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Abstract: Ocean wave height plays an important role in the operation status of ocean wave energy
conversion systems. In this paper, the future continuous ocean wave height within 2~3 s is forecasted
by three methods, the autoregressive moving average model (ARMA) method, backpropagation (BP)
neural network method, and radial basis function (RBF) neural network method. Then, the error
between suggested forecast results and corresponding measured results are compared by the root
mean square error (RMSE), mean absolute error (MAE), and correlation coefficient R. The comparison
result indicates that the RBF neural network method is preferred to the other two methods, having
the advantage of high accuracy. Lastly, the reasons for the errors of the three forecasting methods
are analyzed. This study signifies that the RBF neural network method is beneficial to the operation
control and efficiency improvement of ocean wave energy conversion systems.

Keywords: forecasting method; error comparison; ocean wave height; ocean wave energy

1. Introduction

Ocean wave energy conversion systems are devices that include buoys, generators,
and other auxiliary parts [1,2]. Depending on the different types of system design, ocean
wave energy conversion systems are usually fixed on the shoreline, installed near the shore,
or placed in offshore locations [3–5]. Under the buoyancy-driven action of ocean waves,
the ocean wave energy conversion system buoy experiences motion, which then drives
the generator to convert ocean wave energy into electrical energy. Figure 1 shows one
type of ocean wave energy converter, which is placed in offshore locations. According to
the motion characteristics of ocean waves, the deeper the water, the smaller the vertical
direction motion amplitude. Therefore, differences in draught lead to a relative vertical
direction motion between the outer buoy and inner buoy, which drives the linear generator
(installed in the upper end of inner buoy) to convert ocean wave energy into electrical
energy [6]. More details about the motion characteristics of buoys in ocean waves and the
operation principle of the offshore type of ocean wave energy converter can be found in
previous studies [7–9].

Under natural conditions, the operational efficiency of an ocean wave energy conver-
sion system is low [10]. Therefore, in addition to structure optimization measures such as
changes to buoy and generator design, optimization control technology is also an effective
method for improving the operational efficiency of ocean wave energy conversion systems,
allowing the maximization of the energy conversion from ocean wave energy into electrical
energy. Specifically, the purpose of optimization control technology is to achieve resonant
motion (or synchronous motion) between the ocean wave height and the buoy of ocean
wave energy conversion system. When resonant motion occurs, the efficiency of the wave
energy conversion system can be improved [11].
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Figure 1. Example of one type of offshore ocean wave energy converter. 

Based on the ocean wave height, some optimization control methods were investi-
gated by simulation analysis or hardware experiments, with the aim of improving the 
operational efficiency of ocean wave energy conversion systems. In 2016, a novel uncon-
strained control method for a WEC (wave energy converter) considering the iteration be-
tween geometry optimization and control technology design was studied by Paula et al. 
[12]. The simulation results showed that the efficiency of the WEC could be increased sig-
nificantly only when the matching relationship between the system geometries (when the 
system’s nature frequency is consistent with the frequency of the ocean waves) and the 
control technology design are considered comprehensively. In 2020, Violini et al. pro-
posed an LTI (linear time invariant) control method for the improvement of the efficiency 
of a WEC [13]. In case of regular and irregular real ocean wave height, the comparison 
results between the LTI control method and existing control methods showed that the 
former method is preferred over the latter. In addition, researchers built a hardware plat-
form of ocean wave energy conversion system, and the corresponding optimization con-
trol methods were tested [14,15]. In Zhang et al. [14], an adaptive sliding mode control 
method containing a back-stepping strategy was proposed and applied on an experi-
mental platform, and the advantages of this control method were verified by comparison 
with the PID control method. In Pei et al. [15], an improved MPPT (Maximum Power Point 
Tracking) method of WEC was modeled and tested. After the experimental test (in differ-
ent wave working conditions), the improved MPPT method was found to be better than 
the other control methods, and had the advantages of stability and high effectiveness. 

An analysis of Figure 1 and the above optimization control methods for ocean wave 
energy conversion systems demonstrated that predictions of future ocean wave height are 
beneficial to the improvement of the efficiency of ocean wave energy conversion systems. 
This is because the ultimate aim of optimization control of ocean wave energy conversion 
is to achieve resonant motion between the ocean wave height and the buoy of the ocean 
wave energy conversion system. This study draws upon the work of reference [16], 
which proposed a method for decomposing the physical processes involved in Bragg 
reflection. Through a systematic analysis of the amplitude of sinusoidal bars and their 
optimal wavelength for achieving the best mitigation effect, this study offers valuable 
insights for predicting ocean wave fields. Additionally, reference [17] introduces a 
wavelet neural network method aimed at enhancing the prediction accuracy of signifi-
cant wave height and peak wave period in ocean waves. The research findings indicate 
that the suggested prediction method (wavelet neural network) is preferred over the 
standalone neural network method. In the context of a specific structure of an ocean wave 
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Based on the ocean wave height, some optimization control methods were investigated
by simulation analysis or hardware experiments, with the aim of improving the operational
efficiency of ocean wave energy conversion systems. In 2016, a novel unconstrained
control method for a WEC (wave energy converter) considering the iteration between
geometry optimization and control technology design was studied by Paula et al. [12]. The
simulation results showed that the efficiency of the WEC could be increased significantly
only when the matching relationship between the system geometries (when the system’s
nature frequency is consistent with the frequency of the ocean waves) and the control
technology design are considered comprehensively. In 2020, Violini et al. proposed an LTI
(linear time invariant) control method for the improvement of the efficiency of a WEC [13].
In case of regular and irregular real ocean wave height, the comparison results between
the LTI control method and existing control methods showed that the former method
is preferred over the latter. In addition, researchers built a hardware platform of ocean
wave energy conversion system, and the corresponding optimization control methods were
tested [14,15]. In Zhang et al. [14], an adaptive sliding mode control method containing
a back-stepping strategy was proposed and applied on an experimental platform, and
the advantages of this control method were verified by comparison with the PID control
method. In Pei et al. [15], an improved MPPT (Maximum Power Point Tracking) method
of WEC was modeled and tested. After the experimental test (in different wave working
conditions), the improved MPPT method was found to be better than the other control
methods, and had the advantages of stability and high effectiveness.

An analysis of Figure 1 and the above optimization control methods for ocean wave
energy conversion systems demonstrated that predictions of future ocean wave height
are beneficial to the improvement of the efficiency of ocean wave energy conversion
systems. This is because the ultimate aim of optimization control of ocean wave energy
conversion is to achieve resonant motion between the ocean wave height and the buoy of the
ocean wave energy conversion system. This study draws upon the work of reference [16],
which proposed a method for decomposing the physical processes involved in Bragg
reflection. Through a systematic analysis of the amplitude of sinusoidal bars and their
optimal wavelength for achieving the best mitigation effect, this study offers valuable
insights for predicting ocean wave fields. Additionally, reference [17] introduces a wavelet
neural network method aimed at enhancing the prediction accuracy of significant wave
height and peak wave period in ocean waves. The research findings indicate that the
suggested prediction method (wavelet neural network) is preferred over the standalone
neural network method. In the context of a specific structure of an ocean wave energy
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conversion system (Figure 1), accurate forecasting and confirmation of future ocean wave
height within the 2~3 s range would facilitate the implementation of an optimized control
process for the said energy conversion system.

The primary contributions of this paper can be summarized as follows. Firstly, an
analysis of the real fluctuation characteristics of ocean wave height is conducted, and
a denoising method is employed to enhance the smoothness of the ocean wave height
time series. Secondly, three forecasting methods, namely the ARMA method, the BP
neural network method and the RBF neural network method, are presented. Thirdly, a
comparative analysis is performed to evaluate the forecast accuracy and computational
time consumption of these three methods. Finally, the comparison results and subsequent
discussions demonstrate that the RBF neural network method outperforms the other
two forecasting methods, thereby enhancing the operational control and efficiency of ocean
wave energy conversion system.

2. Denoising and Smoothing of Real Ocean Wave Height

In the real ocean environment, ocean waves exhibit nonlinearity, irregularity, and
varying wave periods and heights [18,19]. Figure 2 illustrates a time series of real ocean
waves observed near Lianyungang port, in the Yellow Sea on 1 November 2017, using a
buoy-type wave height measuring instrument. It is evident from Figure 2 that real ocean
waves are characterized by nonlinearity and irregularity, particularly the presence of small-
amplitude oscillations. In such circumstances, effective and accurate forecasting of ocean
wave height becomes challenging. Moreover, considering factors such as motion inertia,
additional mass, damping coefficient, and natural frequency of the buoy in ocean waves, it
can be inferred that small-amplitude oscillations do not significantly impact on the motion
process of a buoy [20–22]. For instance, if the horizontal diameter of the buoy exceeds
the wavelength of the ocean waves by 0.2 times (as observed in the high-frequency and
small-amplitude oscillations of ocean waves in Figure 2), the buoy motion process remains
largely unaffected [23].
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Therefore, prior to prognosticating future ocean wave height, it is necessary to pre-
process the historical time series of ocean wave height with the objective of enhancing its
fluidity.
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This paper adopts the frequency domain method of the Butterworth filter to achieve
the denoising and smoothing of real ocean wave height [24,25]. The transfer function
(magnitude frequency response) of the Butterworth filter can be described as

|H(jω)|2 =
1

1 + ξ2(ω/ωc)
2N , (1)

where ω represents nature frequency, ωc denotes corner frequency and N indicates system
order. If the coefficient ξ = 1, then the gain of Butterworth filter corresponding to the corner
frequency ωc is −3 dB. In addition, with the system order of Butterworth filter increasing,
the smooth of filtered curve of ocean wave height increases simultaneously.

Figure 3a showcases the denoising result of real ocean wave height through the uti-
lization of the Butterworth filter. In this instance, the natural frequency of the Butterworth
filter is 0.02 × 2, the duration of the time series is 150 s (from the 750th s to the 900th s),
and the temporal interval between adjacent data points of the real ocean wave height is
0.25 s. Figure 3a signifies that subsequent to the denoising process, the ocean wave height
attains a state of smoothness. In addition, during the denoising process, it is also observed
that as the natural frequency of the Butterworth filter decreases, the filtered curve of the
ocean wave height becomes increasingly smoother. However, if the natural frequency of
the Butterworth filter is chosen imprudently, a severe distortion of the ocean wave height
curve occurs, as depicted in Figure 3b, where the natural frequency of the Butterworth filter
is 0.0085 × 2. Therefore, a suitable selection of an appropriate natural frequency for the
Butterworth filter is pivotal in ensuring the smoothness and non-distortion of the ocean
wave height.

Several alternative methodologies can also be employed for the denoising and smooth-
ing of real ocean wave height, including the polynomial function, the Chebyshev filter,
and the finite impulse response filter, among others [26–28]. Figure 4 illustrates a time
domain approach utilizing the polynomial function to denoise and smooth the real ocean
wave height, with the polynomial function being of a ninth order. From Figure 4, it can be
deduced that an increased quantity of ocean wave height data leads to a greater degree
of distortion in the ocean wave height. Therefore, when compared to the time domain
method, the frequency domain method of denoising and smoothing ocean wave height
possesses the advantages of precision and efficacy.
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3. Forecasting Methods of Ocean Wave Height

Building upon the denoising and smoothing of real ocean wave height expounded
upon in Section 2, this subsequent section employs three methodologies, namely the ARMA
method, the BP neural network method and the RBF neural network method to forecast
the future ocean wave height.

3.1. ARMA Method

The basic expression of ARMA method can be written as

Xt = a1Xt−1 + · · · apXt−p + εt − b1εt−1 − · · · bqεt−q, (2)

where Xt represents the forecasted data, X =
(
Xt−1, Xt−2, · · ·Xt−p

)T denotes time series of

historical data, a =
(
a1, a2, · · · ap

)T indicates autoregressive coefficient, b =
(
b1, b2, · · · bq

)T
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signifies moving average coefficient and ε =
(
εt−1, εt−2, · · · εt−q

)T expresses white noise
sequence [29].

Equation (2) indicates that the forecasted data are determined by the time series of
historical data, autoregressive coefficient, moving average coefficient, and white noise
sequence. Therefore, it is necessary to devise reasonable measures to enhance the feasibility
and accuracy of ARMA method in forecasting the future ocean wave heights.

Firstly, the stationary analysis of the time series of historical data must be achieved.
Only when the time series of historical data exhibits stationarity can the forecasted future
data of ocean wave heights be deemed meaningful and accurate. This paper study em-
ploys differential calculation methods to eliminate the non-stationary of the time series of
historical ocean wave heights.

Secondly, the orders p and q of Equation (2) necessitate determination and establish-
ment. In actuality, appropriate orders are advantageous in striking a balance between
computation time (the shorter the better) and forecast accuracy. This paper adopts the
minimum value method of the Akaike information criterion (AIC) to select the suitable
orders p and q and assesses the rationality of orders p and q by the truncation analysis of
time series data. Taking the order q as an example, its AIC can be written as

AIC(q) = Lnσ2 +
2(q + 1)

N
. (3)

In Equation (3), σ represents random error and N denotes the number of time series.
Under the condition that q + 1 increases (the Lnσ2 decreases concurrently), a minimum
value of AIC(q) must occur. Therefore, parameter q that corresponds to the minimum value
of AIC(q) is the suitable order of Equation (2). In addition, during the process of forecasting
real ocean wave heights using a computer program, the orders p and q should be slightly
adjusted with the aim of reducing computation time and ensuring forecast accuracy.

Thirdly, based on the determined orders p and q, the parameters of Equation (2)
such as the autoregressive coefficient a =

(
a1, a2, · · · ap

)T , moving average coefficient

b =
(
b1, b2, · · · bq

)T and white noise sequence ε =
(
εt−1, εt−2, · · · εt−q

)T can be estimated.
The conventional methods for parameter estimation include matrix estimation, least square
estimation and maximum likelihood estimation [30,31]. Many numerical computation
software packages employ the least square estimation method to establish the parameters
estimation for the ARMA method.

Lastly, the ARMA method is constructed, and the future data are calculated using the
ARMA method.

3.2. BP Neural Network Method

In 1986, Rumelhart and McClelland proposed the preliminary framework of the BP
neural network [32]. After a series of advancements and refinements, the contemporary
BP neural network comprises an input layer, a hidden layer and an output layer. With
the characteristic of forward propagation of input variables and backward propagation of
weights (thresholds), the BP neural network possesses the functions of data forecasting,
pattern recognition, and type discrimination. Furthermore, it should be noted that the data
forecasting function of the BP neural network is realized through the S-type neurons, which
differs from the data fitting function (principle) of conventional forecasting methods.

Figure 5 shows a kind of BP neural network structure with one hidden layer. In
Figure 5, xi(i = 1, · · · , l) represents the input variables, wij denotes the weight value
between the input layer and hidden layer, f j(j = 1, · · · , m) signifies the threshold value of
the hidden layer, φs represents the S-type function (base function) of the hidden layer, wjk
expresses the weight value between the hidden layer and the output layer, ck(k = 1, · · · , n)
indicates the threshold value of the output layer, Φs conveys the linear function of the
output layer and Oi(i = 1, · · · , l) refers to the output variables.
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The forward propagation equation of input variables of BP neural network can be
described as

Oi = Φs

(
m

∑
j=1

wjkφs

(
l

∑
i=1

wijxi + f j

)
+ ck

)
. (4)

In Equation (4), the gradient method is employed to adjust the weight value (wij, wjk)
and the threshold value ( f j, ck), thereby enabling the output variables to closely approximate
the real value. Therefore, Equation (4) indicates the applicability of the BP neural network
method in forecasting future ocean wave height.

3.3. RBF Neural Network Method

The initial prototype of the RBF neural network was proposed in the 1980s, and it can
be utilized for the prediction of future time series data [33]. The structure of the RBF neural
network closely resembles that of the BP neural network, including an input layer, hidden
layer and output layer. However, the RBF neural network adopts the OLS (orthogonal
least square) method to adjust the weight value and other parameters while employing the
Gaussian function as the basis function for the hidden layer.

The output of RBF neural network can be written as

Yj = ∑n
i=1 w2

ije
−(‖Xi−

→
W

i
‖/(2σ2)), (5)

where Yi(i = 1, · · · , j) represents the output variables, w2
ij denotes the weight value be-

tween the i node of the hidden layer and the j node of the output layer, Xi(i = 1, · · · , p)

signifies the input variables,
→
W

i
denotes the center vector of the base function in the hidden

layer, and σ corresponds to the variance of the Gaussian function.
In Equation (5), the variance of the Gaussian function σ significantly influences the

forecast accuracy of RBF neural network. Therefore, this paper adopts the FOA (fruit fly
optimization algorithm) to select parameter σ [34]. Figure 6 shows the data analysis and
the process of the FOA. The flow of the FOA is as follows:

Step 1. Parameter initialization, such as the initial position of fruit flies and the
maximum number of FOA iterations.

Step 2. Definition of the direction and distance for the food search of fruit flies.
Step 3. Under the normal condition, the setting of smell density to be determined by

the reciprocal of the distance (between the fruit fly and the origin point).
Step 4. Calculation of the smell density for each fruit fly using the fitness function.
Step 5. When the calculated smell density of a fruit fly satisfies the smell density

setting of Step 3, the data analysis and process of the FOA are terminated. Otherwise, the
maximum value of the calculated smell density is selected, and the calculation process is
repeated from Step 3 or the maximum number of iterations from Step 1.
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4. Results and Comparison

After the mathematical model analysis of the ARMA method, the BP neural network
method and the neural RBF network method, a future ocean wave height within a 2~3 s
range was computed using the aforementioned three forecasting methods.

By the ARMA method, Figure 7a shows the case of a 2-s lead forecast to the real ocean
wave height, and the orders of the ARMA method are p = 1 and q = 1. Compared with the
real ocean wave height (after denoising and smoothing), forecast errors occur in the peak
and trough areas of the ocean wave height. Figure 7b shows the scatter plots depicting the
forecasted ocean wave height versus the real ocean wave height.
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Figure 7. A 2 s-ahead forecast of future ocean wave height by ARMA method. (a) Comparison of real
ocean wave height and forecasted ocean wave height. (b) Scatter of forecasted ocean wave height
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Under the same historical time series of real ocean wave height depicted in Figure 7a,
Figure 8a presents the forecasted result of real ocean wave height using the BP neural
network method, where the maximum training iterations were set at 500, with a training
accuracy of 0.1 and a learning rate of 0.01. In Figure 8a, the forecasted result is also 2 s ahead
of the real ocean wave height. The historical time series of real ocean wave height consists
of 116 data points, which are decomposed into a matrix of size (16 × 100) and a matrix of
size (8 × 100) using the BP neural network method. By analyzing the relationship between
the (16 × 100) matrix and the (8 × 100) matrix, future data are forecasted. Compared with
the ARMA method of Figure 7a, it can be seen that the forecasted result of the BP neural
network method is superior, but some fluctuating errors always exist. Figure 8b shows the
scatter plots of forecasted ocean wave height against real ocean wave height.
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Figure 8. A 2 s-ahead forecast of future ocean wave height by BP neural network method. (a)
Comparison of real ocean wave height and forecasted ocean wave height, (b) scatter of forecasted
ocean wave height versus real ocean wave height.

Figure 9a pertains to the 2-s-ahead forecast of future ocean wave height by the RBF
neural network method, and Figure 9b shows the scatter plots of forecasted ocean wave
height against real ocean wave height. In Figure 9a, the decomposition method for the
historical time series of real ocean wave height is the same as that of the BP neural network
method, but their training and forecasting methods differ (the fruit fly population is three,
and the maximum number of iterations is two). The comparison among Figures 7–9
indicates that the forecast accuracy of the RBF neural network method is better than that of
the other two methods.
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In order to analyze and compare the forecast accuracy in detail, Table 1 shows the
quantitative performance of these three forecasting methods using RMSE, MAE and corre-
lation coefficient R. From Table 1, it can be seen that the RMSE and MAE of the RBF neural
network are lower than those of the other methods, and the correlation coefficient R of the
RBF neural network is the largest. Therefore, the comparison results of RMSE, MAE and
the correlation coefficient R signify that the RBF neural network method is preferred over
the other two methods.

Table 1. Error and calculation time consumption of different forecasting methods (2 s-ahead forecast).

Forecast Horizon ARMA Method BP Method RBF Method

RMSE (m) 0.013 0.0105 3.90 × 10−7

MAE (m) 0.0087 0.0078 2.36 × 10−7

R 0.9953 0.9929 1
Calculation time consumption (s) 0.2578 0.2739 0.3704

In addition, even when the forecast time is extended, such as the 3-s-ahead forecast
of real ocean wave height, the forecast accuracy of the RBF neural network method still
exhibits the highest forecast accuracy, as shown in Table 2.

Table 2. Error and calculation time consumption of different forecasting methods (3 s-ahead forecast).

Forecast Horizon ARMA Method BP Method RBF Method

RMSE (m) 0.0282 0.0148 5.16 × 10−7

MAE (m) 0.019 0.0106 2.66 × 10−7

R 0.9782 0.9868 1
Calculation time consumption (s) 0.2726 0.2944 0.3945

Furthermore, compared with the calculation time consumption of the ARMA method
and the BP neural network method, although the RBF neural network method has the
longest calculation time consumption (Tables 1 and 2), it is deemed acceptable due to the
forecast time being 2 s or 3 s. In the practical application, 2 s or 3 s is sufficient for program



Water 2023, 15, 3256 12 of 15

execution and control signal output of the controller, particularly for controllers with high
computational capabilities.

5. Discussions

In Section 4, the comparison between Tables 1 and 2 also shows that as the forecast
time increases form 2 s to 3 s, the forecast errors (RMSE and MAE) of these three forecasting
methods increase slightly, and the correlation coefficients R of the BP neural network
method and the RBF neural network method undergo a marginal decrease. This section
discusses the reason for forecast errors and a general overview of the characteristics of
these three forecasting methods.

Through the method of curve plotting, Figure 10 presents the forecast error comparison
between the ARMA method, the BP neural network method and the RBF neural network
method. From Figure 10a,b, it can be concluded that the forecast errors of the ARMA
method and the BP method exhibit greater magnitudes in the regions of peaks and troughs
compared to other areas. This phenomenon arises due to the complete dependence of
forecast values on the linear sequence Equation (2) and forward propagation Equation (4).
For instance, in regions characterized by high rates of change in real ocean wave height,
such as peaks and troughs, where the autoregressive coefficient and moving average
coefficient do not change simultaneously, the forecast error of the ARMA method escalates.
Conversely, leveraging the fruit fly optimization algorithm (FOA), the RBF neural network
method demonstrates the advantage of minimal forecast error.

Figure 10a,b also show that the forecasted values of the BP neural network method
exhibit fluctuations around the curve representing real ocean wave height. This behavior
can be attributed to the real-time adjustment characteristic of the threshold value of in the
hidden layer and the output layer. However, considering both the calculation time and
number of iterative trainings, the forecast error of the BP neural network method is larger
than the forecast error of the RBF neural network method.

By integrating the fruit fly optimization algorithm (FOA), the RBF neural network
method successfully predicts future ocean wave heights, which closely align with the real
ocean wave height, as depicted in Figure 10a,b.
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Figure 10. The forecast errors comparison of ARMA method, BP neural network method and RBF
neural network method. (a) A 2 s-ahead forecast of future ocean wave height. (b) A 3 s-ahead forecast
of future ocean wave height.

Therefore, the comparative analysis and subsequent discussion affirm that the RBF
neural network method stands as the optimal approach for forecasting future ocean wave
heights. Moreover, it has the potential to offer valuable data for the operation control and
efficiency enhancement of ocean wave energy conversion systems. In practical applications,
a forecast time (2~3 s) for ocean wave height suffices for program execution and signal
processing of the current level controller. This optimization of the operational status of
ocean wave energy conversion systems can lead to enhanced operational efficiency.

In addition, ocean wave field prediction holds significant importance for ensuring
the operational safety of ocean wave energy conversion systems [35,36]. If future wave
field prediction can provide information on ocean waves with larger wave heights (e.g.,
six-hours ahead of the real ocean wave height), proactive measures can be implemented to
protect the ocean wave energy conversion system.

6. Conclusions

This paper adopts the Butterworth filter to denoise and smooth the curves of real ocean
wave height. Subsequently, the ARMA method, the BP neural network method, and the RBF
neural network method are utilized to forecast the ocean wave height. Upon comparing
the forecast results of these three methods, it is evident that the RBF neural network
method outperforms the other two forecasting methods. In addition, the computational
time required by each forecasting method is compared, and the factors contributing to the
forecast errors are analyzed.

The error comparison results of these three forecasting methods (Figure 10a,b) indicate
that a smoother curve corresponds to a higher forecast accuracy of future ocean wave
height. Therefore, ocean waves with longer cycles (indicating smoother wave curves)
can enhance the forecast accuracy of ocean wave height. In addition, in the practical
design and implementation of ocean wave energy conversion systems, it is necessary to
test and validate the feasibility of the RBF neural network forecasting method. Moreover,
the installation position and seawater corrosion resistance of hardware components (e.g.,
controller and sensor, among others) should be taken into consideration.
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