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Abstract: Accurate and reliable wave forecasting is crucial for optimizing the performance of various
marine operations, such as offshore energy production, shipping, and fishing. Meanwhile, predicting
wave height and wave energy is crucial for achieving sustainability as a renewable energy source,
as it enables the harnessing of the power of wave energy efficiently based on the water-energy
nexus. Advanced wave forecasting models, such as machine learning models and the semi-analytical
approach, have been developed to provide more accurate predictions of ocean waves. In this study,
the Sverdrup Munk Bretschneider (SMB) semi-analytical approach, Emotional Artificial Neural
Network (EANN) approach, and Wavelet Artificial Neural Network (WANN) approach will be used
to estimate ocean wave parameters in the Gulf of Mexico and Aleutian Basin. The accuracy and
reliability of these approaches will be evaluated, and the spatial and temporal variability of the wave
field will be investigated. The available wave characteristics are used to generate hourly, 12-hourly,
and daily datasets. The WANN and SMB model shows good performance in the daily prediction of
the significant wave height in both case studies. In the SMB model, specifically on a daily time scale,
the Nash–Sutcliffe Efficiency (NSE) and the peak deviation coefficient (DCpeak) were determined to
be 0.62 and 0.54 for the Aleutian buoy and 0.64 and 0.55 for the Gulf of Mexico buoy, respectively,
for significant wave height. In the context of the WANN model and in the testing phase at the daily
time scale, the NSE and DCpeak indices exhibit values of 0.85 and 0.61 for the Aleutian buoy and 0.72
and 0.61 for the Gulf of Mexico buoy, respectively, while the EANN model is a strong tool in hourly
wave height prediction (Aleutian buoy (NSEEANN = 0.60 and DCpeakEANN = 0.88), Gulf of Mexico
buoy (NSEEANN = 0.80 and DCpeakEANN = 0.82)). In addition, the findings pertaining to the energy
spectrum density demonstrate that the EANN model exhibits superior performance in comparison
to the WANN and SMB models, particularly with regard to accurately estimating the peak of the
spectrum (Aleutian buoy (DCpeakEANN = 0.41), Gulf of Mexico buoy (DCpeakEANN = 0.59)).

Keywords: wave height prediction; energy spectrum density; semi-analytical approach; machine
learning methods; hybrid model

1. Introduction

Ocean wave forecasting is a critical aspect of ocean engineering and management, as
it plays an essential role in the design, construction, and operation of offshore structures
and coastal protection systems [1,2]. Accurate and reliable wave forecasting is crucial for
optimizing the performance of various marine operations, such as shipping, offshore energy
production, and fishing [3,4]. Traditional wave forecasting models rely on physical and
statistical models, which have certain limitations in predicting complex wave phenomena
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accurately [5–8]. Therefore, there is a need to develop advanced wave forecasting models
that can provide more accurate and reliable predictions of ocean waves.

The ocean is a dynamic and complex system that is constantly changing due to various
environmental factors, such as wind, temperature, and currents [9]. The behavior of ocean
waves is of significant interest to the ocean engineering community, as it has a significant
impact on the design and operation of various marine structures [10]. Accurate and
reliable wave forecasting is essential for optimizing the performance of these structures
and ensuring the safety of personnel working in the marine environment [11].

In recent years, there has been significant research and development in the field of
wave forecasting, with various models and methods proposed to predict the behavior
of ocean waves [12–14]. Over the years, various wave forecasting models have been
developed using different approaches, such as physical, statistical, and machine learning
models [15–21].

Statistical models, on the other hand, are based on empirical relationships between
wave parameters and environmental conditions, such as wind speed, atmospheric pressure,
and sea surface temperature [22]. These models are relatively simple and require less
computational effort than physical models, but they are limited in their ability to capture
the nonlinear relationships between the input and output parameters [23].

However, numerical models have been developed to predict wave characteristics
under different environmental conditions [24,25]. For instance, Boussinesq models have
been used extensively to predict wave conditions in coastal and offshore zones [26]. Using
a fully nonlinear Boussinesq model, Gao et al. [27] simulated wave motion and interaction
in the harbor. Consideration was given to two types of harbor oscillations: the harbor
resonance directly induced by the regular long waves and the nonlinear harbor resonance
induced by the bichromatic short wave groups. In another study, Gao et al. [28] numerically
simulated the low-frequency waves inside a long port near the reef, which is excited by
short wave groups. They evaluated the effects of the reef ridge slope on the characteristics
of low-frequency waves.

In the past decade, several complex numerical models have been developed for wave
forecasting [29]. Meanwhile, the implementation of large numerical models requires
a substantial quantity of depth, meteorological, and oceanographic data [30]. In some
regions, these data are unavailable, making numerical modeling difficult and expensive.
Moreover, based on the initial estimates, the use of these models is often not economically
justified. Therefore, engineers tend to utilize simple prediction methods based on internal
relationships in these situations [31]. These techniques are sufficiently precise for initial
estimations and simple situations with minimal local effects.

In recent years, the semi-analytical approach has been applied, besides other methods
such as machine learning algorithms and numerical models, to improve wave estimation
accuracy and to study the spatial and temporal variability of ocean waves [19,32]. This
approach combines the linear theory of ocean waves with empirical data on wave spectra
to estimate wave characteristics in deep water conditions. Researchers have used this
approach to estimate wave parameters from satellite data, buoy measurements, and radar
observations [33].

The Sverdrup Munk Bretschneider (SMB) semi-analytical approach is a widely used
method for estimating ocean wave parameters. It was first introduced in the late 1940s
and has since been refined and adapted by numerous researchers in the field of oceanogra-
phy [34]. The SMB approach has been used for wave estimation in various oceanographic
applications, including weather forecasting, ocean engineering, and coastal management.
Others have incorporated the SMB approach into numerical models to simulate wave
propagation and wave–structure interactions [35,36]. Soomere et al. [37] highlighted that
semi-analytical techniques, such as the SMB method, continue to demonstrate efficacy in
the preliminary estimation of oceanic wave behavior. However, as third-generation models
and numerical approaches continue to advance, these methods are increasingly being
considered as supplementary options to the SMB method. Nevertheless, the utilization
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of numerical models in wave simulation is hindered by their significant computational
expense and the inherent difficulty in obtaining appropriate input data. In order to attain
the desired outcomes within the SMB model, it is imperative to employ the concept of
effective fetch. Nevertheless, small- and medium-sized businesses (SMBs) do not achieve
optimal performance when it comes to limited fetching [38]. Studies have demonstrated
that due to the nonlinear nature of the wave–wind process, old fashion SMB model may
not be able to simulate it accurately [39,40]. The consideration of this issue is imperative in
order to ensure accurate and dependable production in nearshore to coastal areas [41,42].
Nevertheless, there is a lack of empirical research comparing the efficacy of this approach
in deep water scenarios with contemporary machine learning techniques.

In addition, machine learning models have emerged as a promising approach for
wave forecasting, as they can capture the nonlinear relationships between the input and
output parameters and can learn from the historical data to improve the accuracy of the
predictions [43–45]. Fan et al. [46] employed the LTSM long-term–short-term memory
network to forecast the wave height in various water stations within the Gulf of Mexico
for the subsequent 1 and 6 h time scales. The findings of this study indicate that the long-
short-term memory (LSTM) model has demonstrated its ability to forecast the outcomes
of stable conditions. Dai et al. [47] have made predictions regarding the wave height in
the Gulf of Mexico by employing the Conditional Restricted Boltzmann Machine–Deep
Network (CRBM-DBN) methodology. The findings of this study demonstrate that, in the
context of short-term wave height forecasting, the error indicator for future predictions
within a 12 h time frame is a significant factor. Within the span of 26 degrees north latitude,
this quantity exhibits a gradual decline as the geographical latitude increases toward the
north and decreases toward the south. Londhe et al. [48] made predictions regarding the
future trajectory of India. The prediction for the upcoming 24 h period has been generated
utilizing a numerical model, followed by the application of a neural network to rectify any
inaccuracies. The findings of this study demonstrate that the utilization of this approach
yields a discernible enhancement in the accuracy of predictions. In a study conducted by
James et al. [49], various machine learning techniques were employed to forecast wave
height and period in the Monterey Bay region. In the aforementioned study, two distinct
methodologies were employed for the purpose of wave prediction. The analysis of wave
height involves the utilization of a multi-layer neural network comprising three hidden
layers. The support vector machine has also utilized the categorization of wave repetition
period. The outcomes indicate a strong concordance between the predicted target values
and the machine learning, thereby demonstrating a high confidence coefficient of the model.

Among the machine learning models, artificial neural networks (ANNs) have been
widely used for wave forecasting due to their ability to learn from the data and their ability
to model the nonlinear relationships between the input and output parameters [50–52].
However, ANNs have certain limitations, such as the risk of overfitting and the difficulty
in interpreting the results [53]. To address these limitations, several advanced neural
network models, such as Emotional Artificial Neural Networks (EANNs) and Wavelet
Artificial Neural Networks (WANNs), have been proposed. The neuro-wavelet technique
was employed to forecast wave height in buoys numbered 42040, 42039, 41004, and 41041
located in the Gulf of Mexico during the fifth event of the Great Hurricane Katrina in
2005. Dean (2007), Gustav (2008), Ike (2008), and Ayran (2011) are the events under
consideration [54]. The neural network model utilized wavelet decomposition as its input,
wherein the wave height time series was decomposed into three, five, and seven levels.
The researchers demonstrated that the wavelet neural network technique can be effectively
resolved. The issue pertaining to the precise forecasting of severe storm occurrences was
addressed. The application of the EANN model has been extended in the field of rainfall
and runoff prediction research [55–57]. However, its potential for predicting sea waves has
not yet been explored. Furthermore, a comprehensive evaluation of this novel approach
in relation to existing models that have been extensively studied in the domain of wave
characteristic prediction has not been conducted.
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Wave forecasting has overlooked conducting a direct comparison between nearly
conventional semi-analytical methods and emerging hybrid machine learning models. The
significance of the present investigation pertains to the comparative and evaluative analysis
of various methodologies employed for the estimation of oceanic wave characteristics. In
this study, we will use the SMB semi-analytical, EANN, and WANN approaches to estimate
ocean wave parameters in the Gulf of Mexico and the Aleutian Basin. The chosen regions
were designated in order to assess the performance of the models independently from
the local environmental conditions. We will evaluate the accuracy and reliability of these
approaches in comparison to each other and investigate the spatial and temporal variability
of the wave field. These models are used to model the nonlinear relationships between the
input parameters and the output wave parameters, which are difficult to capture using
traditional physical models. Furthermore, it is important to note that buoys and models
utilized for the purpose of recording sea waves possess distinct capabilities in relation to
the time scale at which marine data is recorded. Therefore, possessing knowledge and
understanding of models that are compatible with these specific time scales can facilitate
the selection of an appropriate model for wave prediction. Thus, in this study, the efficiency
of the mentioned models in different time scales was evaluated using hourly data, 12 h
averages, and daily averages. The findings of this study can be applied to improve the
accuracy of wave forecasting models and to aid in the design of safe and efficient marine
structures in these regions.

2. Study Area and Dataset

The study area for this research encompasses two distinct regions: the Aleutian Basin
and the Gulf of Mexico.

The Aleutian Basin is a deep-water basin located in the northern Pacific Ocean, extend-
ing from the Aleutian Islands to the Kamchatka Peninsula. The study area for this research
encompasses a region within the Aleutian Basin, between 50◦ N to 55◦ N latitude and 170◦ E
to 180◦ longitude (Figure 1a). The Aleutian Basin is a complex oceanic region characterized
by diverse oceanographic conditions. It is influenced by several oceanic currents, including
the Alaska Coastal Current and the Aleutian Current. The region is subject to strong winds
and storms, which contribute to a highly variable wave climate in the Aleutian Basin,
with significant variations in wave height, period, and direction. The Aleutian Basin is an
important region for several marine activities, including fishing, shipping, and oil and gas
production. Accurate estimation of ocean wave parameters is necessary for the design and
operation of these marine structures. Therefore, understanding the spatial and temporal
variability of the wave field in the Aleutian Basin is crucial for these activities [58–61].

The Gulf of Mexico is a large body of water located in the Atlantic Ocean, bordered by
the United States to the north, Mexico to the west and south, and Cuba to the southeast.
The study area for the Gulf of Mexico is located between 15◦ N to 30◦ N latitude and 85◦ W
to 100◦ W longitude (Figure 1b). The Gulf of Mexico is an important region for several
marine activities, including shipping, oil and gas production, and commercial fishing.
Accurate estimation of ocean wave parameters is necessary for the design and operation of
these marine structures. The Gulf of Mexico is also vulnerable to extreme weather events,
including hurricanes, which can cause significant damage to coastal communities and
marine structures [62–64].

The regions that were selected were specified in order to evaluate the performance of
the models in a manner that is independent of the environmental factors that are present in
the local area.



Water 2023, 15, 3254 5 of 33Water 2023, 15, x FOR PEER REVIEW 5 of 34 
 

 

  

(a) (b) 

Figure 1. The location of study area and buoy situation based on NOAA National Data Buoy Center 

(NDBC). (a) Buoy 46070, at 55°0′30″ N 175°10′59″ E, at a depth of 3865 m (Aleutian Basin), and (b) 

Buoy 42003, at 25°55′31″ N 85°36′58″ W, at 3273 m (Gulf of Mexico). 

The Gulf of Mexico is a large body of water located in the Atlantic Ocean, bordered 

by the United States to the north, Mexico to the west and south, and Cuba to the southeast. 

The study area for the Gulf of Mexico is located between 15° N to 30° N latitude and 85° 

W to 100° W longitude (Figure 1b). The Gulf of Mexico is an important region for several 

marine activities, including shipping, oil and gas production, and commercial fishing. Ac-

curate estimation of ocean wave parameters is necessary for the design and operation of 

these marine structures. The Gulf of Mexico is also vulnerable to extreme weather events, 

including hurricanes, which can cause significant damage to coastal communities and ma-

rine structures [62–64]. 

The regions that were selected were specified in order to evaluate the performance of 

the models in a manner that is independent of the environmental factors that are present 

in the local area. 

NOAA National Data Buoy Center (NDBC) collected the wind–wave data used in 

this investigation (https://www.ndbc.noaa.gov/ accessed on 12 February 2022). Figure 1 

displays the locations of NDBC stations in the Aleutian Basin and the Gulf of Mexico. 

Depending on the timeline, buoys and models used to record sea waves have varying 

capacities. Knowing which models are consistent with certain time scales might thus aid 

in the selection of a wave prediction model. Therefore, the available wave characteristics 

are used to generate datasets, including hourly, 12-hourly, and daily averages. Table 1 

presents the statistics of the used wave characteristics data for the study regions. For the 

current study, 80% percent of the available data is used for training, while the remaining 

20% is retained for testing. 

  

Figure 1. The location of study area and buoy situation based on NOAA National Data Buoy Center
(NDBC). (a) Buoy 46070, at 55◦0′30′′ N 175◦10′59′′ E, at a depth of 3865 m (Aleutian Basin), and
(b) Buoy 42003, at 25◦55′31′′ N 85◦36′58′′ W, at 3273 m (Gulf of Mexico).

NOAA National Data Buoy Center (NDBC) collected the wind–wave data used in
this investigation (https://www.ndbc.noaa.gov/ accessed on 12 February 2022). Figure 1
displays the locations of NDBC stations in the Aleutian Basin and the Gulf of Mexico.
Depending on the timeline, buoys and models used to record sea waves have varying
capacities. Knowing which models are consistent with certain time scales might thus aid in
the selection of a wave prediction model. Therefore, the available wave characteristics are
used to generate datasets, including hourly, 12-hourly, and daily averages. Table 1 presents
the statistics of the used wave characteristics data for the study regions. For the current
study, 80% percent of the available data is used for training, while the remaining 20% is
retained for testing.

Table 1. The statistics of the observed time series for Aleutian Basin and Gulf of Mexico.

Scale Time Series Statistical
Characteristic

Aleutian Basin (1 January 2020
12:00:00 a.m. to 21 December 2020

07:00:00 p.m.)

Gulf of Mexico (1 January 2021
12:00:00 a.m. to 30 November 2021

12:00:00 a.m.)

Calibration Verification Calibration Verification

Hourly Significant Wave
Height (m)

Root Mean Squared
Mean 1.74 2.73 0.70 0.74

Maximum 9.39 10.79 6.64 4.27
Minimum 0.5 1.21 0.22 0.22

Standard Deviation 1.42 1.15 0.57 0.61
Mean Wave Period

(s)
Root Mean Squared

Mean 6.15 7.86 4.87 4.04

Maximum 17.39 17.39 13.79 11.43
Minimum 3.70 5.56 2.35 2.86

Standard Deviation 2.17 2.01 1.33 1.32

Wind Speed (m/s) Root Mean Squared
Mean 5.50 6.07 3.72 4.00

Maximum 19.60 21.70 19.40 15.80
Minimum 0.1 0.2 0.1 0.1

Standard Deviation 3.57 1.60 2.47 2.24

https://www.ndbc.noaa.gov/
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Table 1. Cont.

Scale Time Series Statistical
Characteristic

Aleutian Basin (1 January 2020
12:00:00 a.m. to 21 December 2020

07:00:00 p.m.)

Gulf of Mexico (1 January 2021
12:00:00 a.m. to 30 November 2021

12:00:00 a.m.)

Calibration Verification Calibration Verification

12
Hourly

Significant Wave
Height (m)

Root Mean Squared
Mean 1.73 2.76 0.70 0.73

Maximum 9.39 10.79 5.32 3.44
Minimum 0.57 1.42 0.24 0.25

Standard Deviation 1.38 1.60 0.56 0.60
Mean Wave Period

(s)
Root Mean Squared

Mean 5.30 7.80 4.19 4.06

Maximum 14.81 14.81 11.43 11.43
Minimum 4.17 7.14 2.94 3.32

Standard Deviation 2.15 2.01 1.34 1.42

Wind Speed (m/s) Root Mean Squared
Mean 5.03 6.41 3.74 3.99

Maximum 17.60 19.37 18.50 3.44
Minimum 1.31 1.56 0.96 0.85

Standard Deviation 3.32 4.20 2.35 2.00

Daily Significant Wave
Height (m)

Root Mean Squared
Mean 1.72 2.85 0.71 0.72

Maximum 6.70 8.93 3.47 2.78
Minimum 0.71 1.56 0.28 0.29

Standard Deviation 1.31 1.63 0.53 0.56
Mean Wave Period

(s)
Root Mean Squared

Mean 6.29 8.05 4.56 3.89

Maximum 13.79 14.81 11.81 11.00
Minimum 4.76 7.69 3.33 3.23

Standard Deviation 2.20 1.99 1.33 1.37

Wind Speed (m/s) Root Mean Squared
Mean 5.48 6.26 3.72 4.00

Maximum 16.18 19.37 14.03 11.15
Minimum 1.72 2.03 1.34 2.16

Standard Deviation 3.03 4.04 2.15 1.84

3. Materials and Methods

In this section, we will introduce the SMB semi-analytical approach, the EANN, and
the WANN method.

3.1. Sverdrup Munk Bretschneider

The SMB semi-analytical approach is a commonly used method for analyzing ocean
dynamics, particularly in the study of waves and currents. The SMB approach uses
mathematical equations to model the interactions between the ocean and the atmosphere, as
well as the effects of tides and waves. This method has been widely used in oceanographic
research and is still an important tool for understanding ocean dynamics.

SMB equations are based on dimensionless analysis. These equations are presented
for deep water [19]. If the wind with speed u is over a fetch length of F, a wave is produced
with a significant wave height Hs and a significant wavelength Ts in a region with depth d
of the equations, and the following are obtained:

gHs

u2 = 0.283tanh

[
0.53

(
gd
u2

)0.75
]

tanh


0.0125

(
gF
u2

)0.42

tanh
[

0.53
(

gd
u2

)0.75
]
; (1)
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gTs

u
= 7.54tanh

[
0.833

(
gd
u2

)0.375
]

tanh


0.077

(
gF
u2

)0.25

tanh
[

0.833
(

gd
u2

)0.375
]
. (2)

The aforementioned values for Hs and Ts only occur when the wind blows for t minute
on an F fetch length, as determined by the expression below.

gtmin

u
= 6.5882exp


[

0.016
(

ln
(

gF
u2

))2
− 0.3692ln

(
gF
u2

)
+ 2.2024

]0.5

+ 0.8798ln
(

gF
u2

). (3)

If min t < tmin, then we calculate F for a certain t from Equation (3) and then add the
new F to Equations (1) and (2). In this case, the sea has a limited wind duration, and the
wavelength is controlled by the wind duration. If t > tmin, the height and length of the
waves are controlled by the specific wavelength. The equations for the deep-water region
are summarized as follows:

gHs

u2 = 0.283tanh

[
0.0125

(
gF
u2

)0.42
]

; (4)

gTs

u
= 2.4πtanh

[
0.077

(
gF
u2

)0.25
]

; (5)

gtmin
u

= 68.8
(

gF
u2

)0.67
. (6)

3.2. Emotional Artificial Neural Network

In recent years, the use of machine learning methods has become increasingly popular
in various fields of research, including oceanography. EANNs are types of neural networks
that are designed to evolve and adapt to changing conditions, making them well suited for
modeling complex systems like the ocean.

The Emotional Artificial Neural Network (EANN) is a further development of the
Artificial Neural Network (ANN) [65,66]. It allows neurons to create agents that can
alter cognitive, emotional, and production functions as required. In other words, EANN
models are an updated generation of conventional ANN models that incorporate an
artificial sensing unit that can release hormones to regulate the operation of nodes (neurons)
and hormone weights that can be adjusted based on the input and output values of the
nodes [67,68]. As shown in Figure 2, each node of the EANN can repeatedly receive
and transmit data between the input and output components, resulting in the production
of dynamic hormones Ha, Hb, and Hc. First, the coefficients change depending on the
relationship between the input and output, and then, after multiple iterations, they are
enhanced during the model training phase. Hormonal coefficients influence the node
characteristics, including the activation function, net performance, and mass. In Figure 2,
the solid and dashed lines represent the neuronal and hormonal information pathways,
respectively. The first output of the EANN model comprised Ha, Hb, and Hc hormone
secretors with ith nerve cell output (Equation (7)).

Yi = (γi + ∑
h

∂i,h Hh)︸ ︷︷ ︸
1

× f

∑
j

(βi + ∑ h χi,h Hh
)︸ ︷︷ ︸

2

×
(

αi,j + ∑ h Φi,j,k Hh

)
Xi,j︸ ︷︷ ︸

3

+
(
αi + ∑ h χi,hHh

)︸ ︷︷ ︸
4


, (7)

where j, h, and I represent the output, hidden, and input neurons, respectively. f is the
neuron function activator, ∂, ζ, Φ, and χ are the function weight activation values, and
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γ, β, θ, and α show the neuron weights [57]. Using Equation (8), the model hormone values
were evaluated and enforced on the neuron network.

Hh = ∑ i Hi,h(h = a, b, c)
Hi,h = glandityi,h ×Yi

. (8)
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In the training phase of the EANN model, the glandity index should be calibrated in
order to assign the proper quantity of hormones to the glands [65].

In this study, the network is trained using the Levenberg–Marquardt algorithm. It
is a modified version of Newton’s classical algorithm, which is used to find the optimal
solution for minimization-based problems. This method, like Newton’s method, considers
an approximation for the Hessian matrix in changing weights (Equation (9)).

xk+1 = xk

[
JT J + µI

]1
JT + e, (9)

where x represents the weights of the neural network, J represents the Jacobian matrix of
the network execution criterion to be minimized, and e represents the residual error vector.
When it is zero, the preceding equation is identical to Newton’s method, which employs
Hessian’s method; however, when it is a large value, it becomes a gradient reduction
relationship with a short time interval. The results of Newton’s method will be extremely
close to the minimum error rate. This algorithm is highly effective and stable [69,70].
Levenberg–Marquardt is designed to minimize sum-of-square error functions. To ensure
linear approximation validity, the Levenberg–Marquardt algorithm minimizes the error
function and reduces the step size. This iterative algorithm finds a local minimum of a
multivariate function that is the sum of squares of several non-linear, real-valued functions.
It is a standard method for non-linear least-square problems, used in many fields for
data-fitting applications.

3.3. Wavelet Artificial Neural Network

The wavelet transform is a powerful tool for analyzing non-stationary signals, which
are signals that vary in time and frequency. In the field of ocean engineering, the wavelet
transform has been used extensively for the analysis of ocean waves [15].
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The wavelet transform is based on the decomposition of a signal into a series of
wavelets, which are small waves that are localized in both time and frequency. The
decomposition is performed by convolving the signal with a series of wavelet functions,
which are scaled and translated versions of a mother wavelet. The resulting wavelet
coefficients represent the contribution of each wavelet to the original signal [65,71,72].

One of the main advantages of the wavelet transform is its ability to capture localized
features in a signal. This makes it particularly useful for analyzing ocean waves, which can
exhibit a wide range of behaviors over different time and frequency scales. By decomposing
the wave signal into a series of wavelets, the wavelet transform can identify and quantify
specific features of the wave, such as its period, amplitude, and phase.

The discrete wavelet transform (DWT) is widely employed as the predominant wavelet
transform method. Nevertheless, the critically sampled DWT exhibits a reduced sampling
density in the time–frequency plane and also lacks the desirable property of shift invariance.
This phenomenon has a significant impact on the performance of signal decomposition and
compression techniques. The proposal of the redundant (or expansive) wavelet transform
aimed to enhance the efficacy of signal decomposition and compression. The dyadic wavelet
transform is an example of a redundant wavelet transform. According to Qin et al. [73],
the shift-invariant property of this method allows it to exhibit exceptional efficacy in a
wide range of signal-processing applications. Therefore, in this study, CWT was used to
decompose the wave characteristic.

The following equation describes how to define the time-scale wavelet transform of a
continuous-time series:

CWTψf (s, τ) = ψ
ψ
f (s, τ) =

1√
|s|

∫ +∞

−∞
f(t)ψ∗

(
t− τ

s

)
dt =

〈
f(t),ψs,τ(t)

〉
, (10)

ψs,τ(t) =
1√
|s|
ψ

(
t− τ

s

)
(11)

Equation (11) is a relation with two variables, s and τ, in which s is the scale parameter
(inverse of frequency) and τ is the transfer parameter. The symbol * is the complex that is
used for conjugate. ψ, the mother wavelet, and ψs,τ(t), the transferred and scaled versions
(daughter wavelets), are obtained from this function. That is, the mother wavelet is a
template for other windows. The symbol 〈. . .〉 indicates the multiplication of two functions
in the signal space [74].

The combination of wavelet theory and neural network concepts results in the creation
of a wavelet neural network, whose application can serve as an alternative to conventional
neural networks for estimating and approximating nonlinear functions with optional
coefficients. In feedforward neural networks, the hidden layer activation function is
sigmoid, whereas, in wavelet neural networks, wavelet functions are regarded as the
activation function of the feedforward network’s hidden layer. Figure 3 displays the
WANN model’s schematic diagram. In addition, the scale change of the wavelets and their
weights are optimized. The training and validation of the wavelet neural network entails
the following significant steps [75,76].
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• The input data are used for training and validating the network;
• b—Under the specified conditions, the mother wavelet is transformed into the daugh-

ter wavelet by applying the transfer coefficients and the appropriate scale;
• Types of child wavelets replace the activation functions of the neurons in the hidden

layer of the neural network;
• The created violet neural network is trained with the training-related dataset.
• The overall performance of the wavelet network is analyzed by examining the method

for estimating the precision of measurement data, and with the part of the network’s
approval, the training phase is concluded. Otherwise, the steps leading up to the
optimal state are evaluated. It has been demonstrated as an example of a three-layer
network structure with an input layer, a hidden layer, and an output layer. Meanwhile,
the Levenberg–Marquardt algorithm was applied to train the model.

3.4. Wave Energy Density Spectrum

The random behavior of the vertical fluctuations of the water level relative to the
average sea level (η = 0) at a specific point is represented by its autocorrelation function
(Equation (12)), while the variation of the variable η is constant.

R(τ) = lim
T→∞

1
2T

∫ T

−T
η(t)η(t + τ)dτ, (12)

The Wiener–Khintchine theorem holds significant relevance in the analysis of waves
associated with maritime accidents. This theory establishes the connection between the
autocorrelation function in the temporal domain and the energy spectrum (S(ω)) in the
frequency domain. Based on the theoretical framework under consideration, assuming
the stationary nature of sea fluctuations, the wave spectral density can be mathematically
represented as the Fourier transform of the autocorrelation function (Equation (13)).

S(ω) =
1
π

∫ ∞

−∞
R(τ)e−iωτdτ, (13)

The utilization of the fast Fourier transform (FFT) method was employed in order to
extract the spectrum, as the processing is conducted on a discrete time series.

3.5. Efficiency Criteria

To evaluate the accuracy of the models and compare the results of the estimated models
to the measured values of the wave height, tests proposed by Jacovides [77] were carried
out in this study. In addition to these two indices, it is recommended to use the t index and
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Nash–Sutcliffe efficiency (NSE) and DCpeak to evaluate the model peak capture performance.

RMSE =

√
∑n

1 (Pi −Oi)
2

N
; (14)

MBE = bias =
1
N ∑N

i=1 (Pi −Oi); (15)

SI =

√
1
N ∑N

i=1 (Pi −Oi)
2

1
N ∑N

i=1 Oi
=

RMSE
O

; (16)

t =

√
(N − 1)MBE2

RMSE2 −MBE2 ; (17)

NSE = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi −O

)2 = 1−
(

RMSE
SD

)2
; (18)

DCPeak = 1−
∑

Np
i=1

(
Pipeak −Oipeak

)2

∑
Np
i=1

(
Oipeak −Oipeak

) , (19)

where Pi is the predicted value of the wave, Oi is the observed value, N is the number of
observations, RMSE is the root mean square error, and SD is the standard deviation in these
equations. Equation (14) can be used to compare the model’s efficiency in capturing the time
series’ peak values, where Pipeak is the predicted peak value of the wave parameter, Oipeak
is the peak observed value, and Np is the number of peak observations. The dispersion
parameters SI, bias, and t, as well as the correlation coefficient, were used to evaluate the
SMB, EANN, and WANN models.

4. Results and Discussion

This section evaluates and compares the effectiveness of the semi-analytical model,
EANN model, and WANN model in predicting the properties of wind-generated waves in
deep water.

4.1. Sverdrup Munk Bretschneider

Figures 4 and 5 show the results for Buoy 46070 (Aleutian Basin) and Buoy 42003
(Gulf of Mexico), respectively. Hourly data, 12 h average data, and daily average data are
the three modes in which the results are presented. According to the results displayed in
Figure 4 for the Aleutian Basin (Buoy 46070), the semi-analytical SMB method performs
better in daily average data than hourly data and 12 h average data.

The comparison of wave period and wave propagation direction for Buoy 46070 is
presented in Appendix A and Figure A1. Figure A2 displays the same outcomes pertaining
to Buoy 42003.

Similar to the outcomes of the semi-analytical model’s prognostication for Buoy 46070,
the efficacy of this model is superior in forecasting wave height for daily average data
(Figure 5). The model’s performance outcomes and statistical evaluations, which are
displayed in Table 2, endorse this fact. It must be noted that the limited fetch length cases,
limited duration of oscillation cases, and overall case are at a significance level of 0.01. The
improved performance of the daily time scale result in this model can be attributed to the
smaller dataset size and lower peak values (Aleutian Basin wave height DCpeakDaily = 0.54
and Gulf of Mexico wave height DCpeakDaily = 0.55). Nevertheless, as the frequency of
fluctuations in the hourly data rises, the efficacy of the model diminishes. However, the
scatter of the data from the x = y line is less in daily time scale results (Figures 4f and 5f).
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Table 2. Performance evaluation of SMB method for Aleutian Basin and Gulf of Mexico.

Case Study Time Scale
Criteria

RMSE bias SI t NSE DCpeak

Wave Height (m)

Buoy 46070
(Aleutian Basin)

Hourly 1.87 −2.87 0.68 91.62 0.11 0.50
12-Hourly 1.24 2.12 0.45 24.78 0.30 0.51

Daily 0.91 1.95 0.32 16.06 0.62 0.54

Buoy 42003 (Gulf of
Mexico)

Hourly 0.42 1.19 0.41 94.39 0.50 0.46
12-Hourly 0.39 −1.02 0.40 27.62 0.54 0.52

Daily 0.33 0.99 0.33 19.09 0.64 0.55
Wave Period (s)

Buoy 46070
(Aleutian Basin)

Hourly 1.21 2.45 0.20 79.96 0.17 0.54
12-Hourly 1.02 2.21 0.10 22.63 0.45 0.44

Daily 0.89 2.00 0.15 15.87 0.57 0.61

Buoy 42003 (Gulf of
Mexico)

Hourly 1.82 −1.91 0.41 291.24 0.14 0.55
12-Hourly 1.70 1.75 0.40 107.42 0.33 0.51

Daily 1.44 1.52 0.33 56.31 0.53 0.59
Wave Direction (◦)

Buoy 46070
(Aleutian Basin)

Hourly 81.82 −22.52 81.82 −22.52 0.56 -
12-Hourly 92.4 20.15 92.40 20.15 0.59 -

Daily 76.6 15.12 76.60 15.12 0.51 -

Buoy 42003 (Gulf of
Mexico)

Hourly 102.11 39.12 102.11 39.12 0.41 -
12-Hourly 95.80 25.01 95.80 25.01 0.40 -

Daily 92.15 −21.18 92.15 −21.18 0.33 -

However, the results of this model in this study and previous research indicate that
the SMB semi-analytical model could not provide a reliable estimate of wave height,
particularly in coastal areas and shallower waters. This model is better suited for initial
estimations and small environments where local effects are negligible [78].

The efficacy of the SMB model in estimating the properties of high-altitude waves
is significantly influenced by wind conditions, specifically wind fetch length. However,
its effectiveness is limited when certain cases, such as swell waves, are excluded. In
the study area of the Aleutian Basin, characterized by higher wave heights, the model
exhibits reduced efficiency compared to the Gulf of Mexico, where wave heights are
comparatively lower.

4.2. Emotional Artificial Neural Network

The overall goal of intelligent models is to express the relationship between variables
that are difficult to quantify in nature, especially in the face of high uncertainty in work.
Wave characteristics are crucial in coastal engineering, and estimation in future time steps
is of utmost importance. To this end, a method was used to reduce error and accurately
estimate wave characteristics using the minimum input parameters, which will provide
significantly better performance compared to approximate methods.

One of the most important stages in modeling is selecting an appropriate combination
of input variables. The wave parameter value at time t(ft) and wind speed values up to
lag time n(Wt, Wt−1,..., Wt−n) were regarded as potential inputs of EANN for modeling
in order to anticipate the wave height value one time step forward (ft+1). This EANN’s
explicit formula can be written as Equation (20), as follows:

ft+1 = gn(Wt, Wt+1, Wt+2, . . . , Wt−n, f t), (20)

where gn represents a function in the network.
The EANN model that had been trained by the backpropagation algorithm was

utilized in both of the case studies, and the results are presented in Table 3. The hormone
levels for the hourly data are significantly higher than those for the 12 hourly data and the
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daily data time scale, as can be seen in Table 3. This is due to the fact that the hourly data
have a higher stochastic property.

Table 3. Results of EANN model for both Aleutian Basin and Gulf of Mexico Buoys dataset.

Case
Study

Time
Scale Input Hormone Hidden

Neuron Epoch Computational
Cost (s)

Buoy
46070

(Aleutian
Basin)

Hourly W(t), W(t−1), W(t−2), W(t−3),
W(t−4), W(t−5), W(t−6), f(t) 15 10 10 1300

12-
Hourly W(t), W(t−6), W(t−12), f(t) 10 7 20 700

Daily W(t), W(t−12), W(t−24), f(t) 8 6 30 1100

Buoy
42003

(Gulf of
Mexico)

Hourly W(t), W(t−1), W(t−2), W(t−3),
W(t−4), W(t−5), W(t−6), f(t) 12 8 20 1800

12-
Hourly W(t), W(t−6), W(t−12), f(t) 8 4 20 1500

Daily W(t), W(t−12), W(t−24), f(t) 6 3 30 900

Case
Study

Time
Scale

Criteria

RMSE bias SI t NSE DCpeak

Train Test Train Test Train Test Train Test Train Test Train Test

Wave Height (m)
Buoy
46070

(Aleutian
Basin)

Hourly 0.90 0.99 −0.37 0.48 0.33 0.36 31.36 38.54 0.60 0.53 0.88 0.81
12-

Hourly 1.89 2.02 1.92 −1.98 0.68 0.73 114.01 99.37 0.37 0.40 0.72 0.61

Daily 1.92 2.05 1.95 −1.99 0.68 0.73 81.34 57.45 0.46 0.44 0.68 0.59
Buoy
42003

(Gulf of
Mexico)

Hourly 0.71 0.92 0.29 0.32 0.71 0.92 39.53 32.78 0.80 0.67 0.82 0.79
12-

Hourly 0.85 0.99 −1.02 1.21 0.86 1.00 46.12 44.34 0.70 0.62 0.71 0.69

Daily 1.22 1.41 1.18 −1.44 1.23 1.42 68.66 88.78 0.36 0.18 0.73 0.68
Wave Period (s)

Buoy
46070

(Aleutian
Basin)

Hourly 1.19 1.37 1.86 −1.96 0.20 0.23 90.46 97.22 0.98 1.02 0.78 0.72
12-

Hourly 1.36 1.84 1.91 2.03 0.14 0.19 28.59 47.52 1.26 1.24 0.71 0.69

Daily 1.51 1.69 2.15 −1.99 0.25 0.28 19.97 26.92 1.31 1.35 0.74 0.65
Buoy
42003

(Gulf of
Mexico)

Hourly 1.73 1.89 −1.12 1.19 0.18 0.19 75.04 71.60 0.88 1.29 0.69 0.60
12-

Hourly 1.91 2.06 −1.65 1.69 0.32 0.34 43.72 36.58 1.91 1.96 0.63 0.58

Daily 2.02 2.32 −1.91 2.09 0.20 0.24 52.37 37.41 1.87 1.82 0.62 0.53
Wave Direction (◦)

Buoy
46070

(Aleutian
Basin)

Hourly 51.12 63.02 42.42 46.82 8.51 10.49 103.39 77.17 0.58 0.56 - -
12-

Hourly 62.35 71.13 43.21 50.11 6.34 7.24 19.30 19.93 0.39 0.47 - -

Daily 66.31 79.12 −55.02 57.14 11.01 13.13 21.13 14.84 0.30 0.30 - -
Buoy
42003

(Gulf of
Mexico)

Hourly 77.11 81.82 −44.11 −41.03 7.82 8.29 61.61 51.21 0.34 0.37 - -
12-

Hourly 85.2 88.18 38.15 40.11 14.07 14.56 12.77 13.02 0.19 0.32 - -

Daily 72.15 81.19 −51.09 44.81 7.31 8.23 18.08 11.93 0.53 0.29 - -

Figure 6 displays the computed versus observed wave height time series as well as
the scatter plots generated by EANN models for Buoy 46070 located in the Aleutian Basin.
The autoregressive model of the EANN characteristics is more noticeable for hourly data
than for daily data.
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Figure 6. A comparison of the wave height data for Buoy 46070 in Aleutian Basin with the prediction
results of EANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily
wave data.

The comparison shown in Figure 7 is between the results calculated by the EANN model
and the buoy wave height data collected by Buoy 42003 (Gulf of Mexico). In a manner similar
to the findings concerning the Aleutian Basin, the EANN model performs significantly better
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when predicting hourly data in comparison to the 12 h average and daily data. However, this
model demonstrates a performance that is satisfactory in predicting the maximum points in
the time scales of the daily average and the 12 h average (Figures 6c,e and 7c,e).
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In the Appendix A, a comparison between the simulation wave period and wave
direction was made and is shown in Figures A3 and A4 for both case studies. While
previous studies [79] have demonstrated satisfactory performance of the EANN model
in scenarios with scarce data, it is worth noting that the model’s performance has been
observed to be superior in the hourly time scale when confronted with larger datasets, as
compared to its performance in the 12 h average and daily time scales. However, previous
research has confirmed that this model effectively captures peaks (Aleutian Basin wave
height DCpeakHourly = 0.81 and Gulf of Mexico wave height DCpeakHourly = 0.79).

It seems that the EANN model has an adequate ability to predict the wave characteris-
tics’ peak values. In contrast to the results of this model in hydrological studies, such as
the rainfall-runoff model [80], the model did not perform well when trained with a small
amount of data (daily time scale).

The utilization of shorter time steps as input data in the EANN model resulted in
improved estimation accuracy and enhanced computational efficiency of the model; how-
ever, it increased the computational cost. The efficiency of the EANN model in handling
limited data is a notable characteristic, as indicated by the findings of this study. However,
it is important to note that the effectiveness of the model is contingent upon the quality of
the input data and their temporal sequencing. Shorter time steps enhance the accuracy of
the model in estimating wave characteristics despite the limited amount of available data.
Based on the data collected from the studied areas, it can be concluded that the dispersion
of the model output is ineffective in this particular case. The findings indicate that the
model performs consistently in estimating wave characteristics across daily scale variations,
regardless of the extent of the wave height range.

4.3. Wavelet Artificial Neural Network

The WANN model, which is capable of handling oscillation processes via multi-
resolution wavelet analysis, was applied to hourly averages, 12 h averages, and daily time
scale datasets. To improve the accuracy of modeling by WANN, preprocessed wavelet-
based data were fed into the ANN. By separating the large and small features of a time
series, the wavelet transform was used to process data at multiple time scales. The applied
wavelet could decompose the input time series f(t) (as wave characteristics) or W(t) into one
approximate subseries, fa(t) or Wa(t), and detailed subseries, fdl(t),..., fdi(t) or Wdl(t),..., Wdi(t)
(i denotes the order of decomposition), such that each subseries could represent a distinct
time scale of the seasonality involved in the time series. There exist numerous functions
that can be associated with the characteristics of the primary time series in relation to the
definition of a wavelet function. Based on prior research, Nourani et al. [81] found that
the db4 mother wavelet is better suited. This is attributed to its greater resemblance to the
signal and its ability to accurately capture the signal’s characteristics.

Table 4 presents the input parameters required to attain the optimal model for wave height
estimation, based on case studies, for the purpose of selecting the most suitable network.

Figures 8 and 9 depict the optimal model results derived from the validation data com-
pared to Buoys 46070 and 42003, respectively. The results indicate that the WANN model
demonstrated satisfactory performance in estimating a majority of the values, particularly
with respect to the minimum and maximum values. The comparison between observed
and simulated results of wave period and wave direction regarding Buoys 46070 and 42003
are shown in Figures A5 and A6 in Appendix A.
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Table 4. Results of WANN model for both Aleutian Basin and Gulf of Mexico Buoy dataset.

Case
Study

Time
Scale Input Hidden

Neuron Epoch Computational
Cost (s)

Buoy
46070

(Aleutian
Basin)

Hourly Wa(t),Wd4(t),Wd5(t),fa(t),fd2(t) 6 20 1000
12-

Hourly Wa(t),Wd2(t),Wd4(t),fa(t) 6 20 500

Daily Wa(t),Wd4(t), fa(t),fd4(t) 10 30 900
Buoy
42003

(Gulf of
Mexico)

Hourly Wa(t),Wd4(t),Wd5(t),fa(t),fd2(t) 3 20 1800
12-

Hourly Wa(t),Wd2(t),Wd4(t),fa(t) 7 10 1100

Daily Wa(t),Wd4(t), fa(t),fd4(t) 6 10 700

Case
Study

Time
Scale

Criteria

RMSE (m) bias (m) SI t NSE DCpeak

Train Test Train Test Train Test Train Test Train Test Train Test

Wave Height (m)
Buoy
46070

(Aleutian
Basin)

Hourly 1.19 1.29 −1.17 1.48 0.43 0.47 374.43 141.84 0.30 0.21 0.66 0.62
12-

Hourly 0.89 1.02 −0.62 0.78 0.32 0.37 19.49 23.82 0.86 0.85 0.68 0.61

Daily 0.94 1.05 0.65 −0.79 0.33 0.37 13.60 16.23 0.87 0.85 0.65 0.61
Buoy
42003

(Gulf of
Mexico)

Hourly 0.81 0.88 0.71 1.32 0.81 0.88 160.89 118.53 0.73 0.70 0.63 0.59
12-

Hourly 0.75 0.78 1.17 −1.01 0.76 0.79 33.22 40.13 0.77 0.76 0.71 0.67

Daily 0.8 0.83 1.08 −1.42 0.81 0.84 26.84 22.22 0.73 0.72 0.58 0.61
Wave Period (s)

Buoy
46070

(Aleutian
Basin)

Hourly 1.59 1.66 −1.13 −1.2 0.26 0.28 70.24 72.74 0.16 0.07 0.55 0.54
12-

Hourly 1.16 1.29 1.11 1.09 0.12 0.13 66.14 31.72 0.25 0.17 0.63 0.62

Daily 1.22 1.3 2 −2.18 0.20 0.22 17.94 17.71 0.16 0.10 0.59 0.55
Buoy
42003

(Gulf of
Mexico)

Hourly 1.43 1.53 1.81 2.02 0.14 0.16 144.11 135.31 0.31 0.42 0.50 0.52
12-

Hourly 1.19 1.36 −1.55 1.61 0.20 0.22 39.79 47.64 0.69 0.54 0.64 0.61

Daily 1.09 1.32 1.69 1.79 0.11 0.13 23.59 26.69 0.75 0.56 0.70 0.63
Wave Direction (◦)

Buoy
46070

(Aleutian
Basin)

Hourly 69 66.12 62.72 66.65 11.48 11.00 151.62 552.42 0.24 0.51 - -
12-

Hourly 52.59 58.7 52.21 50.03 5.35 5.97 166.09 32.71 0.57 0.64 - -

Daily 49.68 53.5 48.11 51.57 8.25 8.88 55.18 51.47 0.61 0.68 - -
Buoy
42003

(Gulf of
Mexico)

Hourly 67.01 70.09 58.78 61.91 6.79 7.10 161.40 166.45 0.50 0.54 - -
12-

Hourly 59.23 66.51 35.45 −39.17 9.78 10.98 19.05 18.58 0.61 0.61 - -

Daily 48.05 56.11 40.39 41 4.87 5.68 27.98 19.30 0.79 0.66 - -



Water 2023, 15, 3254 20 of 33

Water 2023, 15, x FOR PEER REVIEW 20 of 34 
 

 

Daily 49.68 53.5 48.11 51.57 8.25 8.88 55.18 51.47 0.61 0.68 - - 

Buoy 42003 (Gulf of Mex-

ico) 

Hourly 67.01 70.09 58.78 61.91 6.79 7.10 161.40 166.45 0.50 0.54 - - 

12-Hourly 59.23 66.51 35.45 −39.17 9.78 10.98 19.05 18.58 0.61 0.61 - - 

Daily 48.05 56.11 40.39 41 4.87 5.68 27.98 19.30 0.79 0.66 - - 

Figures 8 and 9 depict the optimal model results derived from the validation data 

compared to Buoys 46070 and 42003, respectively. The results indicate that the WANN 

model demonstrated satisfactory performance in estimating a majority of the values, par-

ticularly with respect to the minimum and maximum values. The comparison between 

observed and simulated results of wave period and wave direction regarding Buoys 46070 

and 42003 are shown in Figures 5A and 6A in Appendix A. 

  

  

Water 2023, 15, x FOR PEER REVIEW 21 of 34 
 

 

  

Figure 8. A comparison of the wave height data for Buoy 46070 in Aleutian Basin with the prediction 

results of WANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily wave 

data. 

As per the findings presented in Table 4, the WANN model exhibits superior perfor-

mance in forecasting characteristic wave height for the 12 h average and daily time scales 

as compared to the hourly wave data. The present case has the potential to be interpreted 

similarly for both wave buoys. 

The performance of the WANN model in predicting wave characteristics in both 

study areas demonstrates its effectiveness in capturing wave behavior over average 12 h 

and daily time scales. Nevertheless, the model’s performance exhibited superior results in 

the hourly time scale compared to the semi-analytical model. The NSE values for wave 

height prediction at the test phase of the WAAN hourly model are 0.3 and 0.73 for buoys 

42003 and 47060, respectively. In contrast, for the SMB model, the NSE values are 0.11 and 

0.50 for the same buoys and time scale. 

  

Figure 8. A comparison of the wave height data for Buoy 46070 in Aleutian Basin with the prediction
results of WANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily
wave data.



Water 2023, 15, 3254 21 of 33

Water 2023, 15, x FOR PEER REVIEW 21 of 34 
 

 

  

Figure 8. A comparison of the wave height data for Buoy 46070 in Aleutian Basin with the prediction 

results of WANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily wave 

data. 

As per the findings presented in Table 4, the WANN model exhibits superior perfor-

mance in forecasting characteristic wave height for the 12 h average and daily time scales 

as compared to the hourly wave data. The present case has the potential to be interpreted 

similarly for both wave buoys. 

The performance of the WANN model in predicting wave characteristics in both 

study areas demonstrates its effectiveness in capturing wave behavior over average 12 h 

and daily time scales. Nevertheless, the model’s performance exhibited superior results in 

the hourly time scale compared to the semi-analytical model. The NSE values for wave 

height prediction at the test phase of the WAAN hourly model are 0.3 and 0.73 for buoys 

42003 and 47060, respectively. In contrast, for the SMB model, the NSE values are 0.11 and 

0.50 for the same buoys and time scale. 

  

Water 2023, 15, x FOR PEER REVIEW 22 of 34 
 

 

  

  

Figure 9. A comparison of the wave height data for Buoy 42003 in Gulf of Mexico with the prediction 

results of WANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily wave 

data. 

4.4. Model Performance Comparison 

Based on the findings outlined in the preceding sections, the current section will pro-

vide a comparative analysis of the SMB, EANN, and WANN models. The results indicate 

that the SMB model exhibits superior performance when applied to the daily dataset. 

Buoy 46070 exhibits t index indices of 91.62, 24.78, and 16.06 for the hourly, 12 h, and daily 

time scales, respectively. The SI index values for this particular case, as observed over the 

specified time scales, are 0.68, 0.45, and 0.32, respectively. In the case of Buoy 42003, the 

SMB model demonstrates better efficacy when implemented on the daily dataset. The t 

index values are 94.39, 27.62, and 19.09 for the hourly, 12 h, and daily time scales, respec-

tively. The respective SI index values are 0.41, 0.40, and 0.33. Based on the findings of this 

study and the research conducted by Soomere [37], it can be inferred that SMB models 

continue to serve as effective tools for rapidly estimating specific features of wave climate 

at distinct locations. 

The findings indicate that the EANN model exhibits satisfactory accuracy in forecast-

ing wave height at an hourly temporal resolution for the specified research region. The t 

index values obtained during the test phase for the hourly time scale are 38.54, 99.37, and 

57.45, respectively. Regarding the SI index, its values are 0.36, 0.73, and 0.73, in that order. 

The application of the EANN model demonstrates acceptable precision in predicting wave 

height at an hourly dataset for the designated regions in the Gulf of Mexico. The t index 

values acquired during the testing phase for the hourly, 12 h, and daily time scales are 

Figure 9. A comparison of the wave height data for Buoy 42003 in Gulf of Mexico with the prediction
results of WANN model, (a,b) hourly wave data, (c,d) 12 h average wave data, and (e,f) daily
wave data.

As per the findings presented in Table 4, the WANN model exhibits superior perfor-
mance in forecasting characteristic wave height for the 12 h average and daily time scales
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as compared to the hourly wave data. The present case has the potential to be interpreted
similarly for both wave buoys.

The performance of the WANN model in predicting wave characteristics in both study
areas demonstrates its effectiveness in capturing wave behavior over average 12 h and
daily time scales. Nevertheless, the model’s performance exhibited superior results in the
hourly time scale compared to the semi-analytical model. The NSE values for wave height
prediction at the test phase of the WAAN hourly model are 0.3 and 0.73 for buoys 42003
and 47060, respectively. In contrast, for the SMB model, the NSE values are 0.11 and 0.50
for the same buoys and time scale.

4.4. Model Performance Comparison

Based on the findings outlined in the preceding sections, the current section will
provide a comparative analysis of the SMB, EANN, and WANN models. The results
indicate that the SMB model exhibits superior performance when applied to the daily
dataset. Buoy 46070 exhibits t index indices of 91.62, 24.78, and 16.06 for the hourly, 12 h,
and daily time scales, respectively. The SI index values for this particular case, as observed
over the specified time scales, are 0.68, 0.45, and 0.32, respectively. In the case of Buoy
42003, the SMB model demonstrates better efficacy when implemented on the daily dataset.
The t index values are 94.39, 27.62, and 19.09 for the hourly, 12 h, and daily time scales,
respectively. The respective SI index values are 0.41, 0.40, and 0.33. Based on the findings of
this study and the research conducted by Soomere [37], it can be inferred that SMB models
continue to serve as effective tools for rapidly estimating specific features of wave climate
at distinct locations.

The findings indicate that the EANN model exhibits satisfactory accuracy in forecast-
ing wave height at an hourly temporal resolution for the specified research region. The t
index values obtained during the test phase for the hourly time scale are 38.54, 99.37, and
57.45, respectively. Regarding the SI index, its values are 0.36, 0.73, and 0.73, in that order.
The application of the EANN model demonstrates acceptable precision in predicting wave
height at an hourly dataset for the designated regions in the Gulf of Mexico. The t index
values acquired during the testing phase for the hourly, 12 h, and daily time scales are 32.78,
44.34, and 88.78, respectively. With respect to the SI index, the sequence of values is 0.92,
1.00, and 1.42.

Regarding the WANN model, it is noteworthy that out of the 46070 studies conducted,
the model exhibited superior performance in the daily average time scale and 12 h average
as compared to the hourly dataset. The t index values for the test stage of the model applied
to the Buoy 46070 dataset at hourly, 12-hourly, and daily time scales are 141.84, 23.82, and
16.23, respectively. The performance of the model was evaluated for different time scales,
namely the hourly average, 12 h average, and daily average time scales. The SI index
values obtained for these time scales were 0.47, 0.37, and 0.37, respectively. The t index
values obtained from the application of the WANN model to the Buoy 42003 dataset during
the test stage, considering hourly, 12-hourly, and daily time scales, are 118.53, 40.13, and
22.22, respectively. The obtained SI index values for these specific time scales were 0.88,
0.79, and 0.84, respectively. The model’s performance was assessed across varying time
scales, including the hourly average, 12 h average, and daily average time scales. These
results suggest that the model exhibited superior performance in the 12 h average and daily
average time scales.

The efficacy of the models to accurately capture the peak on the time series depends
on the time scales and specific models employed. Nevertheless, the EANN model exhibited
superior performance in capturing the peak of the time series when compared to the
other two models. The EANN model demonstrates a performance of 0.82 and 0.88 on
the hourly time scale, as measured by the DCpeak index, for the 42003 and 47060 buoys,
respectively. Conversely, the WANN model exhibits its optimal performance on the 12 h
time scale, with corresponding DCpeak index values for the 42003 and 47060 buoys yet to
be specified by the value of 0.71 and 0.68, respectively. The semi-analytical model exhibits
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lower efficiency when compared to both machine learning models and the DCpeak index.
Specifically, for Buoys 42003 and 47060, the DCpeak indices on a daily time scale are 0.55 and
0.54, respectively, for the SMB model. A similar pattern is observed in the parameters of
the wave period, albeit with a minor distinction. Indeed, the ability to forecast peak values
is a notable benefit of the EANN model, as it facilitates the estimation of wave power and
energy.

The findings derived from this study exhibit conformity with the outcomes of
Sharghi et al. [65]. The study conducted by Sharghi et al. [65] investigates the preci-
sion of two methodologies based on ANN for the purpose of modeling daily and monthly
rainfall runoff. The researchers arrived at the conclusion that the EANN model is better
suited for daily forecasting, whereas the WANN model exhibits superior performance in
monthly modeling.

4.5. Wave Energy Density Spectrum

Corresponding to the preceding sections, ocean waves represent a renewable form
of energy. Additionally, given the potential impact of wave energy on coastal structures,
precise forecasting of ocean wave energy is crucial for the attainment of sustainability. The
present study presents a comparison between the wave energy density spectrum obtained
from the data of two case studies and the optimal outcomes of wave prediction through the
utilization of the soft computing method, as illustrated in Figure 10. The findings indicate
that the EANN approach exhibits superior concurrence in comparison to the WANN and
SMB models in forecasting the wave energy density spectrum, particularly at the pinnacle
juncture. This phenomenon is apparent in both areas of study. The aforementioned
matter may be attributed to the utilization of wave data featuring an hourly temporal
resolution within the context of the EANN model (Aleutian buoy (DCpeakEANN = 0.41) and
Gulf of Mexico buoy (DCpeakEANN = 0.59)). In addition to accurately estimating the peak
energy density, it is crucial to correctly estimate the peak frequency in the models. The
aforementioned matter, particularly in offshore regions, exerts a substantial influence on
the navigation of maritime vessels and their overall safety. Based on the findings pertaining
to the energy spectrum density in both regions, it is evident that the EANN model not only
demonstrates superior accuracy in estimating the peak of the wave energy spectrum, but
also outperforms other models in accurately estimating the frequency corresponding to
said wave energy peak.
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5. Conclusions

In this study, we proposed a novel approach for ocean wave forecasting that is based
on semi-analytical and machine learning models. We applied this approach to a dataset
of ocean wave measurements in two distinct case studies. The Aleutian Basin and Gulf of
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Mexico wave datasets were chosen as case studies. These regions are completely different
in wave and climate conditions.

The present investigation assessed the efficacy of the SMB semi-analytical, EANN, and
WANN methodologies for the estimation of ocean wave parameters. This study aimed to
evaluate and compare the precision and dependability of different methodologies, as well
as to examine the spatial and temporal fluctuations of the wave field. The aforementioned
models are utilized to represent the non-linear associations between the input parameters
and the output wave parameters, which are arduous to apprehend through conventional
physical models. The study areas were evaluated using hourly and daily wave data for
the purpose of model assessment. The results obtained from this research can be utilized
to enhance the precision of wave prediction models and to facilitate the development of
secure and effective marine infrastructures in the aforementioned areas.

Based on the outcomes, the SMB model shows t index values of 91.62, 24.78, and 16.06
for hourly, 12 h, and daily time scales, respectively, for the Aleutian Basin dataset. The
corresponding SI index values are 0.68, 0.45, and 0.32. For the Gulf of Mexico dataset, the
SMB model demonstrates better efficacy on the daily dataset with t index values of 94.39,
27.62, and 19.09 for hourly, 12 h, and daily time scales, respectively, and SI index values
of 0.41, 0.40, and 0.33. The EANN model shows t index values of 38.54, 99.37, and 57.45,
and SI index values of 0.36, 0.73, and 0.73 for hourly time scale, t index values of 32.78,
44.34, and 88.78, and SI index values of 0.92, 1.00, and 1.42 for hourly, 12 h, and daily time
scales in the research region in the Gulf of Mexico, respectively. The WANN model exhibits
superior performance in the daily and 12 h average time scales with t index values of 16.23
and 23.82 for the Aleutian Basin dataset and t index values of 22.22 and 40.13 for the Gulf
of Mexico dataset. The corresponding SI index values are 0.37 and 0.47 for the Aleutian
Basin dataset and 0.84 and 0.79 for the Buoy 42003 dataset. On the other hand, the results
show that the SMB model performs better for daily datasets, while the EANN model is
more accurate for hourly resolution for both case studies. However, the EANN model
demonstrated satisfactory performance within the time scales of 12 and 24 h. The WANN
model exhibits superior performance for daily and 12 h average time scales. Furthermore,
the results related to the energy spectrum density indicate that the EANN model displays
better performance when compared to other models, specifically in accurately predicting
the spectrum’s peak.

However, the WANN model has adequate performance in all time scales and can be a
suitable source for simulating sea waves. However, the SMB model performed better in
predicting daily data. However, if there are hourly data, it is suggested to use the EANN
model. This model also presented an acceptable performance in estimating the wave energy
and estimated the maximum value of the spectrum better than other models.

According to the results, it is possible to use the WANN 12 h and daily model to
predict the possibility of a tsunami occurring based on the predicted wave characteristics
in order to reduce its potential risks to life in coastal zones. In actuality, the prediction is
a step ahead of these models, particularly in terms of determining the direction of wave
propagation; therefore, it is possible to predict the occurrence of unfortunate events. In
contrast, due to its greater accuracy in predicting wave characteristics, the EANN hourly
model can also be used in the marine transportation industry to estimate potential risks for
maritime shipping and vessel pathways.
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