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Abstract: Installing pumps as turbines (PaTs) in water distribution networks can recover otherwise
wasted energy, as well as reduce leakage caused by high water pressure. However, a barrier to their
implementation is the lack of information on their performance in turbine mode. Previous studies
have proposed models to predict PaT characteristics based on pump best efficiency points (BEPs),
using regressions with one or two dependent variables, or more complex artificial neural networks
(ANNs). While ANNs were found to improve the accuracy of predictions, these models are known to
be unstable with small datasets. Other types of regressions with multiple variables have not been
explored. Furthermore, because only small datasets are available to train these models, multivariate
regression methods could yield better results. The present study develops multivariate regression
models to predict BEPs and characteristic curves of PaTs. A database of 145 BEPs and 196 characteristic
curve PaT experimental records was compiled from previous literature. Twenty-four types of multi-
variate regressions, as well as ANN were compared, with dimensioned and dimensionless versions
of the datasets. The multivariate regression models consistently outperformed previous models,
including ANN. The R2 of the head and efficiency curves were 0.997 and 0.909, respectively. Results
also showed that XGB regressors and a dimensionless dataset yielded the best-fit models overall. The
high accuracy of the models, combined with their lower computational cost compared to ANN, make
them a robust solution for selecting PaTs in practice.

Keywords: pump as turbine; multivariate regression; artificial neural network; best efficiency point;
characteristic curve; dimensionless variables

1. Introduction

As the world increasingly recognizes the need for sustainable practices, great focus
is given to energy generation and use. Among the essential services that municipalities
provide, water is generally one of the most energy-intensive. Approximately 3.7 TWh of
global energy use is associated with water supply, 2 TWh for distribution, and 1.7 TWh for
wastewater treatment [1]. Furthermore, 30 to 60% of municipal expenses are related to the
water industry [2]. It is, thus, clear that gains in water distribution energy efficiency and
energy generation can lead to significant reductions in greenhouse gas (GHG) emissions
and costs [3–5].

The safe and reliable operation of water distribution networks requires pressures
to be controlled, often with pressure-reducing valves (PRVs). However, PRVs dissipate
pressure through friction, wasting energy. Instead, energy can be recovered through
micro-hydro turbines or pumps as turbines (PaTs) [6]. The former are generally more
expensive than the latter [7]. PaTs are simply pumps operated in reverse, coupled with
generators. The initial installation costs and GHG emissions are quickly offset with long-
term savings and energy generation [8]. Still, one barrier to implementing PaTs remains.
Manufacturers generally do not provide the characteristic attributes of pumps in reverse
mode since this was not their initial intended application. Determining PaT characteristics
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can require expensive testing. Laboratory testing of PaTs can show different hydrodynamic
and mechanical forcing scenarios and allow for tuning [9]. While lab results are reliable,
they are time-consuming to achieve. Computational fluid dynamics (CFD) have also
been applied in modeling PaT behavior with high accuracy [10,11], sometimes better than
experimental results [9]. They enable the analysis of the effect of specific scenarios, e.g.,
transients [11], and pump characteristics, e.g., guide vane clocking positions [12], impeller
geometry modifications [13], and variable rotational speed [14,15]. CFD nevertheless
requires extensive time, resources, and computing power [16].

A less costly approach to predicting PaT performance has been the development of
theoretical or empirical equations. Studies seeking to select the optimal PaT for a water
distribution network, regularly employ these equations to estimate turbine performance
based on known pump characteristics [6,17–19].

Stepanoff [20] was the first to relate pump and turbine characteristics, through Equation (1):

Nst = Nspηp (1)

where Nst is the specific speed of the turbine, Nsp is the specific speed of the pump and ηp
is the pump efficiency. Specific speeds are calculated based on the best efficiency points
(BEPs). Thus, the theoretical Equation (1) implies the power generated at the BEP in
turbine mode is lower than the power used in pump mode. Sharma [21] developed another
similar theoretical equation, assuming a smaller reduction in specific speed, as shown in
Equation (2):

Nst = Nsp
√

ηp (2)

As more information became available, more accurate empirical equations were devel-
oped to estimate the flow (Q) and head (H) of PaTs, as summarized in Table 1. Alatorre-
Frenk et al. [22] formulated equations based on statistical correlations by curve-fitting
experimental data for pumps with specific speeds between 10.5 and 98.7. The model was
reported to have a high coefficient of determination (0.9928) [22]. Yang et al. [9] also applied
curve fitting in developing statistical regressions in the normalized flow range of 0.7 and
1.33 with low percentage errors (5.3% for head prediction and 6.2% for flow prediction).
While these equations relied solely on pump efficiency, other studies have found that
considering specific speeds can lead to more reliable equations. Barbarelli et al. [23] based
equations on experimental data of pump and turbine modes for 12 pumps with specific
speeds between 15 and 65. Audisio [24] developed a set of equations from the experimental
data of 41 PaTs, all with speeds greater than 400 rpm. Fontanella et al. [25] developed
unique equations based on the rotational speed of the pump and turbine. They considered
the REDAWN (Reduction Energy Dependency in Atlantic area Water Networks) project
dataset of 34 pumps, compiled from literature, as well as supplied by manufacturers and
researchers. The key limitations of these equations are their small datasets and restricted
applicability to certain ranges. This makes them harder to generalize with different pump
types and characteristics.

Table 1. BEP Equations of PaTs from Literature.

Author Flow Head

Stepanoff [20] Qt
Qp

= 1√
ηp

Ht
Hp

= 1
ηp

Sharma [21] Qt
Qp

= 1
ηp0.8

Ht
Hp

= 1
ηp1.2

Alatorre-Frenk et al. [22] Qt
Qp

=
0.85ηp

5+0.385

2ηp
9.5+0.205

Ht
Hp

= 1
0.85ηp

5+0.385

Yang et al. [9] Qt
Qp

= 1.2
ηp0.55

Ht
Hp

= 1.2
ηp1.1

Barbarelli [23] Qt
Qp

= 0.00029Nsp
2 − 0.02771Nsp + 2.01648 Ht

Hp
= −3× 10−5 Nsp

3 + 4.4× 10−3 Nsp
2 − 0.20882Nsp + 4.6493

Audisio [24] Qt
Qp

= 1.21ηp
−0.25 Ht

Hp
= 1.21ηp

−0.8
[
1 +

(
0.6 + ln Nsp

)2
]0.3

Fontanella et al. [25] Qt
Qp

= 1.3595 Nt
Np

Ht
Hp

= 1.4568
(

Nt
Np

)2
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Similar to the development of BEP equations, turbine characteristic curve equations
have been developed through regressions fit to experimental data, as listed in Table 2.
Derakhshan and Nourbakhsh [26] developed equations to predict turbine mode head (H)
and power (P) based on flows (Q), with a library of 4 PaTs. Rossi et al. [27] developed a set
of equations based on dimensionless parameters to facilitate the application of equations to
pumps of various sizes with a larger library of 32 PaTs. The dimensionless flow parameter
is denoted as Φ and head as Ψ. Used a larger library of 181 PaTs to develop characteristic
curve equations based on dimensioned characteristics normalized with BEP values. While
Perez-Sanchez et al. [28] set a minimum flow-to-flow BEP ratio of 0.4, Rossi et al. [27] limited
their equation to a maximum flow ratio of 1.4. Perez-Sanchez et al. [28] and Rossi et al. [27]
provided high coefficient of determination results with values over 0.91. However, it is not
clear if dimensioned or dimensionless equations provide more accurate results in general.
Even with slightly larger libraries, these equations are still restricted to the pump types and
specific speed ranges of their datasets, and can hardly be generalized since these variables
are not included in the equations.

Table 2. Characteristic Curve Equations of PaTs from Literature.

Author Variable Equation Applied Range

Derakhshan and
Nourbakhsh [28]

Ht
Ht,BEP

1.0283
(

Qt
Qt,BEP

)2
− 0.5468

(
Qt

Qt,BEP

)
+ 0.5314 Nst < 60

Pt
Pt,BEP

−0.3092
(

Qt
Qt,BEP

)3
+ 2.1472

(
Qt

Qt,BEP

)2
− 0.8865

(
Qt

Qt,BEP

)
+ 0.0452

Rossi et al. [29] ψ
ψt,BEP

0.2394
(

Φ
Φt,BEP

)2
+ 0.769

(
Φ

Φt,BEP

)
ϕ

ϕt,BEP
≤ 1.4

η
ηt,BEP

−1.9788
(

Φ
Φt,BEP

)6
+ 9.0636

(
Φ

Φt,BEP

)5
− 13.148

(
Φ

Φt,BEP

)4
+3.8527

(
Φ

Φt,BEP

)3

+4.5614
(

Φ
Φt,BEP

)2
− 1.3769

(
Φ

Φt,BEP

)
Perez-Sanchez [30] Ht

Ht,BEP
0.406

(
Qt

Qt,BEP

)2
+ 0.621

(
Qt

Qt,BEP

)
Qt

Qt,BEP
≥ 0.4

ηt
ηt,BEP

−1.219
(

Qt
Qt,BEP

)4
+ 6.95

(
Qt

Qt,BEP

)3

−14.578
(

Qt
Qt,BEP

)2
+ 13.231

(
Qt

Qt,BEP

)
− 3.383

Fontanella et al. [27] Ht
Ht,BEP

1 + 0.9633
(

Qt
Qt,BEP

− 1
)2

+ 1.4965
(

Qt
Qt,BEP

− 1
)

0.33 < Qt
Qt,BEP

< 6.25

Pt
Pt,BEP

1 + 0.03499
(

Qt
Qt,BEP

− 1
)4
− 0.2405

(
Qt

Qt,BEP
− 1
)3

+1.4326
(

Qt
Qt,BEP

− 1
)2

+ 2.7071
(

Qt
Qt,BEP

− 1
)

Recent studies highlight the opportunity in applying machine learning to predict the
behavior of geometric subjects [29,30]. By accounting for multiple parameters, they can
lead to general and simple predictive models. Rossi et al. [31] developed artificial neural
networks (ANNs) to predict PaT performance, both BEP and characteristic curves. The
models were based on a library of 32 PaTs and used specific speed, rotating speed, and
efficiency as well as dimensionless flow, head and power parameters. While a relatively
good fit was reached and recent studies have sought to extend upon these models [32], the
accuracy of ANN models has been shown to be unstable with such small datasets, and
other models may lead to better and more reliable results [29]. Given that the datasets of
PaT performance are inherently small, other regression models may yield better results.
Indeed, Alacco [33] attempted to develop evolutionary polynomial regressions to predict
characteristics curves. However, the performance of the models was unsatisfactory and
potential improvements were not provided. Accordingly, the goal of the present study
is to investigate the accuracy of various types of multivariate regression models in pre-
dicting the performance of PaT behavior, with the support of both a dimensioned and
dimensionless library.



Water 2023, 15, 3290 4 of 17

2. Materials and Methods
2.1. Data Collection and Preparation

Data on PaT BEPs in pump and turbine mode were collated from the REDAWN
database [25], as well as various individual PaT studies [16,22,23,26,28,34–53]. The BEP-
dataset (Table S1) comprises 185 datapoints of PaTs, including impeller diameter, rotational
speed, pump flow at BEP, turbine flow at BEP, pump head at BEP, turbine head at BEP,
pump BEP and turbine BEP. Data on characteristic curves for 38 PaTs (Table S2) were
sourced strictly from REDAWN [25]. Attributes include impeller diameter, rotational speed,
the ratio of flow over BEP flow, the ratio of head over BEP head, and either the power
or efficiency ratio over the corresponding BEP value. The most common pump typology
for PaTs is end suction own bearing (ESOB). Accordingly, the datasets were reduced to
focus on ESOB and ensure greater accuracy and applicability of results. Furthermore,
inconsistent data and outlier flow rates were removed from the dataset. For example, the
three highest flow rates had values four times larger than that of the normal range, and
therefore, were removed. The resulting datasets contained 145 BEP data points and 21 PaT
characteristic curves with 196 data points. The BEP equations developed in the literature
were developed with a range of 4–41 PaTs. With a larger dataset, stronger correlations and
results are expected from the present study.

Given the resulting datasets, specific speeds were calculated with Equation (3):

Ns =
N
√

QBEP

HBEP
3/4 (3)

where Ns is specific speed, N is rotational speed, QBEP is flow at BEP and HBEP is head
at BEP.

Dimensionless parameters for flow (Φ) head (Ψ) and power (Λ) were calculated with
Equations (4)–(6), respectively.

Φ =
Q
[
m3/s

]
ω[rad/s]·(D[m])3 (4)

Ψ =
g
[
m/s2]·H[m]

(ω[rad/s])2·(D[m])2 (5)

Λ =
P[W]

ρ[kg/m3]·(ω[rad/s])3·(D[m])5 (6)

where Q is flow, H is head, ω is rotational speed, D is impeller diameter, g is the gravitational
constant and ρ is fluid density.

The input and target variables for predicting BEP and characteristic curves differed
if the datasets were dimensioned or dimensionless, as shown in Tables 3 and 4. The im-
peller diameter is an input variable in the present dimensioned dataset, as opposed to
Rossi et al. [31] which did not include impeller diameter since they only used a dimension-
less dataset. Although the impeller diameter is the same in turbine and pump mode, it
differs by machine, and therefore, could improve the model. Additionally, because the
dimensionless attributes include, by definition, information on impeller diameter and
rotational speed, these two variables were excluded from the dimensionless dataset to
avoid multicollinearity.
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Table 3. BEP Input and Output Variables.

Input Variables
(Dimensioned − Dimensionless)

Output Variables
(Dimensioned − Dimensionless)

Impeller Diameter Turbine Flow BEP (Q − Φ)
Pump Flow BEP (Q − Φ) Turbine Head BEP (H − Ψ)
Pump Head BEP (H − Ψ) Turbine Efficiency (η)

Pump Efficiency (η)
Specific Speed (Ns)
Rotational Speed

Table 4. Characteristic Curve Input and Output Variables.

Input Variables
(Dimensioned − Dimensionless)

Output Variables
(Dimensioned − Dimensionless)

Impeller Diameter Turbine Head Values (Ht/HtBEP − Ψt/ΨtBEP)
Pump Flow BEP (Q − Φ) Turbine Efficiency values (ηt/ηtBEP)
Pump Head BEP (H − Ψ)

Pump Efficiency (η)
Specific Speed (Ns)
Rotational Speed

Turbine Flow Values (Qt/QtBEP − ΦtBEP)

2.2. Model Selection

For each target variable, a set of multivariate regression models and ANN was com-
pared in Python. ANN models were developed to enable the comparison of the multivariate
regression models to the approach suggested by Rossi et al. [31]. Regression models were
mainly sourced from the SciKit Learn library, including popular models, such as Bayesian
Ridge and Decision Tree, niche models, e.g., Orthogonal Matching Pursuit and Theil Sen,
and more recent models, e.g., XGB Regressor (extreme gradient boosting tree). The follow-
ing is a list of regressions used in the study: XGB Regressor (XGBoost)*, Huber Regressor*,
Passive Aggressive Regression*, Orthogonal Matching Pursuit*, Lasso Lars*, Elastic Net*,
ARD Regression*, Bayesian Ridge*, Theil Sen Regressor*, Random Forest Regression, De-
cision Tree Regression, Linear Regression, Ridge, Lars, ElasticNetCV, Gamma Regressor,
Poisson, Gamma, Inverse Gaussian, SVR-rbf, SVR-lin, NuSVR, Linear SVR, Kernal Ridge.
In total, 24 regression models were compared in predicting BEP parameters, as listed in
Table 3. The first 8 models, listed with an asterisk, were the best-performing models from
the BEP predictions and were selected to model the characteristic curves.

2.3. Modeling and Evaluation

The regression models and ANNs were developed by selecting the best models and
tuning hyperparameters through different strategies, as summarized in Figure 1. The input
datasets were initially split into 80% and 20% for training and testing, respectively. If the re-
sulting models performed with low scores, training processing took too long, or the quality
of fit was poor, other splits were used, 90/10, 85/15, 75/25 or 70/30 to check for possible
better solutions. During this initial evaluation, only default hyperparameters were applied.
In the development of multivariate regression models (Figure 1a), all 24 models were ini-
tially applied with default hyperparameters in estimating BEP. The best eight regression
models, according to R2 were then selected for the next steps of tuning BEP models. For
each of these eight best types of models, three BEP models (flow, head and efficiency) and
two characteristic curve models (head and efficiency) were developed. In each case, a range
of hyperparameters was initially set. These parameters were tuned with randomized search
cross-validation over 100 iterations. If the resulting best hyperparameters were at either
end of the established range, this process would be repeated with adjusted ranges in which
previously best values would be the midpoint of the new range. Results for training and
testing data with the default and tuned models were then compared with cross-validation
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to check for over or under-fitting. This check is essential given the small number of data
points. For all models, fit was evaluated according to the coefficient of determination (R2),
root mean squared error (RMSE) and median absolute deviation (MAD).
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Figure 1. Flowchart of (a) multivariate regression and (b) ANN model development.

In the development of ANN models, initial hyperparameter ranges were set according
to Table 5. Hyperparameters were then tuned with the Adaptive Experimentation Plat-
form (AX) optimization process. This process creates an environment for hyperparameter
optimization that converges to minimal RMSE and model loss across epochs [54]. The
optimization process was initially run for 25 iterations. If the resulting tuned hyperparam-
eters were close to the initial range limits, ranges were readjusted and the optimization
process was repeated. If not, hyperparameter optimization was repeated for an additional
10 iterations for further tuning. The final model fit was evaluated according to R2, RMSE
and MAD.
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Table 5. ANN Hyperparameter Ranges for Tuning.

Parameter Type Values

Learning Rate Range 0.0001–0.1
Dropout Rate Range 0–0.99

Number of Hidden Layers Range 1–10
Neurons per Layer Range 1–300

Batch Size Choice 2, 4, 8, 16, 29, 58
Activation Function Choice Tanh, Sigmoid, Relu

Optimizer Choice Adam, RMS, SGD

3. Results

Before developing the proposed models, the target BEP turbine variables were plotted
against their corresponding pump model variables. The relations between turbine and
pump flow, head and efficiency are presented in Figure 2. All plots show a linear trend with
the strongest being the flows and the weakest being the efficiency. It should also be noted
that most of the flow rates range from 0 to 150 L/s, and a similar density trend in the head
ranges from 0 to 90 m. As these datapoints fit within the typical and expected ranges of a
PaT, the information beyond the maximum range is sparse and more sporadic in nature.
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Existing characteristic curve equations, presented in Table 2, generally define the
characteristics curves according to normalized head, flow and efficiency values. These
normalized variables were also visualized for the current dataset, as shown in Figure 3.
A near linear trend is seen in Figure 3a, with a stronger density in the mid-range and
more scattering appearing on the maximum and minimums. On the other hand, Figure 3b
shows a parabolic trend. Thus, a linear model may be preferred for head curves, whereas a
nonlinear or polynomial linear relationship may perform best for efficiency curves.
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3.1. BEP Results

The best-performing multivariate regression models for each BEP attribute based on
the dimensioned and dimensionless datasets are presented in Tables 6 and 7, respectively.
The R2 scores from the default hyperparameter models are compared to the optimized
models. The reduction in R2 scores from the default to optimized parameters of the
model is a consequence of the hyperparameter tuning and fitting the model better to
the data. It should also be noted that the scales of the dimensioned parameters and the
dimensionless parameters are different. Models applied to the dimensioned data set
performed better than the dimensionless with regard to R2. This may be explained by
the fact that the dimensioned dataset contains more variables. Because dimensionless
variables are normalized by impeller diameter and rotational speed, these attributes were
not included separately in the dimensionless dataset.

Table 6. Multivariate Regression Results of Turbine Mode BEP Attributes with Dimensioned Datasets.

Attribute Train/Test Split Best Model Default R2 Optimized R2 RMSE MAD

Flow 80/20 Huber Regressor 0.9728 0.9721 9.7205 16.9551
Head 90/10 Elastic Net 0.9549 0.9319 7.6661 7.1337

Efficiency 80/20 Orthogonal Matching Pursuit 0.8147 0.8147 0.0505 0.0633

Table 7. Multivariate Regression Results of Turbine Mode BEP Attributes with Dimensionless Datasets.

Attribute Train/Test Split Best Model Default R2 Optimized R2 RMSE MAD

Φ 75/25 Huber Regressor 0.9749 0.9729 0.0058 0.0136
Ψ 75/25 Huber Regressor 0.8747 0.8777 0.2227 0.0155
η 80/20 Orthogonal Matching Pursuit 0.8147 0.8024 0.0522 0.0708

The best BEP flow model applied the Huber Regressor and the dimensionless dataset
with the following hyperparameters in scikit learn: fit intercept = False, epsilon = 1.523529,
and alpha as 0.1. The Huber Regressor is a linear regression model, robust to outliers. Simi-
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larly, the best BEP head model used Elastic Net and the efficiency model, Orthogonal Match-
ing Pursuit. These are also linear regression models, confirming the observations of Figure 2.
The best BEP head model applied the following hyperparameters: selection = cyclic, pos-
itive = True, normalize = False, l1_ratio = 10, fit_intercept = False, copy_x = True, al-
pha = 10. And the best BEP efficiency model applied the following hyperparameters:
of precompute = auto, normalize = True, fit_intercept = True, n_nonzero_coefs = 0.

The BEP predictions with ANN are overall less accurate than the multivariate re-
gression model results, apart from the prediction of specific speeds. Dimensioned and
dimensionless ANN model results are summarized in Tables 8 and 9, respectively. Similar
to the multivariate regression results, the highest R2 was found for flow predictions and
the lowest for efficiency. However, the dimensioned dataset performed better for flow. The
rectified linear unit activation function was selected through tuning for the dimensioned
models, confirming the better performance of linear models.

Table 8. ANN Results of Turbine Mode BEP Attributes with Dimensioned Datasets.

Attribute Train/Test
Split

Hidden
Layers Neurons Learning

Rate
Dropout

Rate R2 RMSE MAD

Flow 80/20 2 176 1 × 10−5 0.15437 0.914 17.068 18.256
Head 80/20 12 325 4.38 × 10−5 0.05319 0.822 11.954 13.708

Efficiency 80/20 7 310 0.00213 0 0.761 0.0573 0.0756

Table 9. ANN Results of Turbine Mode BEP Attributes with Dimensionless Datasets.

Attribute Train/Test
Split

Hidden
Layers Neurons Learning

Rate
Dropout

Rate R2 RMSE MAD

Φ 80/20 9 124 5.5 × 10−5 0.03443 0.904 0.0126 0.012
Ψ 80/20 6 263 0.0001005 0.4 0.885 0.0665 0.00822
η 80/20 16 207 0.000299 0 0.779 0.055 0.0607

ANNs generally require larger datasets, which are not available for the current PaT
problem. Furthermore, ANN is more computationally intensive. Typically, the multivariate
regression process from start to finish took around 20 min for each attribute, including
training and tuning. With ANN, however, the AX optimization process took at least 25 min,
up to 45 min, depending on the number of iterations required. These durations are for a
laptop with a 2.1 GHz processor, in Windows 10.

Given the superiority of the multivariate regression models, their results are further
explored. Figure 4 compares the models’ predicted results against actual values for all
BEP attributes, for both dimensioned and dimensionless datasets. Firstly, flow results in
Figure 4a,b, show the majority of predictions are close to actual values. Only one outlier is
observed in both the dimensioned and dimensionless data, due to a larger PaT. This outlier
is also evident in the dimensionless head predictions (Figure 4d), but not in the dimensioned
head model. The dimensioned head model fits actual values well, with an R2 of 0.9319,
even though the majority of head values are slightly underpredicted. Efficiency results are
more scattered and are identical for dimensioned (Figure 4e) and dimensionless models
(Figure 4f). This is because the orthogonal matching pursuit model was applied to both.
This model has no parameters which can be tuned and look for the most highly correlated
attributes. In this case, the most correlated attribute to the turbine best efficiency is the
pump best efficiency, which is also inherently dimensionless. Thus, choosing dimensioned
or dimensionless attributes does not impact results in this case.
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3.2. Characteristic Curve Results

All characteristic curve multivariate regression models performed the best with the
XGB Regressor, as presented in Tables 10 and 11. The results also show very similar
performances for both dimensioned and dimensionless datasets. The dimensionless dataset
models perform better by a small margin when considering the R2 of the efficiency curves.
For both datasets, the head curve was predicted with very high accuracy, with the same R2

of 0.997. Hyperparameters for the best XGB Regressor models are summarized in Table 12.

Table 10. Multivariate Regression Results of Turbine Mode Characteristic Curves with Dimensioned
Datasets.

Curve Train/Test Split Model Default R2 Optimized R2 RMSE MAD

Head 80/20 XGB Regressor 0.993 0.997 0.0186 0.2369
Efficiency 80/20 XGB Regressor 0.908 0.901 0.0539 0.0394

Table 11. Multivariate Regression Results of Turbine Mode Characteristic Curves with Dimensionless
Datasets.

Curve Train/Test Split Model Default R2 Optimized R2 RMSE MAD

Ψ 80/20 XGB Regressor 0.994 0.997 0.0179 0.1940
η 80/20 XGB Regressor 0.919 0.897 0.0516 0.0364

Table 12. Hyperparameters for best XGB Regressor models selected to predict head and efficiency
curve.

Hyperparameter Head Curve Efficiency Curve

Subsample 0.4 0.8
n_estimators 2500 1300

Min_child_weight 1 1
Max_depth 4 9

Max_delta_step 10 6
Learning_rate 0.15 0.75

eta 0.8 0

The ANN results for predicting characteristics curves with the dimensioned and
dimensionless datasets are summarized in Tables 13 and 14, respectively. The dropout
rates are consistently very small or null. Because the models rely on small datasets, lower
dropouts are preferred to ensure more information can be distributed and used in training
a more accurate model. The R2 scores for the head and Ψ curves are high, 0.986 and
0.954 respectively, albeit lower than the multivariate regression models. The efficiency
and η model scores are lower but nevertheless strong for both the dimensioned and
dimensionless predictions. Still, the multivariate regression models performed better
in predicting efficiency and η curve, as well. With more datapoints and possibly more
attributes, the ANN may perform better. More research would be required to collect
more data on PaTs. Nevertheless, the accuracy of the multivariate regression models is
already high.

Table 13. ANN Prediction Results of Turbine Mode Characteristic Curves with Dimensioned Datasets.

Curve Train/Test
Split

Hidden
Layers Neurons Learning

Rate
Dropout

Rate R2 RMSE MAD

Head 80/20 7 145 3.86 × 10−5 0.005 0.986 0.03848 0.20587
Efficiency 80/20 15 180 5.34 × 10−6 0 0.766 0.0776 0.0339
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Table 14. ANN Prediction Results of Turbine Mode Characteristic Curves with Dimensionless Datasets.

Curve Train/Test
Split

Hidden
Layers Neurons Learning

Rate
Dropout

Rate R2 RMSE MAD

Ψ 80/20 8 141 7.27 × 10−5 0 0.980 0.0455 0.2159
η 80/20 19 100 5.73 × 10−6 0 0.816 0.0687 0.0299

Given the superiority of the multivariate regression models, the relation between their
predicted and actual results is explored in Figure 5. A very strong correlation between
actual and predicted head curves is observed for all ranges of normalized head values, as
shown in Figure 5a,b. Efficiency curve results are more scattered, being better fit when
normalized values are closer to 1, i.e., turbine efficiency is close to the BEP. For efficiencies
between 50 and 80% of the BEP, the models generally overestimate efficiency. There are
also less data in this range. Thus, these models may be improved by adding more data
regarding PaT performance at lower efficiencies.
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4. Discussion

The performance of the models developed in the present study was also compared to
those from previous research. For the BEP prediction comparison, 20 random data points
were extracted from the dimensioned datasets to ensure a consistent test set. The models
developed herein had different train/test splits and were thus initially tested on datasets of
different sizes. Table 15 shows the current multivariate regression models outperformed
all previous models. The current head BEP multivariate regression model has an R2 of
0.932, followed by the model proposed by Sharma [21] with a score of 0.827. While the
ANN model performed well, with a score of 0.822, the multivariate regression model and
Sharma’s equation still performed better. Other previous equations had slightly lower
scores, but generally above 0.7. The exception is Barbarelli et al. [23] who developed their
equations based on 4 PaTs with specific speeds ranging between 14 and 45. In the present
dataset, most specific speeds were below 10. Thus, the Barbarelli et al. [23] equation is not
applicable to this lower range.

Table 15. Comparison of BEP model results.

Method R2 Head RMSE Head R2 Flow RMSE Flow

Current study multivariate regression 0.932 7.666 0.972 9.720
Current study ANN 0.822 11.954 0.914 17.068

Stepanoff [20] 0.798 8.833 0.915 16.163
Sharma [21] 0.827 13.582 0.927 17.904

Alatorre-Frenk et al. [22] 0.750 16.359 0.819 17.052
Yang at al. [9] 0.744 15.738 0.965 19.946

Barbarelli et al. [23] −6.807 32.252 0.739 23.387
Audisio [24] −4.97 68.161 0.971 10.685

Fontanella et al. [25] 0.391 48.772 0.967 11.34

The current flow BEP model has an even higher R2, of 0.972. The next best-performing
model is the Yang et al. [9] equation, at an R2 of 0.965. The ANN model scored well, but the
current multivariate regression model, Yang et al. [9], Sharma [21] and Stepanoff [20] was
better. Efficiency results were not compared with previous studies because most authors
did not develop a separate equation for efficiency. The PAT efficiency is not required to
determine its BEP or create characteristic curves.

A comparison between the characteristic curves developed herein and other studies
is provided in Table 16. Again, the current multivariate regression models outperformed
all previous models. The multivariate regression head curve prediction had a very high
R2 of 0.997, relatively higher than the Perez-Sanchez et al. [28] equation, with a value of
0.983. The ANN model scored very high as well, 0.986, which makes it the second best.
The RMSE values confirm these results. The multivariate regression efficiency curve also
had a high R2 of 0.909, above the Rossi et al. [27] score of 0.869. In this case, the current
ANN had the lowest score of the compared efficiency models. The results of the predicted
efficiency curve values also scored highly using the multivariate regression method with a
coefficient of determination of 0.901 with Rossi et al. [27] as the runner-up with a score of
0.869. The ANN method had a good score of 0.766 but the multivariate regression model
and the Rossi et al. [27] model both performed better. Because some of these scores are
very similar, the models are comparable, and their applicability might depend more on the
range of pump values.

Table 16. Comparison of characteristic curve model results.

Method R2 Head Curve RMSE Head Curve R2 Efficiency Curve RMSE Efficiency Curve

Current study multivariate regression 0.997 0.019 0.909 0.054
Current study ANN 0.986 0.038 0.766 0.078

Derakhshan and
Nourbakhsh [26] 0.545 0.239 0.297 0.158

Rossi et al. [27] 0.983 0.047 0.777 0.089
Perez-Sanchez et al. [28] 0.955 0.076 0.868 0.068

Fontanella et al. [25] 0.874 0.126 0.869 0.068
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With all the scores considered, the current model is superior to that of the equations
from the literature. Some of the models from the literature either scored highly in the predic-
tion of the head curve or the efficiency curve but hardly ever at the same time. The highest
scoring model for both variables would be proposed by Perez-Sanchez et al. [28] with scores
of 0.955 and 0.868 for the head and efficiency curve, respectively, compared against 0.997
and 0.909 for the proposed model respectively. As for the ANN model commissioned by
Rossi et al. [31], fully recreating the results and model was not possible as only information
on the number of hidden layers and neurons per layer was given. Information regarding
the learning rate, dropout rate, activation function, etc., was unknown. Furthermore, the
training and test data sizes were unclear. Assuming that the datasets are comparable, the
current model is superior in predicting the head curve variables, while Rossi et al.’s [31]
model is superior in the prediction of efficiency.

The higher performance of the proposed BEP models compared to previous studies
can be largely explained by the amount of data compiled. Whereas previous BEP prediction
studies had datasets ranging from 4 to 32 PaTs, the present study compiled data from
145 PaTs. The comparison of multiple regression algorithms also enables the selection of the
specific best-performing models for each attribute, whether BEP or characteristic curves.

Overall, the results show that linear regression models (i.e., Huber regressor, elastic
net, and orthogonal matching pursuit) were specifically preferred for predicting BEP, and
XGB regressors were best for predicting characteristic curves. Such models can be quickly
applied in practice, facilitating the selection of PaTs in real water distribution networks.
Furthermore, as data-driven multivariate regression models, they can easily be updated
and improved as more data becomes available.

It is also important to highlight herein some of the worst-performing models overall
considering the initial library contained a total of 24 models. Reducing the number of
possibilities for the regressions can aid with future studies when considering and evaluating
multiple machine learning regression models. Models that should not be considered
globally for any prediction pertaining to PaTs are the Gamma Regressor, Poisson, Gamma,
Inverse Gaussian, and SVR-lin. All these models showed negative R2 scores, and therefore,
show no promise in predicting the attributes.

Limitations

It should be noted that the comparison of the current model against other models in the
literature is slightly biased. The datasets used in training each model differed. Evaluating
the fit of the model to the type and range of data for which it was originally trained and
tested would lead to better results. For example, Rossi et al. [33] reported higher results in
their study, i.e., R2 of 0.98429 for the head curve, compared to 0.955 reported herein. These
scores are still lower than those of the current multivariate regression model, i.e., 0.997.
Furthermore, the Rossi et al. [33] scores refer to the overall training, validation and testing
dataset, whereas the results presented herein are specifically for the 20 randomly selected
data points.

The current models are also limited in their application to ESOB pumps. Data were
compiled specifically for this pump typology since it is the most common for PaTs. Never-
theless, multivariate regression models can be easily generalized with additional data, as
opposed to earlier models that relied solely on pump efficiency and specific speed.

5. Conclusions

The present study developed novel multivariate regression models to predict PaT
behavior. A dataset larger than previous studies, with 145 BEP data points, was compiled
from previous work. While previous studies either applied dimensioned or dimensionless
datasets, both approaches are compared herein. The developed models outperformed all
previous statistical and ANN models. Results show linear regression models are specifically
preferred for predicting BEP values given the underlying linear relation between pump and
turbine values. The resulting R2 for flow and head BEP were 0.972 and 0.932, respectively.
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On the other hand, the best characteristic curve predictions were developed with XGB
Regressors, with R2 of 0.994 and 0.919 for head and efficiency, respectively. Furthermore, the
dimensionless dataset produced better characteristic curve and flow BEP models, whereas
the dimensioned dataset provided slightly higher scores for head BEP models. Thus, a
dimensionless dataset overall would be preferred.

The high accuracy of the developed multivariate regression models, combined with
their lower computational cost compared to ANN, make them a robust solution for se-
lecting PaTs in practice. Future studies can explore the development of broader models.
Adding information for PaTs with higher flow rates or other typologies besides centrifu-
gal ESOB, such as multistage, axial and double suction would be valuable in expanding
the applicability of the models. Furthermore, the current efficiency curve models can be
improved by adding datapoints to the dataset. The current dataset has between 7 and
12 datapoints per PaT. Thus, increasing the number of points per PaT could increase the
accuracy of these models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15183290/s1, Table S1: Input data for BEP models.; Table S2:
Input data for characteristic curve models [16,22,23,26,28,34–53].
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