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Abstract: To investigate the influence of the Hutuo River (North China) ecological water replenish-
ment project on the hydrogeochemical processes of groundwater, 64 groundwater samples collected
at different time intervals after four replenishment events, and four samples from the Middle Route
of the South-to-North Water Diversion Project water, were analyzed for water chemistry. Hydro-
geochemical methods such as the Piper diagram, chloride-alkalinity index, and ion correlation were
employed to analyze the characteristics of groundwater chemical evolution through replenishment.
The results demonstrated that the hydrochemical types of groundwater in the study area underwent
significant changes during continuous replenishment in the Hutuo River region. During the ini-
tial replenishment period (October 2019), the dominant hydrochemical type of groundwater in the
study area was Mg-Na-HCO3-SO4, whereas the dominant type in the Middle Route of the South-
to-North Water Diversion Project water was Ca-Na-SO4-HCO3. As the replenishment continued,
the hydrochemical types of groundwater in the study area evolved into Ca-Na-Mg-HCO3-SO4,
Na-Ca-Mg-HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. The groundwater experienced a dissolution of
calcite, gypsum, nitratine, carbonate rocks, and gypsum, accompanied by dilution effects, result-
ing in reduced ion exchange as replenishment progressed. The input of the high quality Middle
Route of South-to-North Water Diversion Project water effectively promoted groundwater quality
improvement, leading to an overall decrease or stabilization of components other than Ca2+ in the
groundwater. Water quality was assessed using the entropy water quality index, with indicators
including Na+, SO4

2−, Cl−, pH, total dissolved solids, NO3
−-N, NO2

−-N, F−, Al, As, and Zn. The
evaluation results showed that, except for one medium-quality water sample, the water quality of
the other samples was suitable for drinking and domestic purposes during the early replenishment
period. The Middle Route of the South-to-North Water Diversion Project exhibited excellent quality
(Rank 1), and as replenishment progressed, all water samples demonstrated good quality by October
2020, with a gradual improvement.

Keywords: groundwater replenishment; hydrogeochemistry; water-rock interaction; entropy water
quality index; Hutuo River

1. Introduction

Owing to the increasing demand for water resources by humans, the balance between
groundwater extraction and replenishment has been disrupted, and excessive groundwater
exploitation has become a global challenge [1]. Overexploitation of groundwater has
led to significant changes in the ecological environment, including river depletion and
deterioration of water quality [2–4]. Groundwater replenishment is an effective measure
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to alleviate water scarcity and improve the water environment. River infiltration, which
replenishes surface water into aquifers, is a fast and efficient method of groundwater
replenishment [5–7].

During the ecological replenishment process, replenished water and groundwater
interact [8], leading to hydrogeochemical changes in the groundwater and specific reactions
with the aquifer medium [9,10]. Daesslé et al. [11] found that, in a groundwater replen-
ishment process in Mexico, wastewater replenishment disrupted the acid-base balance
of groundwater and altered the direction of carbonate dissolution and precipitation. Bar-
tak [12] and Kurki [13] investigated groundwater replenishment in India, Finland, and
other locations and discovered that river infiltration replenishment gradually impacted
the lithology of the aquifer. Greskowiak [14] found that during the process of artificial
groundwater replenishment, the change in redox conditions caused by water replenish-
ment leads to reoxidation of sulfides at the top of the aquifer. Wang et al. [15] found
that microbial degradation reduced the concentration of chemical oxidation demand in
groundwater during the replenishment process. Su et al. [16] studied the process of Liao
River infiltration replenishment and identified stratified reactions and the formation of
redox zones at different aquifer depths. During the ecological replenishment period in
Ejinaqi, the hydrochemical type remained relatively stable, although the concentrations
of major ions increased [17]. In an experiment on replenishing groundwater from south
to north through infiltration, researchers discovered that the riverbank filtration could
provide turbidity, trace organic substances, and major cations and anions in the Yongding
River [18].

The replenishment of water into the underground aquifer causes changes in the tem-
perature and oxidative environment of the aquifer, leading to changes in ion concentrations
in groundwater [19,20]. Water, as a carrier of pollutants, can induce 70% of diseases, and
20% of cancer cases worldwide are related to water pollution [21,22]. Long-term consump-
tion of contaminated water with nitrates can lead to “blue baby syndrome” disease in
infants [23,24]. Prolonged consumption of contaminated water with fluoride levels exceed-
ing the standard limits can cause dental and skeletal fluorosis [25–27]. Shen et al. [28] (2010)
found a linear relationship between fluoride concentration and the prevalence of dental
fluorosis. Li et al. [29,30] concluded that a study on groundwater quality and health risk
assessment is necessary.

The alluvial fan of the Hutuo River in the North China Plain is an important economic
development zone; however, it is plagued by ecological problems such as river drying and
groundwater funneling [31], which has garnered significant attention from hydrogeolo-
gists [32]. To improve this situation, with the completion of the central part of the Middle
Route of the South-to-North Water Diversion Project, water diversion has become a new
method to alleviate water shortages in North China. The diversion of water in the Middle
Route of the South-to-North Water Diversion Project will inevitably cause changes in the
hydrochemical characteristics and water quality of the groundwater. Chemical characteriza-
tion is the basis for studying the chemical composition and evolution of groundwater [33,34].
Previous studies have extensively explored the water-rock interaction mechanisms [35,36],
water quality assessment, and prediction [37,38] during the continuous excessive exploita-
tion of groundwater in this region. However, the hydrochemical evolution characteristics
and water quality during the groundwater replenishment process are still unclear. This
study will help to ensure the water quality safety of replenishment areas, as well as avoid
and prevent pollution risks during the groundwater replenishment process.

2. Study Area

The Hutuo River is located in the North China Plain. The study area is located in the
middle zone of the Hutuo River from Xinhua district in Shijiazhuang City to Gaocheng
district in the east and is the main receiving area of the Hutuo River in the central part of the
Middle Route of the South-to-North Water Diversion Project, with a length of approximately
40 km (Figure 1). This region mainly has a temperate, semihumid, and semiarid continental
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monsoon climate. Over the years, the average temperature in the study area has been
13.9 ◦C. The study area has the characteristic of simultaneous rainfall and heat [39], with
precipitation mainly concentrated from June to August, accounting for about 80% of the
annual precipitation [40]. The average annual precipitation is 484.0 mm.
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Figure 1. Location of the study area.

The study area is located in the southwest of the Jizhong Depression Belt. Groundwater
mainly exists in the pores of sand and gravel layers in the Quaternary system. The aquifer
is a complex hydrogeological medium composed of various types of formations, which
are typical of porous aquifers. In the vertical direction, the upper and lower sand layers
of the aquifer have finer grain sizes and smaller thicknesses. For the middle sand layer,
the grain size is coarser and the thickness is larger. The distribution pattern of aquitards is
that the upper-middle part mostly consists of discontinuous weak aquitards, and the lower
part is mainly composed of cohesive soil aquitards. The aquifer is primarily composed
of medium-to-fine sand owing to fluvial and lacustrine deposition and is arranged in
a northeast direction (Figure 2). Based on the testing results of the borehole core and
previous research findings, the minerals in the aquifer include nitratine, halite, gypsum,
calcite, and dolomite [41–44]. Since the 1980s, as the groundwater extraction in the region
increased, the groundwater table has gradually deepened, resulting in local drawdown
cones [45,46]. Currently, the shallow groundwater in the first aquifer group is largely
dewatered, and the second aquifer group is mainly used for industrial, agricultural, and
domestic water supplies, with groundwater levels generally at depths of 35–50 m. The
aquifer has good permeability and water abundance, with individual good yields ranging
from 1000 to 2000 m3/d. The main sources of groundwater recharge include atmospheric
precipitation, lateral runoff, river infiltration, and irrigation return flows. Groundwater
discharge occurs mainly through artificial pumping, whereas only a small portion occurs
through groundwater evaporation and lateral runoff.
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Figure 2. Diagram of hydrogeological profile.

The Shijiazhuang outlet of the Middle Route of the South-to-North Water Diversion
Project has been continuously releasing water into the rivers since September 2018. From
September 2018 to October 2021, the monthly average water replenishment volume was
0.4 × 108 m3. The largest replenishment volume was observed in November 2018, with
a total of 2.66 × 108 m3 released into the river in October and November. A minimum
volume of 0.05 × 108 m3 was released in February 2020. For the remaining months, the
water replenishment volume remained between 0.13 × 108 and 0.64 × 108 m3/month.
According to the groundwater dynamic monitoring points installed on both sides of the
river, it was observed that the groundwater levels on both sides of the river rose due
to ecological replenishment caused by the Middle Route of the South-to-North Water
Diversion Project. In 2019, the observed impact range of the rising water level on one side
of the river was 10 km, in 2020 it was 18 km, and in 2021 it was 23 km.

3. Materials and Methods
3.1. Water Sample Collection and Analysis

This study involved construction of 16 new underground groundwater monitoring
wells along the Hutuo River, which flows from the sluice gate of the South-North Water
Diversion (Figure 1). The wells have a depth of 45–50 m and are distributed within a 2 km
range along the riverbank. During the pilot period of the Hutuo River water replenishment
from 2019 to 2021, 64 sets of groundwater samples and 4 sets of surface water samples were
collected on four separate occasions. The length of the screen pipe for sampling wells in
the study area was 1–10 m. The distance from the bottom of the screen pipe to the bottom
of the well was 10–20 m. Firstly, water was pumped to clean the monitoring well, and
then on-site testing and sample collection were conducted. Portable multifunctional water
quality testers were used for on-site testing of total dissolved solids (TDS) and pH. The
data were recorded when the measured values were stable. Polyethylene sampling bottles
were used for collecting samples. They were first rinsed with ultrapure water and then
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flushed with water samples three times. The water samples were collected in two bottles.
One sample of 1.5 L was collected for routine analysis of anions and cations. The other
sample of 500 mL was collected for trace element detection when 1:1 HNO3 was added
until pH < 2.

Sample analysis was divided into on-site determination and laboratory determination.
For on-site testing, the HCO3

− and CO3
2− were analyzed using the titration method. The

HCO3
− concentration was determined using the methyl orange endpoint titration method

with 0.0048 M H2SO4 with a final pH range of 4.2–4.4. The CO3
2− concentration was

determined using the phenolphthalein endpoint titration method. Laboratory testing was
conducted at the Groundwater Monitoring Center of the Ministry of Natural Resources.
K+, Na+, Ca2+, Mg2+, Al, and Zn were analyzed using an inductively coupled plasma
instrument (ICP-900, Thermo, Waltham, MA, USA). The content of As was detected using
an atomic fluorescence spectrometer (AFS-3100, KCHG, Beijing, China). Cl−, SO4

2−, NO3
−,

NO2
−, and F− were analyzed using ion chromatography (ICS-900, Dionex Sunnyvale, CA,

USA). The charge balance error for all samples was within 10%.

3.2. Entropy Water Quality Index

In 1965, Horton [47] first proposed a water quality index (WQI). The WQI was cal-
culated using ten commonly used water quality variables, including dissolved oxygen,
pH, and alkalinity [48]. Many scholars have applied WQI in their research. Shannon
(1948) [49] introduced the concept of entropy, which was integrated by Li et al. (2018) into
the traditional WQI, thereby developing the entropy WQI (EWQI) [50].

The weights of the EWQI are more definite and objective than those of previous
concepts and have been widely applied in water quality assessment [50]. The calculation
steps for EWQI are as follows [51].

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

Xij (i = 1, 2, . . ., m; j = 1, 2, . . ., n) represents the initial matrix, where m is the total
number of samples, and n is the number of water quality indicators for each sample.

yij =
xij − (xij)

j
min(

xij
)j

max −
(

xij
)j

min

(2)

Y =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

ym1 ym2 · · · ymn

 (3)

where yij represents the normalized data value,
(
xij
)j

max and
(
xij
)j

min are the minimum and
maximum values of indicator j, respectively, and Y is the standardized matrix after normalization.

pij =
yij + 10−4

m
∑

i=1

(
yij + 10−4

) (4)

ej = − 1
ln m

m

∑
i=1

pij ln pij (5)
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where ej represents information entropy and 10−4 is the correction factor [52].

wj =
1 − ej

n
∑

j=1

(
1 − ej

) (6)

qj =
cj

sj
× 100 (7)

Here, Wj represents the entropy weight and qj represents the water quality score, cj is
the concentration of the water quality indicator j (mg/L), and sj is the standard limit value
for each indicator (mg/L).

EWQI =
n

∑
j=1

wj × qj (8)

Li et al. [50] classified the water quality into five levels, ranging from excellent to
extremely poor, as listed in Table 1.

Table 1. Classification criteria for groundwater quality based on EWQI.

EWQI Rank Water Quality

<25 1 Excellent quality
25–50 2 Good quality
50–100 3 Medium quality
100–150 4 Poor quality
>150 5 Extremely poor quality

4. Results
4.1. Entropy Water Quality Index

Table 2 presents the analysis data of onsite water quality parameters, such as pH,
TDS values, and those of the major indicators for groundwater samples. The pH of the
groundwater samples was slightly alkaline, with the average pH increasing from 7.25 to
7.94 (October 2019 to October 2021). The maximum value increased from 7.5 to 9.5, and
the median value increased from 7.25 to 7.83. The average TDS value of groundwater
decreased from 1093.04 to 878.05 mg/L (October 2019 to October 2021), with the maximum
value decreasing from 3394.58 to 1694.32 mg/L. The maximum concentration of TDS in
October 2019 was 1093.04 mg/L, which decreased to 1694.32 mg/L in October 2020 and
then slightly increased to 1972.74 mg/L in October 2021. The same trend was also exhibited
by the median value of the TDS.

From October 2019 to October 2021, the concentrations of K+, Cl−, and HCO3
− in the

groundwater samples showed small fluctuations. The HCO3
− concentration varied at a rate

of less than 2%, with an average value changing from 325.79 to 346.31 mg/L. Al, As, and
Zn were not detected in most of the groundwater samples. The average concentration of
Ca2+ increased from 42.69 to 125.96 mg/L, with a slight decrease in October 2020 compared
to that in April 2020. Except for the aforementioned indicators, the concentrations of
the other indicators decreased. From October 2019 to October 2021, the concentration of
NO3

− decreased slightly, with the average value decreasing from 35.51 to 28.52 mg/L.
The concentrations of F− and SO4

2− decreased, with an approximate variation rate of
35%. The concentration of Mg2+ decreased significantly, with an average value decreasing
from 134.51 to 334.23 mg/L. The decrease in the Mg2+ concentration was relative to the
injection of water from the Middle Route of the South-to-North Water Diversion Project.
Based on the coefficient of variation of each component (Table 2), significant spatial and
temporal variability was observed in the dispersion and fluctuation of various ions during
the groundwater recharge process. Except for pH, the coefficients of variation for the
other components were greater than 0.1, indicating moderate-to-high variability. Among
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them, Na+, Mg2+, Cl−, NO3
−, and NO2

− had variation coefficients greater than one (strong
variation), indicating high fluctuations and dispersion at different points, which were
possibly influenced by changes in the groundwater environment. The variation coefficients
for the other indicators were relatively small, indicating less influence of environmental
factors on their concentrations.

A Piper diagram, which is unaffected by subjective human factors, is commonly used
to identify the major ion compositions in water chemistry [46]. A Piper diagram (Figure 3)
was drawn based on the sampling test data in the study area. According to analysis of
the data collected in October 2019, the groundwater type was predominantly Mg-Na-
HCO3-SO4. The groundwater chemistry type changed to Ca-Na-Mg-HCO3-SO4 in April
2020 and to Na-Ca-Mg-HCO3-SO4 in October 2020. The chemistry of the Middle Route
of the South-to-North Water Diversion Project was primarily Ca-Na-SO4-HCO3. As the
recharge continued, the predominant chemical type in the area was Ca-Na-Mg-SO4-HCO3
in October 2021. The Piper diagram indicates that during the initial stage of recharge,
Na+ and Mg2+ were the main groundwater cations, with the highest concentration of
Mg2+. As the recharge progressed, the cation concentration decreased in the order of
Ca2+ > Na+ + K+ > Mg2+. The main anions were HCO3

− and SO4
2−. In the early stages of

recharge, the groundwater exhibited a chemical characteristic in which strong acid anions
were more abundant than weak acid anions. As the recharge progressed, the groundwater
chemistry gradually shifted to a characteristic where weak acid anions were greater than
those of a strong acid. The characteristics of the anions shifted from mixed and non-
carbonate to carbonate types. Based on the above analysis, it can be found that there have
been significant changes in ion concentrations in the study area after groundwater recharge.
In future research, efforts will be made to enhance the study on hydrogeochemical reactions
after groundwater recharge.
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Table 2. Statistics of groundwater hydrochemical components in the researched areas.

Time Index K+ Na+ Ca2+ Mg2+ Cl− SO42− HCO3− NO3− F− NO2− Al As Zn TDS pH

October
2019

Maximum 7.69 337.6 81.69 689.4 653.6 1863 707.8 149.5 0.65 3.81 ND ND ND 3394.58 7.5
Minimum 1.52 73.64 21.75 26.81 20.26 116.5 245.7 1.65 0.27 ND ND ND ND 510.61 7
Medium 3.27 135.3 41.08 63.41 71.29 266 344.75 12.49 0.41 0.094 ND ND ND 947.91 7.25
Average 3.84 145.1 42.69 134.51 137.23 378.6 352.79 35.51 0.41 0.43 ND ND ND 1093.04 7.25

Coefficient of
Variation 0.45 0.42 0.32 1.22 1.26 1.06 0.31 1.22 0.23 2.15 ND ND ND 0.59 0.019

April
2020

Maximum 6.48 545 209 73.1 505 1067 647 147 0.88 0.99 0.048 0.0048 ND 2425 8.2
Minimum 1.65 24.6 70.8 23.9 18.3 97.9 236 0 0.22 ND 0.012 ND ND 357 6.7
Medium 3.17 48.05 134 39.1 75.8 209 331 27.15 0.35 0.0047 0.018 ND ND 818.5 7.59
Average 3.39 115.24 133.46 42.55 116.83 269.49 342.63 40.74 0.38 0.088 0.023 0.00044 ND 893.13 7.5

Coefficient of
Variation 0.36 1.15 0.31 0.33 1.05 0.81 0.31 1.05 0.44 2.7 0.43 2.83 ND 0.53 0.049

October
2020

Maximum 6.13 250 383.3 85.69 568.6 620.8 508.3 134.6 0.61 0.073 0.08 ND ND 1694.32 7.77
Minimum 1.67 69.25 26.42 23.95 19.6 61.35 213.8 1.44 0.11 ND ND ND ND 402.05 7.04
Medium 2.4 119.25 48.82 39.68 58.02 214.4 303.35 10.9 0.32 ND ND ND ND 816.86 7.34
Average 2.69 135.06 100.55 44.52 120.2 257.77 315.975 31.58 0.33 0.0078 0.01 ND ND 888.18 7.38

Coefficient of
Variation 0.41 0.37 0.97 0.38 1.29 0.55 0.24 1.22 0.48 2.43 2.64 ND ND 0.37 0.029

October
2021

Maximum 4.85 364.6 234.1 66.83 589.7 824.2 517 88.96 1.59 0.094 0.36 ND 0.13 1972.74 9.5
Minimum 1.69 8.46 18.03 9 6.83 32.06 129.2 1.6 0 ND ND ND ND 149.37 7.42
Medium 2.39 43.22 116.2 32.97 47.78 169.6 377.5 11.36 0.15 ND ND ND ND 830.51 7.83
Average 2.87 93.97 125.96 34.23 119.33 249.82 346.31 28.52 0.26 0.023 0.061 ND 0.018 878.05 7.94

Coefficient of
Variation 0.31 1.07 0.48 0.45 1.28 0.93 0.33 1.03 1.59 1.31 1.81 ND 2.14 0.62 0.061

River
Water

Maximum 12.2 81.4 108.4 35.6 114 249 196.8 20.92 0.38 0.079 0.061 ND ND 507 8.17
Minimum 4.06 29.84 55.2 20.9 28.75 107 82 1.05 0.19 ND 0.017 ND ND 148 7.88
Medium 4.515 48.98 82.33 22.46 51.8 199.35 170.75 8.18 0.32 0.019 0.045 ND ND 454.5 7.94
Average 6.32 52.3 82.06 25.35 61.58 188.67 155.07 9.58 0.3 0.029 0.042 ND ND 391 7.98

Coefficient of
Variation 0.53 52.3 0.25 0.23 0.52 0.28 0.29 0.85 0.25 1.03 0.41 ND ND 0.37 0.014

Note: ND: not detected.
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4.2. Groundwater Quality

According to the standards established by the Chinese Ministry of Health and the
National Standardization Management Committee, the acceptable pH range in drinking
water is 6.5–8.5. Only the HTHG07 sample collected in October 2021 had a pH value
of 9.50, which exceeded the limit. The pH values of other groundwater samples were
suitable for drinking. Notably, the pH gradually increased as the recharge progressed.
The TDS represents the salinity of water [53]. In October 2019, five groundwater samples
had TDS values exceeding the permissible limit for drinking water (1000 mg/L), with the
maximum TDS value at the HTHG18 site reaching 3394.58 mg/L and an average value of
1093.04 mg/L. As the recharge continued, the mixing and dilution effects decreased the
average TDS value. Two groundwater samples of April 2020 had TDS values that exceeded
the permissible limit for drinking water, with the maximum TDS value at the HTHG18
site falling to 2425.21 mg/L. Five groundwater samples collected in October 2020 and four
collected in October 2021 exhibited values exceeding the limit; however, the number of
samples exceeding the limit decreased. The smaller number of samples collected in April
2020 may be related to seasonal variations. The pH and TDS values of water from the
Middle Route of the South-to-North Water Diversion Project did not exceed the limits and
were suitable for drinking.

Na+, SO4
2−, and Cl− are common indicators of water quality that do not pose health

issues (World Health Organization, 2011). However, these ions may influence the drinking
water’s taste and can be used as indicators of anthropogenic water pollution [54]. The
Chinese Drinking Water Quality Standard sets acceptable limits for Na+ at 200 mg/L
and for both SO4

2− and Cl− at 250 mg/L. In this study, the highest exceedance of the
acceptable limit was observed for the SO4

2− concentration. Nine groundwater samples
collected in October 2019 exceeded the permissible limit, whereas this limit was exceeded
by only three groundwater samples in October 2021. As the recharge progressed, the
groundwater quality improved, with the maximum concentration of SO4

2− ions decreasing
from 1863 to 620.8 mg/L. Several individual groundwater samples exceeded the limits for
Na+ and Cl−. Two samples exceeded the limit for the Na+ concentration, while those
exceeding the limit for the Cl− concentration decreased from two in October 2019 to
only one in October 2021. As the recharge continued, the concentrations of Na+ and
Cl− decreased, which improved the drinking water’s taste. The Na+, SO4

2−, and Cl−

indicators in water from the Middle Route of the South-to-North Water Diversion Project
were significantly lower than the permissible limits and were suitable for drinking.

Nitrogen and its compounds are significant in agricultural production [55], and the
nitrate concentration is commonly used as an indicator of non-point source pollution
in agricultural areas [56]. Based on the Chinese Groundwater Quality Standard, the
maximum permissible limits for NO3

−-N and NO2
−-N are 10 and 1 mg/L, respectively. In

this study, only one groundwater sample collected in October 2019 (HTHG08) exceeded
the permissible limit for the NO2

−-N concentration, whereas the NO2
−-N concentrations

in other groundwater samples, including those from the Middle Route of the South-to-
North Water Diversion Project, were suitable for drinking. Nitrate (NO3

−-N) showed a
relatively severe exceedance, with five samples collected in October 2019 exceeding the
limit, with a maximum value of 33.76 mg/L. As the recharge progressed, the NO3

−-N
concentration decreased, with three samples collected in October 2021 exceeding the
limit. The maximum value decreased to 20.09 mg/L. F− is beneficial for human health at
low concentrations [57,58] but toxic at high levels [59]. Ideally, the concentration of F− in
drinking water should be between 0.5 and 1.0 mg/L [53]. The F− values of the groundwater
samples in the study areas were within an acceptable range for drinking water (<1 mg/L).
As is toxic to human health and a well-known carcinogen [60]. The maximum permissible
limit of As in drinking water is 0.01 mg/L, and none of the samples in the study areas
exceeded this limit. The concentrations of Al and Zn in all the water samples were low and
below the limits acceptable for drinking water.
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5. Discussion

In hydrogeochemical processes, water-rock interaction is the most significant fac-
tor [61], and hydrogeochemical data are vital in studying the evolution of hydrogeochemi-
cal processes [62]. During the recharge of external water, groundwater is mainly influenced
by the water-rock interactions and mixing-dilution processes [63]. Through hydrogeochem-
ical investigations of groundwater, the formation mechanisms and evolutionary processes
of groundwater chemical characteristics can be elucidated.

5.1. Hydrogeochemical Processes

The correlation between anions and cations and the variation in correlation coefficients
can be used to infer geochemical processes such as water-rock interactions [64]. Based on
the testing results of the borehole core and previous research findings, the minerals in the
aquifer include nitratine, halite, gypsum, calcite, and dolomite [41–44]. The proportional
relationships of the major ions were plotted (Figure 4), and the correlation coefficients
between the different ions for each group of water samples were obtained. The scatter
plot of Mg2+ and HCO3

− (Figure 4a) shows a strong correlation in the water samples from
April 2020, October 2020, October 2021, and the Middle Route of the South-to-North Water
Diversion Project, indicating a possible dissolution of dolomite. The scatter plot of Na+

and Cl− (Figure 4b) also revealed a strong correlation, suggesting that the main source of
these ions was rock salt dissolution. Theoretically, the ratio of Na+ to Cl− should be 1:1;
however, most of the groundwater sampling points in these areas fall below the y = x line.
This means that the Na+ concentration in the groundwater samples was higher than the
Cl− concentration, possibly because of the exchange of Na+ adsorbed in the rock layers
with Ca2+ and Mg2+ in the water. There is a good correlation between Na+ and SO4

2−,
except for slightly weaker correlation in the data from October 2020 (R = 0.61) (Figure 4c).
The dissolution of nitratine may influence the distribution of chemical elements in the
groundwater. If ions are only controlled by the dissolution of gypsum and carbonate rocks,
the ratio of (SO4

2− + HCO3
−) to (Ca2+ + Mg2+) should be equal [65]. The proportional

relationship between (SO4
2− + HCO3

−) and (Ca2+ + Mg2+) should be on the 1:1 line in
the scatter plot, where the y = x line represents the dissolution line of carbonate rocks
and gypsum (Figure 4d). Almost all water samples in the graph fall into the region
with relatively higher (SO4

2− + HCO3
−) content. This suggests that the area underwent

substantial cation exchange after the dissolution of carbonate rocks and gypsum, where
dissolved Ca2+ and Mg2+ were exchanged with Na+ adsorbed in the aquifer.

Ratio plots were used to further investigate the origin of ions and the main hydrogeo-
chemical processes. The chloro-alkaline index (CAI) is used to characterize ion exchange
processes and the strength of the ion exchange during groundwater chemical evolution [66],
which can be expressed as (9) and (10). The range of CAI-1 values for groundwater samples
in the study areas was −7.92–0.42, with an average of −1.45. The CAI-2 values ranged
from −0.72 to 0.28, with an average of −0.22. During the initial recharge stage, most
groundwater samples had negative values for CAI-1 and CAI-2 (Figure 5a), indicating a
reverse cation exchange, where Ca2+ and Mg2+ in the groundwater exchanged with Na+ in
the surrounding rock. In the continued recharging process, the CAI-1 and CAI-2 values
tended to become positive, indicating forward cation exchange. Groundwater samples
with positive CAI-1 and CAI-2 values were obtained primarily in October 2020 and October
2021. In terms of the magnitudes of the two indices, the absolute values were larger in the
early recharge stage, indicating stronger ion exchange. As the recharge progressed, the
absolute values decreased, indicating a lower ion exchange intensity compared with that in
the early recharge stage. In the plot of (Ca2+ + Mg2+) and SO4

2−, samples close to the 1:1
balance line indicate that Ca2+ and Mg2+ in groundwater are primarily derived from sulfate
dissolution [67]. Most groundwater samples were distributed above the 1:1 line (Figure 5b),
indicating short-term dilution after the recharge of the Middle Route of the South-to-North
Water Diversion Project. In addition to the effects of cation exchange, salt leaching and
filtration in the groundwater increased. Gibbs [68] categorized the chemical effects of
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groundwater into three types: evaporation-controlled, water-rock interaction-controlled,
and precipitation-controlled. The Gibbs diagram is used to study the sources of hydro-
chemical components and analyze the formation mechanism of hydrochemistry [69]. A
Gibbs diagram of the study areas was plotted (Figure 5d), and the main factors controlling
the groundwater hydrochemical components were analyzed. Most points fell within the
region controlled by water-rock interactions, with only a few pre-recharge samples located
in the evaporation-controlled region. The formation of regional hydrochemical types is
mainly controlled by water-rock interactions, with a minor influence of evaporation on the
hydrochemical categories of water.

CAI − 1 =
Cl− −

(
Na+ + K+

)
Cl−

(9)

CAI − 2 =
Cl− −

(
Na+ + K+

)(
SO2−

4 + HCO−
3 + CO2−

3 + NO−
3

) (10)
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Figure 4. Scatter plots showing the ratio relationships between anions and cations in groundwater.
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Figure 5. Graphs showing hydrochemical characteristic indicators. (a) Relationship between CAI-1
and CAI-2. (b) Relationship between SO4

2− and Ca2+ + Mg2+. (c) The relationship between
Na+/(Na+ + Ca2+) and TDS. (d) The relationship between Cl−/(Cl− + HCO3

−) and TDS.

5.2. Changes in Groundwater Quality during the Recharge Process

In this study, water quality parameters such as Na+, SO4
2−, Cl−, pH, TDS, NO3

−-N,
NO2

−-N, F−, Al, As, and Zn were selected for overall water quality assessment using the
EWQI. The calculated EWQI results are listed in Table 3.

In October 2019, the EWQI values of the groundwater ranged from 13.12 to 84.18.
Eleven groundwater samples were classified as excellent quality water samples (Rank 1)
and four samples were classified as good quality water samples (Rank 2), indicating that
they could be used for various purposes without treatment [70]. One sample (HTHG18)
was classified as medium quality water (Rank 3) and could be used for drinking after
a preliminary treatment. In April 2020, the EWQI of the groundwater samples ranged
from 5.84 to 53.85. Ten groundwater samples were classified as excellent quality water
(Rank 1), five samples were classified as good quality water (Rank 2), and one sample
(HTHG18) was classified as medium quality water (Rank 3). As the recharge progressed,
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the water quality also changed. In October 2020, the EWQI values of the groundwater
samples ranged from 11 to 40.4, with 11 high quality water samples (Rank 1) and five
good quality water samples (Rank 2). In October 2021, the EWQI values of groundwater
samples ranged from 7.51 to 48.12, and the water quality classification was the same as
that of the samples collected in October 2020. The EWQI values of the Middle Route of
the South-to-North Water Diversion Project ranged from 5.4 to 22.71, and all samples were
classified as excellent quality water (Rank 1). The average EWQI value for October 2019
was 26.42, and as the recharge progressed, the average EWQI value for samples collected
in October 2021 decreased to 22.02.

Table 3. EWQI values of groundwater samples.

Time October 2019 April 2020 October 2020 October 2021

ID EWQI Rank Water
Quality EWQI Rank Water

Quality EWQI Rank Water
Quality EWQI Rank Water

Quality

HTHG01 30.41 2 Good
quality 24.69 1 Excellent

quality 20.35 1 Excellent
quality 19.04 1 Excellent

quality

HTHG02 17.87 1 Excellent
quality 19.56 1 Excellent

quality 14.31 1 Excellent
quality 16.88 1 Excellent

quality

HTHG03 13.12 1 Excellent
quality 9.34 1 Excellent

quality 19.12 1 Excellent
quality 9.95 1 Excellent

quality

HTHG04 16.58 1 Excellent
quality 12.17 1 Excellent

quality 21.45 1 Excellent
quality 8.48 1 Excellent

quality

HTHG06 13.71 1 Excellent
quality 9.50 1 Excellent

quality 13.31 1 Excellent
quality 26.30 2 Good

quality

HTHG07 9.14 1 Excellent
quality 5.84 1 Excellent

quality 11.01 1 Excellent
quality 7.51 1 Excellent

quality

HTHG08 48.87 2 Good
quality 46.90 2 Good

quality 29.45 2 Good
quality 11.99 1 Excellent

quality

HTHG09 33.2 2 Good
quality 29.71 1 Excellent

quality 25.79 2 Good
quality 46.66 2 Good

quality

HTHG10 17.15 1 Excellent
quality 10.85 1 Excellent

quality 22.45 1 Excellent
quality 14.39 1 Excellent

quality

HTHG11 18.69 1 Excellent
quality 21.74 1 Excellent

quality 14.53 1 Excellent
quality 17.09 1 Excellent

quality

HTHG13 23.03 1 Excellent
quality 26.07 2 Good

quality 30.40 2 Good
quality 12.70 1 Excellent

quality

HTHG14 31.51 2 Good
quality 39.59 2 Good

quality 33.22 2 Good
quality 21.60 1 Excellent

quality

HTHG15 24.25 1 Excellent
quality 17.79 1 Excellent

quality 23.86 1 Excellent
quality 20.16 1 Excellent

quality

HTHG16 23.84 1 Excellent
quality 17.59 1 Excellent

quality 19.97 1 Excellent
quality 40.35 2 Good

quality

HTHG17 17.22 1 Excellent
quality 27.30 1 Excellent

quality 15.65 1 Excellent
quality 31.13 2 Good

quality

HTHG18 84.18 3 Medium
quality 53.85 3 Medium

quality 40.41 2 Good
quality 48.12 2 Good

quality

River
Water 22.71 1 Excellent

quality 19.20 1 Excellent
quality 5.40 1 Excellent

quality 15.25 1 Excellent
quality

Overall, the groundwater quality in this region was extremely good. From one medium
quality water sample (Rank 3) collected in October 2019 to all samples being of good quality
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(Rank 2) or higher in 2021, the groundwater quality has gradually improved. As the
recharge progresses, a mixing and dilution effect was observed in the groundwater. The
water quality of the Middle Route of the South-to-North Water Diversion Project samples
was excellent (Rank 1) and the overall quality of the groundwater was effectively improved
with the addition of good quality water.

6. Conclusions

This study used monitoring data of recharged groundwater in the Hutuo River area to
explore the impacts of groundwater recharge on hydrogeochemistry and water quality in
the region. The main conclusions are as follows:

(1) Overall, the groundwater in the area was slightly alkaline, and the pH increased as
the recharge progressed. The TDS in the groundwater tended to be high but gradually
decreased with recharge. The concentration of Ca2+ increased, whereas that of other
elemental ions typically decreased or stabilized. Elemental concentrations in sample
of the Middle Route of the South-to-North Water Diversion Project were generally
lower than those in the groundwater.

(2) Significant changes were observed in the chemical composition of groundwater during
concentrated and continuous recharge processes in the Hutuo River area. In the early
stages of recharge (October 2019), the groundwater in the study area was mainly of the
type Mg-Na-HCO3-SO4, while the water from the Middle Route of the South-to-North
Water Diversion Project was mainly of the type Ca-Na-SO4-HCO3. As the recharge
continued, the groundwater in the study area evolved into Ca-Na-Mg-HCO3-SO4,
Na-Ca-Mg-HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. Groundwater primarily under-
goes the dissolution of minerals, such as calcite, halite, mirabilite, carbonate rocks,
and gypsum, accompanied by a dilution effect, and the intensity of ion interactions
decreases as the recharge progresses.

(3) The water quality was evaluated using the EWQI. The evaluation results indicated
that in the early stages of recharge (October 2019), except for one medium quality
water sample, the other water samples exhibited good quality and were suitable for
drinking and domestic use. In April 2020, one fair quality sample persisted; however,
the overall EWQI value decreased. The water from the Middle Route of the South-to-
North Water Diversion Project was of excellent quality (Rank 1), and as the recharge
progressed, by October 2020, all water samples exhibited good quality, indicating a
gradual improvement in water quality.
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