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Abstract: In recent years, a new discipline known as Explainable Artificial Intelligence (XAI) has
emerged, which has followed the growing trend experienced by Artificial Intelligence over the last
decades. There are, however, important gaps in the adoption of XAI in hydrology research, in terms
of application studies in the southern hemisphere, or in studies associated with snowmelt-driven
streamflow prediction in arid regions, to mention a few. This paper seeks to contribute to filling these
knowledge gaps through the application of XAI techniques in snowmelt-driven streamflow prediction
in a basin located in the arid region of north-central Chile in South America. For this, two prediction
models were built using the Random Forest algorithm, for one and four months in advance. The
models show good prediction performance in the training set for one (RMSE:1.33, R2: 0.94, MAE:0.55)
and four (RMSE: 5.67, R2:0.94, MAE: 1.51) months in advance. The selected interpretation techniques
(importance of the variable, partial dependence plot, accumulated local effects plot, Shapley values
and local interpretable model-agnostic explanations) show that hydrometeorological variables in the
vicinity of the basin are more important than climate variables and this occurs both for the dataset
level and for the months with the lowest streamflow records. The importance of the XAI approach
adopted in this study is discussed in terms of its contribution to the understanding of hydrological
processes, as well as its role in high-stakes decision-making.

Keywords: Explainable Artificial Intelligence; interpretable machine learning; XAI; iML; hydrology;
Chile; streamflow prediction; Elqui River basin

1. Introduction

Machine Learning (ML) and Deep Learning (DL) algorithms, largely representative
of the so-called Artificial Intelligence (AI) [1], are increasingly being used in earth and
environmental modeling, including application to the resolution of problems of interest in
hydrology and water resources [2–5].

The adoption of AI/ML/DL techniques in the context of water sciences, mostly
applied to hydrological prediction and forecasting problems, is part of a growing trend of
AI use in Earth System Science, consistent with the so-called Digital Age [6–10].

Although the study and application of AI/ML/DL in the field of hydrology (AI/ML/
DL/Hydro) has undergone accelerated growth in the last decade, its adoption continues to
be slow compared to other disciplines such as computer science, engineering, mathematics,
physics, and astronomy, to name a few [1,11]. According to some authors, this is due to
an initial lack of interest in AI and certain techniques associated with information and
communication technologies (ICT) that are perceived as if they were a “black box”, which
has generated a certain degree of skepticism in their actual contribution to the progress
of hydrology [12,13]. This initial perception has changed notably as AI/ML/DL has been
consolidated as a set of powerful tools to transform large volumes of data—that grow
exponentially—into actionable and practical knowledge [9,13]. Indeed, a couple of decades
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ago, some researchers asked: what does AI contribute to hydrology? [14] Today, as a result
of the paradigm shift in science that includes the increasingly predominant role of AI- and
ICT-based techniques, the question has been posed in completely opposite terms. That is:
what role does hydrological science play in the age of machine learning? [15,16].

Despite the high degree of incorporation of AI/ML/DL into hydrological research and
practice, the dilemma regarding the role that these techniques have in the discipline—which,
to a large extent, shows a strong predilection for process-based understanding—is not yet
resolved. Indeed, some authors state that techniques such as ML are central to the future of
hydrological modeling, while others still question whether ML actually has a role in the
field [17]. Part of this duality is explained by the central role, as in any scientific discipline,
that understanding and explanation have in the progress of hydrological knowledge,
“where the ultimate goal is to understand hydrological causality” [18]. However, as the
future becomes more uncertain, prediction—precisely one of the most distinctive features
of AI/ML/DL—as a scientific value in itself, becomes increasingly important, and is placed,
along with understanding, as a key epistemological value for the advancement of the
discipline of hydrology [19–21].

It is not strange, then, that recent reviews of the application of AI/ML/DL in hydrology
coincide in noting that interpretability, an attribute closely linked to understanding and
explanation [22,23], is the most widely criticized aspect regarding the use of AI/ML/DL in
the field, since some of these techniques “are particularly difficult to interrogate or justify
in physical terms” [2,4,24–27].

The two above-mentioned aspects, predictability and interpretability, the latter of
which is considered the basis of scientific understanding, represent a greater challenge
due to the so-called prediction/interpretability (also known as performance/transparency,
performance/interpretability, accuracy/explainability) trade-off in the AI/ML/DL context.
That is, the general idea that indicates the existence of an inverse relationship between
the interpretability of black-box models and the degree of precision reached by their
predictions, although this relationship is not as simple as has been argued [28–30]. Recent
studies on the challenge posed by the prediction/interpretability trade-off [28,29,31] and its
explicit incorporation into hydrological modeling show that this is a hot topic and therefore
transcendental in the discussion on the role that AI/ML/DL has in current hydrology and
will continue to have in an increasingly digitized world [32–34].

In this regard, some authors state that integrating theoretical or disciplinary knowledge
aspects with data-driven techniques, an approach known as theory-driven or hydrologically
informed machine learning, it is the only “way that we can take full advantage of machine-
aided knowledge discovery and advance our understanding of physical processes” [35].
Contrary to that statement, a new and emergent discipline recently adopted in the field
of hydrology, known as Explainable Artificial Intelligence (XAI) or Interpretable Machine
Learning (iML) [36–38], can provide Machine Learning with more tools to address the
prediction/interpretability trade-off in AI-based hydrological research and, in that way,
contribute to the progress of hydrological understanding.

However, the adoption of XAI/iML as a complementary discipline to the exponen-
tial growth that AI/ML/DL is experiencing in the hydrological field shows important
challenges to date. One challenge relates to the heterogeneous distribution, on a global
scale, of AI/ML/DL in hydrological research. Figure 1, for example, shows that although
AI/ML/DL/Hydro has grown exponentially in recent decades (Figure 1a), countries of
the southern hemisphere, apart from Australia, still contribute a very low or even no
contribution to the development of the discipline (Figure 1a).

The situation is more unfavorable in the case of XAI/iML in hydrological research
(XAI/iML/Hydro), where there are a small number of published articles compared to
AI/ML/DL/Hydro in the same period (Figure 1b) and where only a few countries have
contributed to XAI/iML research in the field (Figure 1c); none of them, apart from Australia,
belong to the southern hemisphere.
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Figure 1. Descriptive statistical plots of AI/ML/DL and XAI/iML hydrological research during
2003–2022. (a) Collaboration World Map and Average Growth Rate (AGR) plot for AI/ML/DL;
(b) Average Growth Rate (AGR) plot for XAI/iML; (c) Collaboration Network for XAI/iML;
(d) Thematic map of XAI/iML. Al plots were generated with the R package bibliometrix [39] using
the procedure explained in Appendix A.

Another important challenge of XAI/iML/Hydro is the need to expand research
topics to fill knowledge gaps that have not been sufficiently addressed. Thus, for example,
Figure 1d shows that the motor themes of XAI/iML/Hydro (first quadrant, top right),
that is, themes that are well-developed and crucial for structuring a research subject [40],
are currently related to topics such as climate and runoff models (terms such as river, soil
moisture, water management, hydrological modeling, streamflow, and flood are subsumed
under these two labels). In turn, topics such as water quality, drought or lakes are con-
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sidered emerging issues (third quadrant, bottom left), implying that they are minimally
developed and marginal. The graph allows us to verify that research areas such as seasonal
streamflow prediction or snowmelt-driven streamflow prediction in arid regions have not
yet been addressed within XAI/iML/Hydro, despite the progress that AI/ML/DL/Hydro
has experienced in those research areas. This suggests that there is still room to contribute
to filling these gaps with new research in the above-mentioned themes.

Based on the above considerations, this study aims to contribute to the progress of
XAI/iML/Hydro with regard to snowmelt-driven streamflow prediction in a basin placed
in the southern edge of the Chilean Atacama Desert in South America, an area highly
prone to water scarcity and water stress [41], where the need to improve water availability
prediction is an urgent and permanent requirement for water resource management. Specif-
ically, this study deals with the application of XAI/iML techniques to the interpretation
of snowmelt-driven streamflow prediction in an Andean basin of semi-arid north-central
Chile. The study is justified as the selected basin has been affected by a megadrought that
has extended over the last decade [42] and its position in the arid zone of the country makes
streamflow prediction difficult and prone to large numbers of errors using conventional
statistical methods [43]. In this context, an aspect not explored to date is the incorporation
of hydrometeorological predictors outside the basin boundaries (e.g., precipitation and
streamflow records from stations placed in the basin). Thus, the present study hypoth-
esizes that the inclusion of variables from the vicinity of the basin may have not only
predictive but also interpretative importance regarding the outputs of the prediction model.
The use of XAI/iML, together with a black-box ML method, allows us to address the
prediction/interpretability trade-off mentioned previously with the aim of increasing the
prediction accuracy without sacrificing its interpretability.

Finally, the main findings of this study are complemented with a general discussion
of the role that XAI/iML could have in hydrological research and practice, in which the
authors argue the two main reasons that greater adoption of XAI/iML is necessary in
hydrological research. These reasons are (a) its contribution to the progress of hydro-
logical understanding and (b) the role of accountability in the adoption of AI/ML/DL-
based hydrological solutions in a context of growing public and political scrutiny and
regulatory control.

2. Materials and Methods
2.1. A Case of XAI/iML Application to Prediction of Snowmelt-Driven Streamflows in a Basin of
the Semi-Arid Region of North-Central Chile

As an example of XAI/iML application in the hydrological prediction context, the
prediction of monthly snowmelt-driven streamflow in the Elqui River basin (ERB), located
in the semi-arid region of north-central Chile, was selected as a case study. The prediction
was performed using regression models constructed with Random Forest [44], an ML
algorithm categorized as a black box [45,46]. The models were built to predict monthly
streamflow at two lead times: one and four months in advance with respect to the prediction
month (August), consistent with the official procedure adopted for monthly streamflow
estimation in the study basin by the General Water Directorate of Chile (GWD). It is
recognized that in the past such forecasts had high error levels in the study area [43].
An explanation for this low level of performance could be associated with the use of
conventional statistical models with a high degree of transparency but very low predictive
performance. Thus, the case study adequately represents the prediction/interpretability
trade-off problem discussed in this paper. Improving predictive performance without
sacrificing interpretability is key in the search for new reliable forecasting tools, which
could also be subject to intense public and political scrutiny due to the effects of forecasting
on water management in the basin [47], especially in a context in which the ERB is affected
by harsh megadrought conditions that have dragged on for more than a decade [42].
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2.2. Study Area

The Elqui River basin is one of the main exorheic basins that make up the Coquimbo
Region, north-central Chile. It is located in the Elqui Province, (29◦35′ and 30◦20′ S, 71◦18′

and 69◦55′ W), covering an area of 9826 km2.
The ERB is composed primarily of 4 neighboring sub-basins (Lower Elqui River,

Middle Elqui River, Claro River, and Turbio River), with the Río Elqui en Algarrobal
(Q_IV_RElquiMedio_Alg) stream gauge station being the monitoring point at which the
official prediction of monthly streamflows for the September–March period, coinciding
with the snowmelt season, is performed. Figure 2 shows the location of the basin and
neighboring basins, as well as the locations of the stream and rain gauge stations, snow
courses, and points of interest considered in this study.

Water 2023, 15, x FOR PEER REVIEW  5 of 21 
 

 

tion/interpretability trade‐off problem discussed in this paper. Improving predictive per‐

formance without sacrificing  interpretability  is key  in  the search  for new  reliable  fore‐

casting tools, which could also be subject to intense public and political scrutiny due to 

the effects of forecasting on water management in the basin [47], especially in a context 

in which the ERB is affected by harsh megadrought conditions that have dragged on for 

more than a decade [42]. 

2.2. Study Area 

The Elqui River basin is one of the main exorheic basins that make up the Coquim‐

bo Region, north‐central Chile.  It  is  located  in  the Elqui Province,  (29°35′ and 30°20′ S, 

71°18′ and 69°55′ W), covering an area of 9826 km2. 

The ERB  is  composed primarily of  4 neighboring  sub‐basins  (Lower Elqui River, 

Middle Elqui River, Claro River,  and Turbio River), with  the Río Elqui  en Algarrobal 

(Q_IV_RElquiMedio_Alg) stream gauge station being the monitoring point at which the 

official prediction of monthly streamflows for the September–March period, coinciding 

with  the snowmelt season,  is performed. Figure 2 shows  the  location of  the basin and 

neighboring basins, as well as the locations of the stream and rain gauge stations, snow 

courses, and points of interest considered in this study. 

From a hydrological perspective, precipitation in the ERB presents marked seasonal 

and interannual variability, with greater precipitation during the wet seasons of autumn 

and winter (MJJA) and scant precipitation during the rest of the year. The ERB drainage 

network presents a water regime marked by snow and rainfall in the mountains. The El‐

qui River, the main stream of the basin, receives contributions from the Turbio and Claro 

rivers, both from the easternmost region of the basin, in the Andes Mountains. 

 

Figure 2. Location map of the Elqui River basin, neighboring basins, and points of interest. Only 

the names of stations and points of interest in the vicinity of ERB have been placed on the map and 

labeled. 

Figure 2. Location map of the Elqui River basin, neighboring basins, and points of interest. Only
the names of stations and points of interest in the vicinity of ERB have been placed on the map
and labeled.

From a hydrological perspective, precipitation in the ERB presents marked seasonal
and interannual variability, with greater precipitation during the wet seasons of autumn
and winter (MJJA) and scant precipitation during the rest of the year. The ERB drainage
network presents a water regime marked by snow and rainfall in the mountains. The Elqui
River, the main stream of the basin, receives contributions from the Turbio and Claro rivers,
both from the easternmost region of the basin, in the Andes Mountains.

Regarding the estimated mean monthly streamflow of the Elqui River, at the height of
the Río Elqui en Algarrobal station (Q_IV_RElquiMedio_Alg, 760 m.a.s.l.) (see Figure 2),
which is the monitoring point used for prediction, the maximum value is presented during
the months of December and January, with around 20 m3/s on average, while the rest of
the year the values fall to 10 m3/s on average [48]. Figure 3 shows the boxplot of monthly
streamflow at Río Elqui en Algarrobal stream gauge station, used as the monitoring point
for streamflow prediction.
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Figure 3. Boxplot of monthly streamflow at Río Elqui en Algarrobal stream gauge station. Boxplots
of the months used for prediction are highlighted in green. Vertical axis is plotted in log scale.

2.3. Data Sources and Analysis Tools

Table 1 shows the data sources used. Details regarding the collection and treatment of
each of the variables have been described in a previous work [48]. In summary, the main
treatment was applied only to streamflow and precipitation variables, not to the variables
obtained from gridded sources or those generated with ERA5 (see Table 1). Thus, the
treatment included, for the streamflow and precipitation variables, the collection of daily
data, analysis of missing and outlier data, elimination of data with a high percentage of
missing data, the filling in of missing values using the R package missRanger R [49] and
the aggregation of monthly values.

Table 1. Description of main data sources.

Type of Data Source Data
Category Index or Variable Symbol in

Database Main Source

Oceanic–Atmospheric El Niño El Niño 3.4 SSTA
Niño 1.2 SSTA

SST_34
SST_12

HadISST, KNMI Climate
Explorer and Met
Office Hadley Center

Antarctic Oscillation

Antarctic Oscillation
index

Southern Annular
Mode SLP

SAM_Z700
SAM_SLP

NOAA/NCEP/CPC

Natural Environment
Research Council (NERC)

Geopotential height

Subtropical 500 hPa
GH

Amundsen
Bellingshausen

500 hPa GH

Z500_sub
Z500_mid

NCEP/NCAR Reanalysis V1
NCEP/NCAR Reanalysis V1

Pacific Decadal
Oscillation PDO Index PDO

Joint
Institute for the Study of the
Atmosphere and Ocean
(JISAO)

Niño Modoki El Niño Modoki
Index EMI

Japan Agency for
Marine-Earth Science
and Technology (JAMSTEC)
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Table 1. Cont.

Type of Data Source Data
Category Index or Variable Symbol in

Database Main Source

Southern Oscillation Southern Oscillation
Index SOI NOAA/NCEP/CPC

Maden Julian
Oscillation

Maden Julian
Oscillation

MJ for each phase
[1,. . .10]

KNMI Climate Explorer
and NOAA/NCEP/CPC

Subtropical
Southwest Pacific SST

Subtropical
Southwest Pacific SST

index
SST_SSP NCEP/NCAR Reanalysis V1

Streamflow Stream gauge
monthly streamflow

Q_x_Ry_z: where
x: region

y: name of river
z: name of place

General Water Directorate
of Chile

Precipitation Precipitation record

P_x_Ry_z: where
x: region

y: name of main river
z: acronym of rain

gauge name

General Water Directorate
of Chile

Grid-based
precipitation

ERA5 monthly
precipitation

P_ERA5_i: where
i: name of polygon

location
ERA 5 Reanalysis

Snow cover
Normalized

Difference Snow
Index (NDSI)

ndsi Climate Engine

The prediction (regression) models were built in the RStudio integrated development
environment based on R language v4.0.5 [50]. The packages used included caret v6.0-
42 [51] for model construction, Boruta v8.0.0 [52] for attribute selection, DALEX v2.4.2
and DALEXtra v2.2.1 [53,54] for model interpretation, and tidyverse v1.3.1 [55] for general
database management.

2.4. Procedure

The general procedure is described in Figure 4. All the records described in Table 1 were
aggregated to a monthly scale to produce a reliable record period of 41 years (1980–2020).
The 2020 record was left out of this database in order to use it as an instance of local
model interpretation, such that the final database for regression model construction had
a total of 40 instances and 680 attributes (predictors), all numerical. The initial set of
predictors was reduced sequentially through (a) elimination of streamflow and precipitation
attributes outside the ERB vicinity (outside of the Huasco, Elqui, and Limarí basins),
(b) elimination of minimum variance attributes (using the “nearZeroVar” function of the
“caret” package with freqCut = 30/10 and uniqueCut = 25), and (c) elimination of attributes
with high correlation (using the “findCorrelation” function of the “caret” package with
cutoff = 0.8), and (d) standardization (mean = 0, SD = 1). The response variable (streamflow)
was used in its original form, and no transformation (c.a. log-transformation) was adopted
prior to the assessment of prediction performance and the interpretation analysis [56].

The study objective was defined as the comparison of two prediction models: for
one and four months of lead time with respect to the prediction month, consistent with
the official methodology currently used by the GWD. From the reduced database, an
attribute set was selected for each prediction model with the Boruta algorithm (with default
arguments), recognized for its high performance in such tasks [57–59].

Finally, the selected attributes in each model were combined to create a single attribute
pool to use in the construction of the two regression models. The models were constructed
in Random Forest, using R’s ranger v0.13.1 implementation [60]. For the validation, the
repeated k-fold cross-validation (args: number = 5, repeats = 10) was used instead of the
traditional hold-out partition because it “can provide a more stable estimate of prediction
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accuracy, as compared with simple k-fold CV,” which is highly advantageous for ML appli-
cations with small samples where it is not desired to affect the model validity estimation
performance [53,56,58,61,62].
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For assessment of the prediction performance, the RMSE, R2, and MAE metrics were
used. For the interpretation of results at model (dataset) level, the variable importance
(VI) [53,56], partial dependence plot (PDP) and accumulated local effects plot (ALE) tech-
niques were used, while for local (instance)-level interpretation for the year of the series
with the lowest streamflow (2020), the Shapley value (SHAPv) and local interpretable
model-agnostic explanation (LIME) techniques were used [53,56]. Variable importance
resides in the idea that if a variable is important it can be expected that, after permuting
the values of the variable, the model’s performance will worsen. The amount of change in
the performance is a measure of the importance of the variable [56]. Partial dependence
plot shows how the expected value of model prediction behaves as a function of a selected
explanatory variable [56,63]. Accumulated local effects plot, an unbiased alternative to
PDP, describes how features influence the prediction of an ML model, on average [64].

The Shapley value calculates the contribution of each attribute to the predicted value.
Put another way, “The value of feature j contributes φj to the prediction of this particular
instance, compared to the average prediction for the data set.”[64]. Finally, the idea behind
LIME is to locally approximate a black-box model using a simpler transparent model which
is easy to interpret. In the implementation adopted in this study, the surrogate local model
corresponds to a weighted LASSO lineal regression model [56].
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3. Results
3.1. Model (Dataset)-Level Interpretation

The AI/ML/DL model interpretation process begins at model performance level, “as
interpretation can only be as good as its underlying model” [62]. Accordingly, Table 2
presents the performance metrics of the streamflow prediction models for 1 month in
advance (m.i.a.) (September: Sep) and 4 m.i.a. (December: Dec), respectively.

Table 2. XAI/iML techniques potentially applicable to the field of hydrology.

Model RMSE R2 MAE

Train Cross-V Train Cross-V Train Cross-V

1 m.i.a. (Sep) 1.3313 2.5905 0.9421 0.8530 0.5517 1.8426
4 m.i.a. (Dec) 5.6747 12.1906 0.9495 0.7282 1.5152 8.3943

The results show high performance (i.e., R2 = 0.94) for the sample used for training,
and lower performance (i.e., R2 = 0.85) for the validation sample (obtained by CV) in
the different metrics for the 1-month-in-advance model (Sep). The 4-months-in-advance
model (Dec) presents high performance (i.e., R2 = 0.95) for the training sample and lower
performance (i.e., R2 = 0.73) for the validation sample (obtained by CV). The results are
consistent with other streamflow prediction studies in the same basin, although they have
different methodologies in terms of predictive performance. Likewise, they are consistent
with the fact that predictive performance in the ERB tends to decrease as the prediction
lead time increases [65]. In addition, the results are positive compared to those obtained
historically on an official basis by the General Water Directorate of Chile in this basin, as
studies indicate that no forecast performed in northern Chile has entered the “good forecast”
category [43]. These results suggest the possibility of comparing, in the future, a set of
ML/DL models with different levels of complexity, taking account for the fact that, within
the XAI/iML framework, models with approximately equally predictive performance
could give rise to different interpretations.

Regarding the most important variables for prediction, Figure 5 shows the mean
importance of the variables by prediction model.
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As seen in the graph, the order of variable importance is not the same in the two models.
In the case of 1 month ahead (Sep), the four most important variables are: streamflow at the
Río Elqui en Algarrobal station (Q_IV_RElquiMedio_Alg_08), streamflow at the Río Los
Molles en Ojos de Agua station (Q_IV_RGrandeMedio_Lm_08) in August, streamflow at
the Río Carmen en el Corral station (Q_III_RdelCarmen_Co_08) in August, and streamflow
at the Río Elqui en Algarrobal station (Q_IV_RElquiMedio_Alg_08) in July. In the case
of 4 months ahead (Dec), the four most important variables are cumulative precipitation
in the rainy season (MJJA) at the La Laguna Embalse station (P_IV_RTurbio_Lg_MJJA),
streamflow at the Río Los Molles en Ojos de Agua station (Q_IV_RGrandeMedio_Lm_08) in
August, streamflow at the Río Elqui en Algarrobal station (Q_IV_RElquiMedio_Alg_08) in
August, and the 500 hPa geopotential height in the Amundsen–Bellingshausen sector. It is
possible to interpret the set of precipitation and streamflow variables in terms of the water
status in the ERB vicinity. Climatic variables, which have traditionally been incorporated
as predictors of the water regime in a large part of continental Chile [42,66], have less
importance, depending on the model. For 1 m.i.a. (Sep), only the Southern Oscillation
Index (SOI) for the month of May appears among the 15 most important variables, with
very low importance. For 4 m.i.a. (Dec), meanwhile, 500 hPa geopotential height for
the rainy season (MJJA) in the Amundsen–Bellingshausen sector appears in fourth place
of importance. This finding is consistent with what has been found by other authors
who indicate that this variable is associated with the current megadrought conditions
affecting a large part of continental Chile [42]. This aspect is important, as December is the
month of peak snowmelt in the streamflows in the ERB and, therefore, when the greatest
contribution to the cumulative water volume in the basin occurs. In the same model, the
SOI for the month of May is less important, which could be explained by the fact that
El Niño conditions have lost precipitation prediction ability in central and north-central
Chile. Indeed, El Niño has presented less predictive ability in the last decade due to
the influence of other ocean climate factors, with the 500 hPa geopotential height in the
Amundsen–Bellingshausen sector standing out [42,67].

Figure 6a,b presents the partial dependence plots (PDP), also known as partial de-
pendence profiles, for both models, to show how the expected prediction value behaves
as a function of some variable of interest, using the most important variable in each
model [56,62,63]. The graphs highlight two important aspects for interpretation: first,
it is observed that the individual ceteris paribus (CP) profiles, similar to the individual
conditional expectation (ICE) plots, are parallel, which is indicative of an additive model
without interaction between predictors, and facilitating extrapolation in the predictor space
by making the PDP adequately represent the profile of each instance [56,65,68]. Second, the
graphs show that for values between −1 and 1 SD from the predictor mean, the estimated
streamflow at Río Elqui en Algarrobal presents a low linear increase, although it is clearly
staggered throughout the prediction domain. With predictor values of more than 1 SD from
the mean, a faster increase in estimated streamflow at the monitoring station is observed,
of up to approximately 2 SD from the mean.

This can be interpreted in terms of thresholds in the predictors that indicate the occur-
rence of a staggered change in predictor–response relationships, which seems reasonable
since hydrological relationships between precipitation and snowmelt-driven streamflows
in mountainous areas are generally parameterized in terms of threshold values [68,69]. The
foregoing is confirmed by the accumulated local effects (ALE) plots, also called accumu-
lated local profiles, which are shown in Figure 6c,d. The ALE plots in this case have an
interpretation similar to that of the PDP, thanks to the lack of interaction between predic-
tors. It is more clearly seen that both models present three predictor–predicted streamflow
relationship levels. For 1 m.i.a. (Sep) (Figure 6c), streamflow at the Río Elqui en Algarrobal
station (Q_IV_RElquiMedio_Alg_08) in August presents a first level between −1 SD and 0,
a second level for values between 0 and 1.3 SD, and a third level for values above 1.3 SD.
Meanwhile, for 4 m.i.a. (Dec) (Figure 6d), cumulative precipitation in the rainy season
(MJJA) at the La Laguna Embalse station (P_IV_RTurbio_Lg_MJJA) presents a first level
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between approximately −1 and 0, a second between 0.3 and 1, and a third for values over
1.2 SD.
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Thus, ALE plots make it possible to verify that the effect of predictors on forecast
streamflow is consistent not only with intuition, but also with what is postulated by the
domain knowledge on hydrological relationships in high mountain conditions [68–70].

3.2. Local (Instance)-Level Interpretation

Because the study area has experienced megadrought conditions in the last decade,
associated with various factors [42,66,67], it is important to analyze how the selected
attributes explain the lower streamflow recorded in the available database. To this end,
the September (December) 2020 streamflow was selected as the event to forecast, and the
results were interpreted in terms of the Shapley value (SHAPv) and LIME, two of the
most-used local techniques for hydrological applications in the XAI/iML context [56,63,64].

Figure 7, below, shows the SHAPv and LIME values for the main variables that explain
the September (December) 2020 streamflow. SHAPv assigns each feature an importance
value for a particular prediction. As seen in the figure, for September 2020 (Figure 7a)
the three most important variables are streamflow at the Río Elqui en Algarrobal sta-
tion in August (QIV_RElquiMedio_Alg_08), streamflow at the Río Elqui en Algarrobal
station in July (QIV_RElquiMedio_Alg_07), and streamflow at the Río Carmen en el Cor-
ral (Q_III_RdelCarmen_Co_08) in August. Meanwhile, for December (Figure 7b), the
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three most important variables are precipitation at the Laguna Embalse station in win-
ter (MJJA) (P_IV_RTurbio_Lg_MJJA), streamflow at the Río Carmen en el Corral station
(Q_III_RdelCarmen_Co_08) in August, and streamflow at the Río Elqui en Algarrobal
station (QIV_RElquiMedio_Alg_08) in August. Thus, in predictive terms, the water status
of the vicinity of the Elqui River basin explains, to a large extent, the minimum streamflow
recorded in September (December) 2020. The use of SHAPv, therefore, allows the impor-
tance of the selected variables for a particular instance-level prediction to be distinguished
from their importance in a dataset-level model.
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LIME, meanwhile, is a surrogate model, trained to approximate the predictions of the
underlying black-box model to explain individual predictions by learning an interpretable
model locally around the prediction [56,64,71]. LIME prediction curves were generated
using the main variable in each model obtained by SHAPv. It can clearly be observed that
the low estimated streamflow in both months is explained because, in each model, the
value of the most important predictor variable was found on the lower predictor–response
relationship level.

These findings are important from the perspective of streamflow prediction models
for the study area if they are compared, for example, to the official findings of the General
Water Directorate of Chile or those of local and research organizations, which base their
forecasts on a combination of global climatic variables and exclusively local variables
(within ERB boundaries); that is, variables that do not incorporate information from the
basin vicinity into the forecasting models [65,72–74]. This can be explained by the role
that scientific knowledge and understanding have in hydrological research and practice,
in which the variables selected by the analyst are expected to obey some mechanism that
is plausible in physical terms; this is typical of the culture some call “data modeling,” the
purpose of which is “[t]o extract some information about how nature is associating the
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response variables to the input variables” [75,76]. By contrast, in a data-driven approach,
the variables are selected algorithmically based on the minimization of a loss function. The
role of XAI/iML in this context is precisely to generate an explanation, that is, “the process
of describing one or more facts, such that it facilitates the understanding of aspects related
to said facts” [77].

4. Discussion

Even though recent studies have shown the utility of XAI/iML in hydrological re-
search, such as in the interpretation of black-box prediction models in tropical areas of
Brazil in the southern hemisphere [78], in the prediction of levels of groundwater in a
aquifer in the semi-arid region of the southern United States [79] or in the prediction of
groundwater levels in a desert region of China [80], to mention a few, this is the first study,
according to the best knowledge of the authors, looking at the application of XAI/iML to
snowmelt-driven streamflow prediction in an Andean basin of South America.

The XAI/iML techniques used in this study contributed to the interpretation of the
black-box model outputs in two ways: first, the results allowed us to identify the importance
of hydrometeorological variables outside the basin boundaries, which is a novel element of
our research, since most of previous research in the study area restricts the set of this type of
variables to those located locally within basin boundaries [43,65]. Due to the scarcity of data
in most of the South American countries in particular, and in arid and mountain regions,
the use of local variables beyond the basin boundaries, as a way of compensating space for
time (similar to the idea of “trading space for time” used in regional frequency analysis in
hydrology [81]), offers the possibility of improving the performance of predictive models
under conditions of data scarcity, which is common in several countries of the southern
hemisphere. Second, the results are consistent with hydrological knowledge, regarding
threshold values in the relationship between precipitation and streamflow, for example,
which reinforces what has been indicated at the beginning of the study, that XAI/iML
techniques constitute valid tools for the progress of the discipline in terms of its contribution
to hydrological understanding. The above is part of a broader debate regarding the role
that XAI/iML and AI/ML/DL have on scientific progress and on high-stakes decision
making that may impact society, as described below.

Various authors have addressed the reasons that XAI/iML is considered important
and even necessary amid the increasing advancement of AI/ML/DL in today’s society.
These considerations include the need for transparency, “to trust the model, especially when
they are used for high-stakes application” [82]; the need to open black-box models, “not
only for acceptability within society, but also for regulatory purposes” [83]; to meet various
requirements and address concerns that arise from various domains, including “social,
cognitive, philosophical, ethical and legal” concerns [84]; “To facilitate greater human
acceptability” of AI-based systems [85]; to address the challenge of greater transparency
due to the relationship between transparency and trustworthy AI, the basis for some recent
regulations [86]; and “To amend the lack of understanding of AI-based systems, their
reasoning processes, and their outputs” [87], to name a few. As stated in a recent study on
the matter, “Many further reasons [including legal reasons] of public interest, like fairness
or security, as well as business interests like ease of debugging, knowledge retrieval, or
appropriate user trust have been identified” [63].

In the hydrology context, unlike the reasons expressed in the general AI/ML/DL
community, the main reasons stated by researchers for the incorporation of XAI/iML are re-
lated to their contribution to greater understanding of the hydrological process, coinciding
with the epistemic value of understanding in the progress of the discipline [18–21]. In the
opinion of the authors of this paper, however, the incorporation of XAI/iML into the disci-
pline should involve at least two main reasons based on the factors that have historically
shaped the progress of the discipline: technological development and the needs of soci-
ety [88]. These reasons are: (a) the contribution of XAI/iML to the progress of hydrological
understanding in the first place, and (b) accountability in the use of AI/ML/DL techniques
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in a context increasingly permeated by ethical, political, and regulatory considerations,
where AI-based solutions are increasingly more embedded in high-stakes decision-making
systems [47,89].

Each of the mentioned reasons is detailed below:

(a) Contribution to the understanding and progress of the discipline: The first reason for
which it is considered not only important but also necessary to deepen the adoption of
XAI/iML in hydrological research is that this discipline aids in facing the transparency
limitations of the black-box techniques that have undergone major expansion in the
discipline. This reason is argued by the authors of this paper, contrary to what is
stated by those who, regarding the theory-guided approach, indicate that “It is only
in this way that we can take full advantage of machine-aided knowledge discovery
and advance our understanding of physical processes.” [35]. The reasons presented
in hydrological applications of XAI/iML to date clearly reinforce this conviction. For
example, some of the reasons expressed by researchers for including XAI/iML in
their applications of AI/ML/DL are: that interpretable machine learning methods are
adopted for better physical understanding [90]; to interpret the optimum modeling
and understand how each input variable affects the selected output [80]; to extend the
interpretability of machine learning models so the results can be better understood
by humans [91]; to show that ML methods can provide accurate predictions for
various tasks and that the hydrological processes involved can be interpreted so that
results are more understandable to humans [92]; and to overcome black-box model
limitations related to practical implications for water resource research [93]. Thus, as
stated in other studies, in terms of contribution to the understanding of hydrological
processes based on the application of AI/ML/DL, the authors of this paper also
“recommend that the hydrological community makes more use of the novel methods
of interpretable machine learning” [94].

(b) Accountability in trustworthy AI/ML/DL for high-stakes decision-making systems:
The second reason that XAI/iML can contribute significantly to hydrological research
and practice, which has been tangentially recognized in the hydrology community, is
the importance that ethical and regulatory issues concerning the use of AI/ML/DL
overall have taken on [83,85,95–98]. The regulatory aspect has emerged as a natural
extension of the ethical debate on AI toward the field of AI governance, the main
objective of which is to achieve what has been called Trustworthy AI [99]. Hydrol-
ogy, a discipline that throughout its history has known how to adapt to the context
of technological development and social needs in which it is immersed [88], due
to its own evolution, is inextricably linked to human affairs. And while an under-
standing of the processes and the progress of hydrological knowledge continue to
be the main value of the discipline [19–21], the contribution of hydrology to solving
the problems of society will require consideration of the ethical issues behind the
solutions it provides [18,100]. This idea is reinforced when the discipline itself has
explicitly recognized the increasingly substantial role of human–water interactions,
and where communication of scientific knowledge and the acquisition of feedback
from stakeholders are key factors in the progress of the discipline and its mission to be
a “science for solutions” [101]. Various authors have begun to analyze and recognize
the ethical and accountability implications brought about by the use of AI/ML/DL in
hydrological research (see, for example, a recent discussion on the ethical aspects of
DL in hydrology [3]), and it is expected that as the future of hydrology is increasingly
connected to the provision of solutions to society’s water-related problems, the need
to generate reliable solutions in a context in which many of them will be generated
by AI/ML/DL, especially those linked to high-stakes decision-making, will be more
pressing [8,47,89,102].

The reasons for a greater incorporation of XAI/iML into hydrological research, ac-
knowledging the gaps mentioned in the Introduction section, cannot be separated from the
advantages and limitations that these techniques possess. Thus, for example, the most rec-
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ognized advantage of XAI/iML is its ability to untangle how AI/ML/DL black-box models
make their predictions [91], that is, make a model interpretable. In this sense, a model is
interpretable if it gives rise to not only mechanistic understanding (transparency) but also
to a functional understanding [63]. Regarding the limitations of XAI/iML, some authors
mention, for example, that XAI techniques cannot explain events that never happened in
the past. “When faced with new and unprecedented circumstances, the explanations pro-
vided by XAI may not adequately account for these events, leading to potentially inaccurate
forecasts” [103]. This could clearly explain the difficulty of obtaining a higher performance,
as we found in this study, when the record includes the effects of an unprecedented drought,
such as the one currently affecting the study area. Likewise, limitations are mentioned such
as the lack of standardization of metrics and technique evaluation frameworks, a large
number of taxonomies of very diverse XAI/iML techniques and, sometimes inconsistent
among them, a lack of agreed definitions, etc. [63,103]. At the level of specific techniques,
advantages and limitations are also recognized. For LIME, for example, while one advan-
tage might be that “LIME’s explanations for an ML model’s prediction are optimized to
be as simple as possible”, some disadvantages are that “LIME only remains faithful in its
predictions for an ML model on a localized level” or “Despite the best efforts of LIME’s
developers to simplify the explanations generated by this algorithm, the interpretability of
the final results is still mediocre for non-expert users” [104]. The same occurs in the case of
SHAP, where one of its advantages is that “As a mathematically enforced concept Shapley
values have additional beneficial properties such as consistency and accuracy” while one of
its disadvantages would be that “SHAP has been shown to be inconsistent and vulnerable
to adversarial attacks despite the mathematical properties of Shapley Values” [104].

Finally, and even though this study aims to contribute to filling in the current knowl-
edge gaps in XAI/iML/Hydro, there are clearly still several aspects that can be developed
in future work. Among them is continuing to investigate issues not yet addressed, or the
so-called emerging issues (see Figure 1d, in Section 1, Introduction). Among these, the role
of XAI/iML in the interpretation of predictive black-box models associated with drought,
water quality, lakes or downscaling applications are a few examples. Another relevant
aspect mentioned by other authors is related to the so-called Rashomon Effect, “which
describes the following phenomenon: for a given dataset there may exist many models
with equally good performance but with different solution strategies. The Rashomon Effect
has implications for Explainable Machine Learning, especially for the comparability of
explanations” [105]. As recognized by a recent XAI/iML/Hydro study on the matter: “[. . .]
while the field of interpretable ML has started to blossom in the recent past, little attention
has been directed to this topic.” [106]. The findings of our study, as well as the recognized
advantages and limitations of XAI/iML, guide future work in this direction.

5. Conclusions

The present study seeks to contribute to addressing the challenge of expanding the
use of XAI/iML globally, particularly in the southern hemisphere, where, apart from in
Australia, there is a large adoption gap. It examines the challenge of expanding its appli-
cation to new research topics, and presents the application of XAI/iML to the prediction
of snowmelt-driven streamflow in an arid basin in the north-central region of Chile in
the southern hemisphere. The work shows that the use of XAI/iML techniques such as
variable importance, partial dependence plots, accumulated local effects plots, Shapley
values and local interpretable model-agnostic explanations contribute significantly to the
interpretation of the black-box prediction models generated with the Random Forest ML
technique. At the model level, the hydrometeorological variables in the vicinity of the basin
are more important than the climatic variables in streamflow prediction for one and four
months ahead.

The findings also show that the models predict the low streamflow values at the moni-
toring station for the year 2020 in terms of the hydrometeorological variables in the vicinity
of the basin associated with low streamflow and precipitation under drought conditions.
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Finally, the importance of contributing to the adoption of XAI/iML in the hydro-
logical community is not only justified by the contribution that this discipline can have
in the progress of the understanding of hydrological processes, but also by the role it
is having regarding accountability in trustworthy AI/ML/DL for high-stakes decision-
making systems.
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Appendix A

Plots in panel a were generated after processing 2008 scientific papers obtained
from three bibliographic databases (collections) extracted from the Scopus search engine
(www.scopus.com) accessed on 16 May 2023 using three keyword combinations (i.e.,
(a) Machine learning AND hydrolog*, (b) Deep learning AND hydrolog*, and (c) Artificial
intelligence AND hydrolog*), with their respective restriction criteria, for the 2003–2022
record period. The search was conducted in titles, keywords, and abstracts. Publication
period (2003–2022), document type (articles), language (English), and subject area (environ-
mental sciences, earth and planetary sciences, agricultural and biological sciences, engi-
neering, computer science, mathematics, energy, multidisciplinary, and decision sciences)
were used as inclusion criteria (filters). Each result dataset (collection) was downloaded
in csv format, incorporating all available download attributes. The three datasets were
combined to then remove duplicates and refine the database (delete records with missing
data in the Author, Keyword Plus, and DOI fields)

Plots in panels b, c and d were generated with the same search criteria but using the fol-
lowing keyword combinations (explainable artificial intelligence + hydrolog*; Interpretable
machine learning + hydrolog*, XAI + hydrolog*, explainable machine learning + hydrolog*).
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