
died, in addition to economic damage amounting to 480 billion dollars [18,19]. According
to the European Environment Agency (2017) [20], floods, both coastal and inland, affected
8.7 million and killed more than 2000 people in the period 2000–2014 in the European region.
According to Llasat et al. (2014), in Catalonia (Spain), between 1981 and 2010, there were up
to a total of 219 flood events claiming around 110 human lives [21]. Different studies can be
found in the literature showing that the frequency of floods motivated by intense rainfall
has increased in recent decades [22,23]. In addition, previous studies and scenarios [24,25]
show an upward trend in the frequency and severity of floods in the future. The origin of
the increase in these phenomena is due to climate change [26–28]. According to Berghuijs
et al. (2017) [29], extreme rainfall is more frequent as the concentration of greenhouse gases
increases since a warmer atmosphere can hold more moisture saturation [30–33].

The change in soil use is another important reason that leads to major flood events;
that is, deforestation [34,35] and urbanization [36]. The transformation of natural soil into
impervious soils favors the production of rapid water flow when it rains [36], leading to
an increased risk of flooding. In response to this, Wang et al. (2022) suggested that flood
management is an efficient procedure to reduce the adverse consequences [37], especially
for the coming years, and in this case, dams could play an interesting role [1]. Furthermore,
as a consequence of climatic change, the availability of water for agricultural and urban
and industry sectors can be reduced in such a way that important problems for food
production appear [38,39]. In this sense, the availability of water is an important factor
in the production of hydropower, which is strongly dependent on the climate [40]. In
fact, as reported by Obahoundje et al. (2022) [40], climatic change can produce important
changes in river water flow, generating new problems for the production of hydroelectric
power [41].

Therefore, the possibility of a correct early warning system is very necessary to gener-
ate information in sufficient time to act quickly and reduce damage and loss [42,43]. It is of
great interest to have instruments that help decision-making. Therefore, the prediction of
time series has gained a lot of attention lately [44,45]. The incorporation of models capable
of predicting the outflow of a reservoir could improve the operation of current water man-
agement, flood earlywarning and reservoir management systems once incorporated [1].
However, hydroclimatic processes are a non-linear process [46]. Due to this reason, one
solution was to develop models based on machine learning that are capable of solving
complex problems (in this work, the outflow of a reservoir) and decision-making [47].

In this present work, to forecast the reservoir outflow, the approach used is to establish
a relationship between the outflow one day ahead (x + 1) with the outflow, inflow, and
reservoir volume at the current day (x). One approach to do this through the development
of data-based models (analysis of data from a specific system) [1]. Data-driven modeling
applies machine-learning (ML) methods to generate models from existing data [1]. Accord-
ing to Mahesh (2018) [48], ML includes algorithms and statistical models that computer
systems use to resolve tasks without being expressly programmed. Numerous studies can
be found in the literature in which machine-learning methods are successfully applied for
hydrological purposes [49–52].

In this work, distinct methodologies based on ML techniques for the time series
modeling of the outflow of a reservoir were used. Random Forest (RF), Support Vector
Machine (SVM) and artificial neural network (ANN) were developed to predict the output
flow of eight different dams belonging to the Confederación Hidrográfica del Miño-Sil
(Miño-Sil Hydrographic Confederation, Galicia, Spain). The algorithms used in this study
belong to supervised learning; that is, the subset of these data used in training contain
labels (desired solutions) [53]. The major aim of the ML model in this study is to perform
different models in which the target output flow one-day-ahead value will be predicted
from three input variables of the current day.
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The results presented in this research are a summary of the work carried out by Sobrido
Pouso (2023) [54] during his Final Degree Project (to obtain a Degree in Environmental
Sciences), to which a brief statistical study has been added.

2. Materials and Methods
2.1. Area of Study

In this study, eight reservoirs belonging to the Miño-Sil basin (northwest of the Iberian
Peninsula) were used as the study area. Of all these reservoirs, seven are located in Galicia
(Belesar (Lugo), Frieira (Pontevedra–Ourense), San Estevo (Lugo–Ourense), Castrelo, Os
Peares, San Martiño and Velle (Ourense)), while one is in Castilla–León (Bárcena (León))
(Figure 1).
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of the Confederación Hidrográfica del Miño-Sil [55] and Mapa físico de España of the Instituto
Geográfico Nacional [56].

The Spanish part of the Miño-Sil hydrographic demarcation has an area of
17,581.98 km2 (89.73% of the total surface). It is also estimated to contain a population of
up to 795,407 inhabitants and a density of around 45 inhabitants/km2 [57]. Nowadays, the
Sil and the Miño rivers constitute one of the electricity-producing regions in Spain [58].
Of the eight reservoirs analyzed, Belesar is the largest, with a total capacity of 654.66 hm3,
while San Martiño reservoir is the smallest, with a total capacity of 9.60 hm3. All reservoirs
have hydrologic uses. The Bárcena reservoir has, in addition to hydrological uses, water
supply and irrigation uses [59].

2.2. Data Used

On request, 22 hydrological years on a daily scale were supplied by the Confederación
Hidrográfica del Miño-Sil [60]. The time series data provided included the level of the
reservoir (m.a.s.l.), the flow of contribution or entrance of the reservoir (m3/s), the output
flow of the reservoir (m3/s) and the hm3 and the percentage (%) of volume of the reservoir
between 1 January 2000 and 5 October 2022. The data used covers from 1 October 2000
to 30 September 2022, and the time series data used included the inflow and output flow
of the reservoir (m3/s) and the volume of the reservoir (%) as input variables and as the
output variable, the output flow of reservoir one day ahead (m3/s). The choice of these
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three variables is because they are easily accessible through the Miño-Sil Hydrographic
Confederation, and in a past research, they have provided good results [1].

For the development of the different models, the database was divided into four
groups: the training group (T) (between 1 October 2000 and 30 September 2013); the
validation group (between 1 October 2013 and 30 September 2016); and two test groups Z1
subset (between 1 October 2016 and 30 September 2019) and Z2 subset (between 1 October
2019 and 30 September 2022).

2.3. Machine Learning Models
2.3.1. Random Forest

Random Forest (RF, Figure 2) is an ensemble supervised ML approach, introduced
firstly by Breiman (2001) [61], based on a combination of decision trees [62], and is an
adequate procedure to capture non-linear dependencies [63]. In fact, it is an improvement
on the decision tree algorithm [64] since RF uses two elements of randomness to generate
uncorrelated decision trees that become part of the forest, increasing the diversity among
the trees [63]. This technique can use classification or regression trees to solve both kinds of
problems [63,65].
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An RF algorithm is trained using the “bagging method”, introduced by Breiman
(1996) [66], in which a data subset is estimated from the original dataset chosen randomly
with replacement, which helps to reduce the tree variance [67]. The bagging method in-
cludes two important steps: bootstrapping and aggregation [64]. Regarding bootstrapping,
it is a technique that aims to produce new random training sets from the original training
set, both of similar size, by a random selection with replacement [64]. According to Das
et al. (2023) [64], this step is used to decrease the sensitivity of the model to the training
data and decrease the probability of the model to overfit. Afterward, a random subset
of features is selected from the total set of features to build decision trees and serves to
decrease the correlation between trees [64].

Regarding a decision tree, depending on the function of the input attribute values,
each internal node splits into two or more sub-spaces [68]. This process continues until the
node cannot split further, converting to a terminal or leaf node [62].

In the regression tasks, the output prediction assigned to the sample is determined
by averaging the forecasting of each individual decision tree [64,69]. On the other hand,
in classification tasks, the majority vote is the criterion used to estimate the output predic-
tion [64,69].
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In this work, RF models were developed using different hyperparameter combinations:
number of trees; criterion; maximal depth; and applying pre-prunning. In this study, the RF
algorithm was implemented by studying the number of trees between 1 and 100 (99 steps,
linear scale), the maximal depth between 1 and 100 (99 steps, linear scale), and applying
pre-pruning (true and false). In addition to the models developed using the real scale of the
involved variables (RF models), some variations of the model were carried out using range
transformation between −1 and 1. This normalization was applied to the input variables
(RFN) and the input and the output variables and de-normalizing the results (RFN_D) to
compare the models with each other. The normalization process was carried out with the
training data and was then applied to the validation and querying phases.

2.3.2. Support Vector Machine

According to Antonanzas-Torres et al. (2015) [70], the Support Vector Machine (SVM)
is another supervised learning machine algorithm that was first introduced by Cortes and
Vapnik (1995) [71] for classification problems, and later a regression variant was added by
Vapnik (1995) [72] to solve regression problems. The SVM algorithm is a binary classifier
in that its main role is to find an optimal hyperplane that presents a maximum margin
between the feature vectors of all data in two categories [73] (Figure 3).
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This algorithm is used to resolve both linear and nonlinear problems, the latter through
the use of the kernel function transformation [75]. The kernel function is used to project
input data from a lower dimensional space into a higher dimensional feature space [76,77].

In this work, SVM models were developed using different hyperparameter combina-
tions; svm type, C and gamma. The Hsu, Chang and Lin (2003) [78] guide was followed to
study the performance of the gamma and C parameters. In this research, SVM was studied
using svm types (epsilon-SVR and nu-SVR), C values (between 0.03125 and 32,768 utilising
20 steps with a linear or logarithm scale), and gamma values (between 2−15 and 8 utilising
18 steps with a linear- or logarithm-scale subscript L-). In addition, in this case, different
models were developed using range transformation between −1 and 1 to the input variables
(SVMN) and normalizing the input and output variables, then de-normalizing the results
(SVMND) to compare the models with each other. The normalization process was carried
out with the training data and was then applied to the validation and querying phases.

2.3.3. Artificial Neural Network

An artificial neural network (ANN) is an intelligent computational system that mimics
biological neural networks [79,80]. In fact, this system is considered a possible tool to model
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complex relations between the input and output variables or to identify patterns [79]. An
ANN is usually used in problems in which output variables are determined from huge
input variables [81,82].

The architectures of ANNs are very variable and can be classified according to (i) the
number of layers into single-layer and multiplayer networks or (ii) the direction of infor-
mation flow and processing into feed-forward, recurrent and self-organizing networks [83].
According to Teke et al. (2023) [79], a multilayer feed-forward neural network is the most
widely used ANN architecture. In this architecture class, ANN includes three layers known
as input, hidden (one or more) and output layers [83,84] (Figure 4).
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Figure 4. Multilayer perceptron architecture with a topology 3-7-1; that is, three, seven and one
neuron in the input, hidden and output layer, respectively, to predict the outflow one day ahead.
Inspired by the figure of García-Feal et al. (2022) [1].

The information is moved between neurons in a direction from the input layers to
the output layers [81,85]. Each neuron is connected to each next layer neuron through
links [81], but this type of link is not established between neurons in the same layer [85].
Each neuron link can be understood as a connection strength, called weight [85]. The
general learning process in a neural network is as follows: The input data are received in
the input layer; which includes as many neurons as input variables [81]. The second layer,
which receives the information from the input layer, is the most important of the ANN [81]
and is responsible for calculating the weight and bias of the variable through an activation
function [86]. Finally, the information from the previous layer is moved to the output layer,
in which the output results are calculated with an error estimation [81,86].

According to Dragović (2022) [87], the training consists of synaptic weights modifica-
tion between the different neurons in order to reduce the error between the real and the
predicted value for the training cases. In fact, the modification of the synaptic weights is
carried out by means of learning algorithms [87]. There are different training algorithms,
but, according to Dragović (2022) [87], the backpropagation (BP) algorithm is the most
used [88,89].

In this study, ANN models were developed using different topologies, training cycles
and decay. The optimum values for each parameter were determined using the trial-and-
error approach. The ANN was studied using different topologies (varying the hidden
neurons number in the range of 2n + 1, n corresponding to the number of input variables),
training cycles (1 to 131,072 utilising 17 steps, linear or logarithm scale) and decay (true or
false). In addition, in this case, different models were developed using range transformation
between −1 and 1 to the input variables and the output variables, then de-normalizing the
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results (ANNND) to compare the models with each other. The normalization process was
carried out with the training data and was then applied to the other phases.

2.4. Metrics

To measure the model’s accuracy, different statistical parameters were used. These,
according to Morasi et al. (2007) [90], can be divided into three groups: (i) standard
regression statistics (Pearson’s coefficient of correlation, r); (ii) error index (root mean
squared error (RMSE), RMSE-observations standard deviation ratio (RSR), and the percent
bias (PBIAS)); and (iii) dimensionless statistics (Nash–Sutcliffe efficiency (NSE) [91]).

Pearson’s coefficient of correlation evaluates the collinearity between the predictions
and the real value with a range of −1 and 1 [90]. RMSE—Equation (1)—and RSR—Equation
(2)—quantify the variation in predicted values with respect to the real values in the data
units used [90], and PBIAS—Equation (3)—measures the average tendency of the predicted
data to be lower or higher than its observed counterparts [90,92]. Finally, the Nash–Sutcliffe
efficiency—Equation (4)—provides information on the fit of the data to the 1:1 line [90]. In
these equations, Yobs are real values, Ypred are values predicted by the model, Ymean is the
mean of all real data, and n is the total number of real data.

To select the best model among all the models developed for the same approach type,
the lowest RMSE value for the validation phase was used.

RMSE =

√
1
n

n

∑
i=1

(Yobs − Ypred)
2 (1)

RSR =

√
∑N

i=1

(
Yobs − Ypred

)2

√
∑N

i=1(Yobs − Ymean)
2

(2)

PBIAS =
∑N

i=1

(
Yobs − Ypred

)
∑N

i=1 Yobs
× 100 (3)

NSE = 1 −
∑N

i=1

(
Yobs − Ypred

)2

∑N
i=1(Yobs − Ymean)

2 (4)

3. Results and Discussion
3.1. Data Analysis

With the entire time series (2000–2022), the maximum, minimum and average values
for the output variables of each reservoir were calculated. The behavior of the maximum
flow presented a saw profile, indicating the great variability between the years studied
Figure 5. Large differences were observed in terms of the maximum output volume for,
for example, the Velle reservoir, where in December 2000 an output flow of 4637 m3/s was
recorded compared to other maximum values of only 313 m3/s. The average output flow
presented a more stable behavior, notable for the absence of those pronounced saw teeth,
than the maximum output flow presented. In fact, looking again at the Velle reservoir, it
can be seen that the average flow varied from a maximum of 608 m3/s to more moderate
flows around 100–180 m3/s.
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Figure 5. Maximum, minimum and average outflow values (m3/s) for each reservoir used in
this research.

Next, a brief study of innovative polygon trend analysis (IPTA) was carried out aimed
at identifying the behavior of the outflow during the entire time series studied. For this,
the twenty-two hydrological years were divided into two equal groups of eleven years,
on the one hand, the first eleven years (2000–2011), and on the other hand, the last eleven
hydrological years (2011–2022). Figure 6 presents, for each station, the IPTA method results,
which were applied to the average data.

None of the reservoirs analyzed showed a regular polygon. Although, at first, it seems
that the upper part of the polygon was regular, the lower part was highly unstable, with
many crossings between the monthly lines. In general, a large change in the output flow
(length of the lines) was observed for the autumn, winter and spring months, while for the
summer months, the change was very small (short lines). It can also be seen that, for the
Belesar and Os Peares reservoirs, the polygon was wider than in the rest of the reservoirs.
This means that there was a greater outflow heterogeneous temporal variation compared to
the other reservoirs. Finally, and based on the different graphs in Figure 6, it can be stated
that in all the reservoirs there is a clear decrease in the outflow flow because most of the
months are below the 1:1 line.
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3.2. Machine Learning Models Developed

Numerous models were developed for each ML algorithm (RF, SVM and ANN). After-
ward, the better models for each RF, SVM and ANN algorithms carried out in each reservoir
were selected using the criterion of the lowest value of RMSE in the validation phase.

The Table 1 shows the statistical parameters used to assess the performance of models
in predicting outflow from reservoirs one day ahead.
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Table 1. Better models for each RF, SVM and ANN algorithms for each reservoir. RMSE is the root
mean squared error (m3/s) and r is the Pearson’s correlation coefficient for the real and the predicted
values. Models in bold correspond to the best model. Adapted from Sobrido Pouso (2023) [54].

T V Z Z2

Model RMSE r RMSE r RMSE r RMSE r

Belesar
RFND 28.6 0.962 31.4 0.952 27.5 0.908 34.6 0.937
SVMN 31.9 0.952 31.0 0.953 24.8 0.926 33.5 0.942

ANNN-L 32.8 0.950 30.2 0.955 24.1 0.929 32.1 0.947

Os Peares
RFN 30.8 0.965 36.0 0.944 27.2 0.924 39.5 0.927

SVMND 37.8 0.947 35.9 0.944 26.6 0.927 36.0 0.940
ANN 44.1 0.930 36.5 0.942 27.1 0.924 36.1 0.940

Bárcena
RFND 7.2 0.948 9.0 0.930 8.1 0.918 9.7 0.917

SVMN-L 7.7 0.941 8.9 0.931 7.7 0.926 9.7 0.916
ANNND-L 7.7 0.940 8.9 0.933 7.9 0.922 9.4 0.920

San Martiño
RF 34.3 0.943 44.6 0.939 18.6 0.942 37.8 0.936

SVML 34.9 0.943 43.5 0.946 17.5 0.950 44.6 0.915
ANNND 34.9 0.941 44.6 0.939 17.9 0.947 32.5 0.951

San Estevo
RFND 47.3 0.967 70.5 0.937 30.9 0.937 47.2 0.957

SVMND-L 59.9 0.948 69.6 0.939 32.5 0.935 49.1 0.954
ANNND 58.5 0.950 68.1 0.941 31.3 0.937 48.0 0.956

Velle
RFND 71.0 0.970 95.5 0.941 50.1 0.937 88.2 0.946

SVMND-L 101.9 0.937 92.4 0.945 51.0 0.935 79.7 0.959
ANNND 100.2 0.938 91.7 0.946 47.8 0.943 78.4 0.958

Castrelo
RF 69.6 0.972 94.9 0.949 59.5 0.927 94.0 0.946

SVMN-L 91.7 0.951 95.4 0.950 51.0 0.944 88.8 0.955
ANNND 87.6 0.954 94.1 0.949 50.5 0.946 171.1 0.876

Frieira
RFND 98.7 0.956 122.6 0.938 68.3 0.930 104.9 0.949

SVMND 104.7 0.951 118.5 0.944 65.6 0.939 111.7 0.949
ANNND 105.5 0.950 118.8 0.942 62.7 0.941 118.4 0.936

Note: ANN: Artificial neural network; ANNN-L: Artificial neural network normalize in logarithm scale; ANNND:
Artificial neural network normalize de-normalize; ANNND-L: Artificial neural network normalize de-normalize
in logarithm scale; RF: Random Forest; RFN: Random Forest normalize; RFND: Random Forest normalize de-
normalize; SVML: Support Vector Machine in logarithm scale; SVMN: Support Vector Machine normalize; SVMN-L:
Support Vector Machine normalize in logarithm scale; SVMND: Support Vector Machine normalize de-normalize;
SVMND-L: Support Vector Machine normalize de-normalize in logarithm scale.

Within the different Random Forest models developed (RF, RFN and RFND), it can
be observed that RFND was the best Random Forest model for most of the reservoirs
(except for Os Peares, San Martiño and Castrelo) with RMSE values in validation phase
varying between 9.0 m3/s for Bárcena and 122.6 m3/s in the case of Frieira. Regarding
the developed SVM algorithms (SVM, SVML, SVMN, SVMN-L, SVMND and SVMND-L) the
best model depended on the analyzed reservoir, since in each one of the eight reservoirs,
different variants of the SVM algorithm showed the lowest values of RMSE in the validation
phase. In this sense, the lowest RMSE value (8.9 m3/s) was shown derived by the SVMN-L
algorithm (Bárcena). On the contrary, the SVMND algorithm (Frieira) showed the highest
RMSE value (118.5 m3/s). Finally, in the case of the ANN models developed (ANN, ANNL,
ANNN, ANNN-L, ANNND and ANNND-L), the ANNND algorithm was the best model in
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most of the reservoirs analyzed (except Belesar, Os Peares and Bárcena). The RMSE values
in the validation phase varyied between 8.9 m3/s for Bárcena and 118.8 m3/s for Frieira.
According to all results mentioned above, it can be concluded that there is no single model
that is capable of finding the best results for all reservoirs. That is, each reservoir has their
own best role models.

The best model among the three selected models for each reservoir could also be
chosen based on the RMSE value in the validation phase. In this sense, it can be seen that
the best models were obtained using the ANN algorithm in five reservoirs (Belesar, Bárcena,
San Estevo, Velle and Castrelo), being that the ANNND model was the one that showed the
best results on three occasions. According to these results, the ANN algorithm seems to
be a more suitable technique in this type of task, probably due to the non-linear nature of
the event. The Support Vector Machine model was the best model in three of the analyzed
reservoirs, being that the SVMND was the best model for Os Peares and Frieira and SVML
was the best model for the San Martiño reservoir. No RF model showed better results for
any reservoir, which suggests that this algorithm is not suitable for this type of task.

Detailing the results of the best model for each reservoir, different behaviors can be
observed between the training (T), validation (V), test (Z) and test-2 (Z2) phases.

• ANNN-L was the best model for the Belesar reservoir. This model showed good fit in
relation to RMSE and r value in the validation phase (RMSE = 30.2 m3/s and r = 0.955).
The other two selected models presented RMSE values close to the ANNN-L model
(31.4 m3/s and 31.0 m3/s for the RFND and the SVMN model, respectively). ANNN-L
showed similar statistics in the training phase, with a slightly higher RMSE value
of 32.8 m3/s. In the test phase, RMSE was 24.1 m3/s. However, the RMSE value
increased to 32.1 m3/s in the test-2 phase. This increase in the test-2 phase was not
unique for this model but was also observed in the rest of the models This behavior can
be caused by the outflow range to test phase being less than the range in test-2 phase.

• Regarding the Os Peares reservoir, SVMND was the model that provided the best
statistics in relation to the RMSE value in the validation phase (RMSE = 35.9 m3/). The
good adjustments provided by this model during the validation phase were very close
to the second best model, the RFN (36.0 m3/s). The model SVMND showed a similar
behavior in the training phase with a slightly higher RMSE value of 37.8 m3/s. The
RMSE value in the test phase was 26.6 m3/s. However, an increase in the value of the
root mean squared error in the test-2 phase (36.0 m3/s) can be observed, as happened
with the best model of the previous reservoir.

• Regarding Bárcena, the three models selected for this reservoir presented very similar
RMSE adjustments for the validation phase with values between 8.9 and 9.0 m3/s. The
ANNND-L model showed the lowest RMSE value (8.9 m3/s -8.86-) with an r of 0.933.
This model presented similar statistics in the training phase, with a slightly lower
RMSE value of 7.7 m3/s. The behavior shown by this model in the test phase was
similar to the training and validation phase (RMSE = 7.9 m3/s), having an increase in
its value for the test-2 phase (9.4 m3/s).

• In the case of San Martiño, all the selected models were in a very close RMSE value
range for the validation phase, with values between 43.5 and 44.6 m3/s, with the
SVML model being the best with an RMSE and r of 43.5 m3/s and 0.946, respectively.
This model presented different statistics in the training and test phase, with an RMSE
value of 34.9 m3/s and 17.5 m3/s, respectively. However, in the test-2 phase, the
SVML model was similar to the validation phase, with a slightly higher RMSE value
(44.6 m3/s).

• ANNND was the best model for the San Estevo reservoir, in which the RMSE value
in the validation phase was 68.1 m3/s and r of 0.941. The other two selected mod-
els presented an RMSE value close to that shown by the ANNND model (70.5 and
69.6 m3/s for the RFND and the SVMND-L, respectively). The ANNND model presented
a different behavior in the training and test phase with RMSE values of 58.5 m3/s
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and 31.3 m3/s, respectively. However, in the test-2 phase, the RMSE increased to
48.0 m3/s.

• For the Velle reservoir, the different selected models presented highly differentiated
RMSE values (between 91.7 and 95.5 m3/s), which was not the case in the rest of
the reservoirs (except Frieira). In this case, the best model was the ANNND model,
showing the lowest RMSE (91.7 m3/s) and highest r value (0.946) in the validation
phase. In the training phase, it presented a higher RMSE value of 100.2 m3/s and the
behavior observed for the test and test-2 phases (47.8 and 78.4 m3/s) followed the
same pattern as the rest of the models.

• The ANNND model was the best-selected model for the Castrelo reservoir, presenting
the best statistics in the validation phase (RMSE = 94.1 m3/s). The other two models
presented very similar values (94.9 m3/s for the RF model and 95.4 m3/s for the
SMNN-L model). The ANNND model behavior in the training phase presented an
RMSE value of 87.6 m3/s. Although for the test phase, the model presented good
results (50.5 m3/s) for test-2 phase, the ANNND model presented a very high RMSE
value (171.1 m3/s) compared to the rest of the phases.

• Finally, the best model of the Frieira reservoir (SVMND) showed an RMSE value for
the validation phase of 118.5 m3/s and a higher r value (0.944). The rest of the selected
models presented RMSE values of 122.6 m3/s (RFND) and 118.8 m3/s (ANNND) for
this phase. The model presented different statistics for training and test phases, in
which RMSE values were 104.7 m3/s and 65.6 m3/s, respectively. In the test-2 phase,
the RMSE value increased to 111.7 m3/s.

There are other statistical metrics, such as PBIAS, RSR and NSE, that also were eval-
uated to better understand the performance of the models. Regarding PBIAS (Figure 7),
a value closest to 0 leads to lower error predicted data with relation to observed data,
indicating best fit [90,92].
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The models for Belesar, San Martiño, Velle and Frieira reservoirs, showed positive
PBIAS values in all phases (T, V, Z and Z2), indicating model underestimation bias. On
the other hand, the model for San Estevo showed negative PBIAS values in all phases,
indicating model overestimation bias. The models for the remaining reservoirs (Os Peares,
Bárcena and Castrelo, respectively) showed both positive and negative PBIAS values
depending on the phase. In the Os Peares and Bárcena models, showed PBIAS values
closest to 0 (PBIAS = −0.01% and −0.10%, respectively) in the test phase, indicating an
accurate prediction. The highest negative PBIAS value, in the test phase, was −4.69%
obtained by San Estevo model. On the other hand, the maximum PBIAS value in the test-2
phase was obtained by the Frieira model (8.45%). Finally, the San Martiño and Frieira
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models, underestimated the observed data (PBIAS values between 2.75% and 6.11%, and
between 1.90% and 8.45%, respectively), while San Estevo and Castrelo models showed
that the predicted data overestimated the observed data (PBIAS values between −1.54%
and −4.69% for San Estevo, and between 0.83% and −4.17% for Castrelo, although, in this
last case, a slight underestimation was also observed in the validation phase).

In view of the results provided by the best-selected models it can be concluded that
for PBIAS values, the mean tendency of the simulated values compared to their observed
counterparts are not far from the 0 value (considered optimal).

The RSR values for each best reservoir model are shown in Figure 8. As can be
observed, the best model of each reservoir showed RSR values similar in training, validation
and test phases. The range was from 0.297 (validation phase, Belesar) to 0.386 (Z phase,
Bárcena). On the contrary, a larger difference in RSR values can be observed in the test-2
phase. The range varied between 0.291 (Velle) and 0.608 (Castrelo) and San Martiño and
Castrelo showed the highest RSR values (0.423 and 0.608, respectively). The presence of
data predicted by these models that was far from the observed data leads to a worse fit and
consequently an increase in the RSR value, indicating an inaccurate simulation of the model.
The optimum RSR value is 0, indicating a good simulation of the model [90]. Considering
this, the models for San Estevo and Velle, showed the most accurate simulations, since the
RSR values were below 0.355 in all phases, highlighting the lowest RSR values in the test-2
phase (0.294 and 0.291, respectively).
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Figure 8 also shows the NSE values of better models for each reservoir. As can
be observed, the best model of each reservoir presented NSE values similar in training,
validation and test phases. The range varied between 0.851 (test phase, Bárcena) and 0.912
(validation phase, Belesar). Considering these results, the variation between observed and
predicted data by the best model of each reservoir was not high, being similar in, practically,
all phases. However, important differences can be observed in the test-2 phase, since the
range was from 0.631 to 0.916. Taking into account that the optimal value of NSE is 1 [90],
and the farther the NSE value is from 1, the greater the difference between the observed
and predicted data by the model, The Castrelo model showed the lowest NSE value in the
test-2 phase (0.631), indicating that the simulations and observations were not similar. In
fact, ANNND models (San Estevo and Velle) showed the best fit between observed and
predicted data in all phases (NSE equal to or greater than 0.880). These models showed the
lowest dispersion between simulated and real data.

Next, to further illustrate the behavior of the models, an analysis of the predicted and
observed outflow time series for the test phases (Z and Z2) for each reservoir has been
developed (Figure 9). The test phase (Z) (October 2016 to September 2019) corresponded to
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1075 days (San Martiño and San Estevo), and 1095 days (rest reservoirs). The test-2 phase
(Z2) (October 2019 to September 2022) contained 1005 days (San Martiño), 1007 days (San
Estevo) and 1096 days (rest of reservoirs). In this sense, the total phase (ZZ2) corresponded
2080 days (San Martiño), 2082 days (San Estevo) and 2191 days (rest of reservoirs). The
red line corresponds to the predicted outflow and the back line to the observed outflow.
Generally, the range of outflow was high in all reservoirs, except for Bárcena, in which the
range was from 0 to 176 m3/s.

Figure 9 shows that the outflow range for Z2 was higher than for Z in all reservoirs
because of there was an important high peak of outflow that corresponded to a period of
high rainfall which occurred during the month of December 2019 and led to a considerable
increase in river flows. In this case, the models were not capable of fitting correctly. This
may be the reason that the RMSE values in the test-2 phase (Z2) were worse than in the
test phase (Z) in all models (Table 1). The difference in RMSE values between Z and Z2
phases was important in all models of each reservoir (20.2% in Bárcena, 33.3% in Belesar,
35.5% in Os Peares, 53.5% in San Estevo, 64.1% in Velle and 70.3% in Frieira), highlighting
the difference shown by the Castrelo model and San Martiño model, 238.6% and 154.8%,
respectively. In fact, the Castrelo model predicted an outflow of 8138.8 m3/s vs. the real
value of 3197.2 m3/s and the San Martiño model predicted a value of 453.5 m3/s vs. the
real value of 1145.8 m3/s. Furthermore, in the rest of reservoirs, the models were also
not capable of predicting the outflow with accuracy. For example, in the case of Frieira,
Velle and San Estevo, the best model predicted 1798.2 m3/s, 1835.7 m3/s and 1012.9 m3/s,
respectively, while the observed values were 3476.3 m3/s, 3148.8 m3/s and 1729.2 m3/s,
respectively. Furthermore, for the peak observed in the Os Peares reservoir, the SVMND
model predicted a flow of 524.6 m3/s for an actual flow of 846.4 m3/s. Finally, the Belesar
model and Bárcena model predicted a value of 489.4 m3/s and 88.2 m3/s, respectively, vs.
the real value of 783.4 m3/s and 38.8 m3/s, respectively. Therefore, all models of eight
reservoirs poorly predicted high outflow situations.

On the other hand, the models also presented some difficulties in modeling outflows
during intervals of very low outflows (dry events). Generally, the models, in these cases,
predicted higher outflow values than those observed. The test and Test-2 periods presented
some very dry years (especially, 2017, 2021 and 2022). For example, the Bárcena model
showed problems in predicting events of very low flows (below 10 m3/s) which occurred
from December 2016 to May 2017 (from 81 to 215 day) and between January and first half
of August 2022 (from 1926 to 2145 day).

Our research group has recently collaborated on a similar study in which these three
input variables were used to predict the outflow of a reservoir one day ahead [1]. In that
study, the data range used was from 2000 to 2019, using the same data division used in
this research (T, V and Z). However, in that study, ANN-based models (MLP, NARX and
LSTM), among others, were mainly used. In general, the results obtained in relation to the
values of r (above 0.93), NSE, RSR and PBIAS were quite good. When compared with this
research, small variations could be observed in relation to the values of r, NSE and RSR,
but, in general, were consistent with the data reported in this research.
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Figure 9. Time series (to the left) and scatterplots (to the right) for each of the best models of the 
Miño-Sil Hydrographic Confederation (Belesar, Os Peares, Bárcena, San Martiño, San Estevo, Velle, 
Castrelo and Frieira) using the test datasets (Z and Z2). The red dashed line corresponds to the line 
1:1 and the blue dashed line is the regression line of the real and predicted values. Figures to the left 
adapted from Sobrido Pouso (2023) [54]. 

Figure 9 shows that the outflow range for Z2 was higher than for Z in all reservoirs 
because of there was an important high peak of outflow that corresponded to a period of 
high rainfall which occurred during the month of December 2019 and led to a considerable 
increase in river flows. In this case, the models were not capable of fitting correctly. This 
may be the reason that the RMSE values in the test-2 phase (Z2) were worse than in the 
test phase (Z) in all models (Table 1). The difference in RMSE values between Z and Z2 
phases was important in all models of each reservoir (20.2% in Bárcena, 33.3% in Belesar, 
35.5% in Os Peares, 53.5% in San Estevo, 64.1% in Velle and 70.3% in Frieira), highlighting 
the difference shown by the Castrelo model and San Martiño model, 238.6% and 154.8%, 
respectively. In fact, the Castrelo model predicted an outflow of 8138.8 m3/s vs. the real 
value of 3197.2 m3/s and the San Martiño model predicted a value of 453.5 m3/s vs. the real 
value of 1145.8 m3/s. Furthermore, in the rest of reservoirs, the models were also not capa-
ble of predicting the outflow with accuracy. For example, in the case of Frieira, Velle and 
San Estevo, the best model predicted 1798.2 m3/s, 1835.7 m3/s and 1012.9 m3/s, respectively, 
while the observed values were 3476.3 m3/s, 3148.8 m3/s and 1729.2 m3/s, respectively. Fur-
thermore, for the peak observed in the Os Peares reservoir, the SVMND model predicted a 
flow of 524.6 m3/s for an actual flow of 846.4 m3/s. Finally, the Belesar model and Bárcena 
model predicted a value of 489.4 m3/s and 88.2 m3/s, respectively, vs. the real value of 783.4 
m3/s and 38.8 m3/s, respectively. Therefore, all models of eight reservoirs poorly predicted 
high outflow situations. 

On the other hand, the models also presented some difficulties in modeling outflows 
during intervals of very low outflows (dry events). Generally, the models, in these cases, 
predicted higher outflow values than those observed. The test and Test-2 periods pre-
sented some very dry years (especially, 2017, 2021 and 2022). For example, the Bárcena 
model showed problems in predicting events of very low flows (below 10 m3/s) which 

Figure 9. Time series (to the left) and scatterplots (to the right) for each of the best models of the
Miño-Sil Hydrographic Confederation (Belesar, Os Peares, Bárcena, San Martiño, San Estevo, Velle,
Castrelo and Frieira) using the test datasets (Z and Z2). The red dashed line corresponds to the line
1:1 and the blue dashed line is the regression line of the real and predicted values. Figures to the left
adapted from Sobrido Pouso (2023) [54].

According to these results, all models showed similar performances in normal condi-
tions. That is, in normal period of flows, the model adequately predicted outflow. However,
it is necessary to develop models that are also capable of correctly predicting situations of
small and high flows, especially in floods and droughts situations, to facilitate management
and defense against these adverse phenomena. The models presented in this research work
correctly for intermediate flows; however, it would be desirable if they presented better
adjustments for flood and drought periods, which can only be achieved with the gradual
increase in the time series and the appearance of these phenomena. It is necessary to
emphasize that the models developed in this work were implemented with only three input
variables. These variables are easy to obtain and allow a correct prediction. To improve the
model’s prediction, it would be necessary to incorporate other types of variables that could
define the reservoir in depth, such as climatological, hydrological or orographic variables.

4. Conclusions

This work consisted of an evaluation of different machine learning models to deter-
mine the outflow one-day ahead using three input variables: inflow; outflow; and reservoir
volume percent. RF, SVM and ANN models were developed for eight reservoirs belonging
to the Miño-Sil Hydrographic Confederation. The best models were selected according to
the criterion of lowest value of RMSE in the validation phase. In this sense, these models
were ANNN-L (Belesar), SVMND (Os Peares), ANNND-L (Bárcena), SVML (San Martiño),
ANNND (San Estevo, Velle and Castrelo) and SVMND (Frieira). The ANN algorithm was
the most suitable, since it was the best method in five reservoirs.

The models showed a good generalization performance with no significant signs
of overfitting. However, a different behavior of the models was observed in the test-2
phase (Z2). The general observations suggested that the analyzed ML models are suitable
to predict outflow of reservoirs in normal conditions and, for this reason, these can be
integrated into early warning or water resource management systems. However, the
prediction of these models against small and high flows is not as good as it should be.
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Although these models were developed using only three input variables, there are
other variables that could influence outflows, such as (i) precipitation, (ii) humidity, or
(iii) electricity demand, among others. It would also be interesting to develop models to
predict outflow for a longer period (two, three, six days, etc.) and consider the possible
effects that may exist on the variables selected in this research (or in future research) that
are due to climate change. These variables (input and output) should not be included
at random, but rather, different combinations of them should be studied. Although this
would be the most appropriate way to proceed, it must be considered that this procedure
would require a large quantity of time and computational cost (due to working with long
time series) for which this study, or studies, should be carried out, trying to optimize, as far
as possible, the use of available resources.

Likewise, it could study the influence that a different distribution of the database
could have on the results of the models and the hyperparameters combination in different
ranges, among others. It would be a good idea for the models to be updated with new data
for reasonable periods of time.

Finally, it is necessary to highlight that as the models developed in this research have
been implemented with general variables, and although they have had good results, this
does not imply that these models will work in a similar way in reservoirs with different char-
acteristics, such as orographic, climatic, or hydrological conditions. This warning should
be considered when using models outside their scope of development since the inherent
conditions of the reservoir have a significant impact on the input and output variables.
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