
Citation: Yao, S.; Kan, G.; Liu, C.;

Tang, J.; Cheng, D.; Guo, J.; Jiang, H.

A Hybrid Theory-Driven and

Data-Driven Modeling Method for

Solving the Shallow Water Equations.

Water 2023, 15, 3140. https://

doi.org/10.3390/w15173140

Academic Editors: Yijun Xu,

Ronghua Liu, Xiaolei Zhang

and Han Wang

Received: 13 July 2023

Revised: 14 August 2023

Accepted: 30 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A Hybrid Theory-Driven and Data-Driven Modeling Method
for Solving the Shallow Water Equations
Shunyu Yao 1,2,3,4 , Guangyuan Kan 1,2,3,4,* , Changjun Liu 1,2,3,4, Jinbo Tang 5, Deqiang Cheng 6 , Jian Guo 7

and Hu Jiang 5,8

1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China;
yaoshunyu16@mails.ucas.edu.cn (S.Y.); lcj2005@iwrh.com (C.L.)

2 China Institute of Water Resources and Hydropower Research, Beijing 100038, China
3 Research Center on Flood & Drought Disaster Reduction of the Ministry of Water Resources,

Beijing 100038, China
4 Key Laboratory of Water Safety for Beijing-Tianjin-Hebei Region of Ministry of Water Resources,

Beijing 100038, China
5 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;

jinbotang@imde.ac.cn (J.T.); jianghu@imde.ac.cn (H.J.)
6 Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation

Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education,
Henan University, Kaifeng 475001, China; 10340052@henu.edu.cn

7 State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
guo_jian@mail.tsinghua.edu.cn

8 University of Chinese Academy of Sciences, Beijing 100038, China
* Correspondence: kangy@iwhr.com

Abstract: In recent years, mountainous areas in China have faced frequent geological hazards,
including landslides, debris flows, and collapses. Effective simulation of these events requires a
solver for shallow water equations (SWEs). Traditional numerical methods, such as finite difference
and finite volume, face challenges in discretizing convection flux terms, while theory-based models
need to account for various factors such as shock wave capturing and wave propagation direction,
demanding a high-level understanding of the underlying physics. Previous deep learning (DL)-based
SWE solvers primarily focused on constructing direct input–output mappings, leading to weak
generalization properties when terrain data or stress constitutive relations change. To overcome
these limitations, this study introduces a novel SWE solver that combines theory and data-driven
methodologies. The core idea is to use artificial neural networks to compute convection flux terms,
and to reduce modeling complexity. Theory-based modeling is used to tackle complex terrain and
friction terms for the purpose of ensuring generalization. Our method surpasses challenges faced
by previous DL-based solvers in capturing terrain and stress variations. We validated our solver’s
capabilities by comparing simulation results with analytical solutions, real-world disaster cases, and
the widely used Massflow software-generated simulations. This comprehensive comparison confirms
our solver’s ability to accurately simulate hazard scenarios and showcases strong generalization
on varying terrain and land surface friction. Our proposed method effectively addresses DL-based
solver limitations while simplifying the complexities of theory-driven numerical methods, offering a
promising approach for hazard dynamics simulation.

Keywords: hazard dynamics; landslide simulation; shallow water equations; deep learning;
PDE solver

1. Introduction

Mountain hazards are common natural disasters that affect human lives and prop-
erty adversely [1,2]. In the field of hazard simulation, researchers commonly utilize the

Water 2023, 15, 3140. https://doi.org/10.3390/w15173140 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15173140
https://doi.org/10.3390/w15173140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3399-8033
https://orcid.org/0000-0002-0467-4366
https://orcid.org/0000-0003-1992-242X
https://orcid.org/0000-0002-6060-1161
https://doi.org/10.3390/w15173140
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15173140?type=check_update&version=1


Water 2023, 15, 3140 2 of 20

shallow water equations (SWEs) as the governing equations. These equations are ap-
plied to studying a range of hazards, including flash floods [3–5], debris flows [6,7], land-
slides [8], and dam breaches [9–11]. Solving the SWEs is essential to capture the dynamics
of these hazards, necessitating the development of an effective and efficient solver by
model developers [12–14].

Prominent solvers utilized for the SWEs include Massflow [10,15–20], FLO2D [21–25], and
OpenLISEM [26–33]. Traditional numerical methods, such as finite difference [10,15,34,35]
and finite volume [36,37], have been employed for solving partial differential equations
(PDEs). These methods necessitate a deep understanding of the underlying physics and
mathematical techniques involved in numerical methods for PDEs. The construction of
sophisticated spatial discretization schemes presents challenges, as it is required to account
for shock waves and wave propagation directions. The construction of Riemann solvers is
highly intricate and demands significant theoretical expertise from modelers.

In recent years, there has been notable progress in the field of deep learning [38–41]. As a
result, researchers have begun exploring the integration of deep learning with dynamic
systems, although the number of studies conducted thus far remains limited [42–44]. Solving
PDEs through deep learning is an active research area in this field. Two mainstream
modeling methods have emerged. The first method involves parameterizing the solution
mapping using a convolutional neural network and utilizing trained networks to replace
the traditional PDE solver [45–49]. The second method directly parameterizes the solution
function as a neural network. The difference between the first method and the second
method, is that the input of the second method is not the flow field at the previous moment
but is instead the independent variable of the solution function itself (such as time and
space coordinates) to obtain the field of flow at the current moment [50–54]. However,
these pioneering deep learning methods for SWEs have limitations. They either learn a
direct mapping or they directly approximate the PDE solution, necessitating the training
of a new neural network for each new dataset or set of function parameters/coefficients.
Consequently, capturing various variations of the terrain and stress constitutive relations
becomes challenging, leading to weak generalization capabilities and therefore limiting the
potential of deep learning methods for broader applications.

To achieve data-driven and theory-driven coupled flow simulation while maintaining
generalization capability, we propose a hybrid method that integrates theory-driven and
data-driven approaches for solving SWEs. The main idea of the model design involves
utilizing neural networks to model the flux terms, thereby alleviating the modeling chal-
lenges associated with the Riemann solver. Additionally, we employ theoretical modeling
techniques to address the complexities and variations presented in terrain and friction
terms, ensuring the generalization capability of the SWE solver.

In this paper, we outline the structure of our research as follows. Firstly, we generate
discrete sample data and employ a convolutional neural network (CNN) to learn the
underlying information contained in the discrete data to implement the functionality of
the Riemann solver for the resolution of flux terms. This data-driven method allows us to
model the flux terms independently from the variations of the terrain and friction terms.
We train the CNN by comparing its inference results with predictions of the numerical
schemes. Next, by incorporating relevant computational fluid dynamics theories, we
construct a solver suitable for real terrain and friction conditions. This is achieved by
combining the data-driven flux term simulator with the theory-driven slope source term
and friction term. By leveraging both methodologies, we address the limitations faced
by previous deep learning-based solvers in capturing variations of complex terrain and
stress constitutive relations. In the final phase of our study, the accuracy and stability
of our proposed solver were rigorously examined across three distinct scenarios: firstly,
in the presence of analytically solvable cases, followed by its application to a real-world
landslide event, and lastly, a comparative assessment with the state-of-the-art solving
software, Massflow. This comprehensive testing protocol was chosen to comprehensively
evaluate the efficacy of the solver and to affirm its competence in faithfully replicating
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hazardous scenarios, particularly those characterized by intricate terrains. The model
validation results demonstrate that the hybrid method, which combines theory-driven and
data-driven approaches for solving the SWEs, is a feasible modeling technique. It offers
significant advantages by reducing the requirements on modelers in terms of understanding
the fundamental physics principles and mathematical techniques involved in the resolution
of PDEs. Furthermore, it ensures the generalization capabilities on complex and variable
terrains and frictions. This research introduces a new data-driven modeling perspective
that holds promise for researchers in the field of land surface process simulation.

2. Governing Equations

Without consideration of Coriolis and wind force, a hyperbolic conservation law of
the two-dimensional SWEs can be expressed in a matrix form as:

∂W
∂t

+
∂F
∂x

+
∂G
∂y

= S (1)

The vectors in the above equation are specifically expressed as:

W =

 h

hu

hv

, F =

 hu

hu2

huv

, G =

 hu

huv

hv2

, S =

 0

gh(Sax − S f x)

gh(Say − S f y)

 (2)

where h is water depth from the free surface to the bed elevation z; u and v are the depth-
integrated flow velocities in x and y directions, respectively; hu is the momentum in x
direction; hv is the momentum in y direction; g is gravitational acceleration; Sax and Say are
the slope or momentum source term in x and y directions, respectively; and S f x and S f y
are the bed friction resistance term in x and y directions, respectively.

In the process of solving the SWEs, we should consider the discretization of the source
term, which is composed of the slope source term and the bed friction term. The above-
mentioned two terms are the main sources of momentum that are driving the fluid to move,
and improper treatment of these two terms may result in conflict with the so-called “well
balanced” property (or “C property”) and lead to instability and inconvergent issues which
cannot be overcome, even with a large amount of computation.

The constitutive equation of stress for SWEs is as follows:

S =

 0

gh(Sax − S f x)

gh(Say − S f y)

, Sax = −∂(Z + h)
∂x

, Say = −∂(Z + h)
∂y

(3)

For landslides, the resistance term during motion is calculated using the Coulomb
friction model which can be calculated as:

S f x =
u√

u2 + v2
µgh, S f y =

v√
u2 + v2

µgh (4)

where µ is the friction coefficient representing the ratio of friction force to pressure.

3. Convection Flux Term Calculation Based on the Data-Driven Method
3.1. Generation of the Training Dataset

The specific description of our data generation is as follows:
Because the flow depth data in nature generally do not exceed 100, we randomly

sample the flow depth data h in the [0, 100] interval. Because the Froude number Fr of the
fluid in nature is all in 3 [55], its calculation formula is as follows:

Fr =
V√
gh

(5)
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We randomly generate flow velocity V samples in the velocity interval [0, 3
√

gh]. The
flow velocity is divided into the x direction and y direction. According to the flow velocity
data we generated, it is evenly distributed in each direction, and the sampling interval of
the velocity direction angle ω is [0, 2π]. u and v are the depth-integrated flow velocities
in the x and y directions, respectively; u = V cos(ω), v = V sin(ω) is calculated based on
the previously generated h and ω, and the momentum hu and hv are calculated by the
flow depth data. We randomly generate pairs of samples, and each pair is sampled in the
above-mentioned way.

We use the first-order accurate upwind method to generate discrete data as the training
set, and the generation procedure is described below.

We judge the windward direction according to the speed at the cell interface; the
function value at the boundary is estimated as:

Wi+1/2 =

{
Wi ũi+1/2 > 0
Wi+1 ũi+1/2 < 0

(6)

Referring to the ideas given by Bar-Sinai [43], the mapping from the flow field to the
discrete scheme of the derivative can be learned through a convolutional neural network.

The expression of the upwind scheme at the interface is:

Wi+1/2 = (1− αi+1/2)Wi + αi+1/2Wi+1, (αi+1/2 = sign(ũi+1/2)) (7)

αi+1/2 and βi+1/2 are the differential formats in the x and y directions. Given that, in
two-dimensional SWEs, the solving of the two dimensions is consistent and symmetric, we
only train for one dimension and then apply the trained parameters to the other dimension.
We randomly generate 4096 random flow fields of size 1 × 2, and generate data sequences
in an upwind manner.

3.2. Design of the Data-Driven Model

The constructed neural network model, including all physical constraints, is imple-
mented using the TensorFlow framework [56]. The model has three fully convolutional
layers. The primary network layer of the convolutional neural network is the convolution
layer, and the main structure is composed of multiple convolution kernels and activation
functions. The convolution operation of a convolution kernel is calculated as follows:

Z(i, j) =
k

∑
m=−k

k

∑
n=−k

(I(i−m, j− n)∗Wm,n) + b (8)

The conv1 layer consists of six kernel filters. The conv2 layer consists of eight kernel
filters and a ReLU nonlinear unit between each layer. The activation function of the last
convolutional layer is the sigmoid function. Therefore, the neural network prediction at a
single boundary depends on the values of the local solutions of up to two grid cells to the
left and right of the maximum range, independent of the model resolution. The specific
neural network structure is shown in Figure 1.

3.3. Model Training

We trained our model using the Adam optimizer for a total of 10,000 steps. The
Adam (adaptive moment estimation) optimization algorithm is basically a combination
of Momentum and RMSprop. The algorithm’s paper was published at the top conference
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ICLR in 2015 [57], and is the most popular optimizer in the field of deep learning. It is
calculated as follows:

gθ = ∇θ∑ L
(

f
(

x(i); θ
)

, y(i)
)

di = β1di−1 + (1− β1)gθ

Si = β2Si−1 + (1− β2)g2
θ

d̂i =
di

1− βi
1

Ŝi =
Si

1− βi
2

θi ← θi−1 −
α√

Ŝi + ε
d̂i

(9)

The Adam algorithm maintains the inertia of momentum accumulation during the
iteration process through the first-order moment, and records the second-order moment of
the gradient at the same time, that is, the average of the past gradient square and the current
gradient square. The Adam algorithm is suitable for most non-convex optimizations, and it
is also suitable for large data sets and high-dimensional spaces. It has good performance in
many learning scenarios. We set the initial learning rate α to 0.001. The hyperparameters
β1 and β2 were set to 0.9 and 0.999, respectively. Here, ε is set to 10−8. The batch size we
used was 128 times the resampling factor.
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We use cross entropy as the loss function, and its calculation formula in this paper is
as follows:

L =
1
N ∑

i
Li =

1
N ∑

i
−
[
α

upwind
i+1/2 · log

(
αNN

i+1/2

)
+
(

1− α
upwind
i+1/2

)
· log

(
1− αNN

i+1/2

)]
(10)

All of our results show models trained using a loss function based on the boundary
value variables. The model was trained on an NVIDIA GeForce GTX 1070 laptop GPU,
made by Nvidia in the Santa Clara, CA, United States, in less than 10 h.
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3.4. The Trained Model

We randomly generated 4096 sets of gridded flow field data, and compared the value
of αi+1/2 predicted by the first-order upwind scheme with the value of αi+1/2 predicted by
our trained CNN. We randomly selected the comparison results of predicted αi+1/2 values
generated by the upwind scheme and CNN from two sets of flow field data for display.
The comparison figures of the two sets of results are shown in Figures 2 and 3, respectively.
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It can be seen from the above figures that the output αi+1/2 of the neural network
ranges from 0 to 1, which is very close to the result predicted by the first-order upwind
difference scheme.
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4. Construction of the Hybrid Solver

The hybrid SWE solver is composed of the following modules: time marching scheme,
cell interface flux predictor, source term discretization scheme, boundary condition treat-
ment, adaptive time step calculation, etc. Predictions in two dimensions are achieved by
solvers that combine the theory and data-driven methods in two respective directions. The
overall modeling framework of the hybrid solver is shown in Figure 4.

We used the first-order Euler method for time integration and the following time
marching scheme is constructed:

L(Wt) = −
Ft

i+1/2,j − Ft
i−1/2,j

∆x
−

Gt
i,j+1/2 −Gt

i,j−1/2

∆y
+ Si (11)

Wt+∆t = Wt + ∆tL(Wt) (12)
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To ensure the numerical stability of the explicit time marching scheme, we need to
guarantee that the characteristic waves do not propagate over more than one cell within
a time step so that non-physical oscillations can be avoided. To adapt to time steps of
different sizes under different flow velocities, we adopt the Courant–Friedrichs–Lewy
(CFL) stability condition to predict the time step size:

∆t = Crmin

(
mini

(
∆xi

|ui|+
√

ghi

)
, mini

(
∆yi

|vi|+
√

ghi

))
(13)

where Cr is the Courant number, which determines the number of grid cells that the
characteristic wave transfers in a time step.

The source term is discretized by the central difference scheme, and it is calculated
as follows:

Sax ,(i,j) = −ghi,j · (ηi+1,j − ηi−1,j)/2

Say ,(i,j) = −ghi,j · (ηi,j+1 − ηi,j−1)/2

ηi,j = zi,j + hi,j

(14)

where ηi,j is the mass free surface in the i-th column and j-th row; Sax ,(i,j) and Say ,(i,j) are the
slope or momentum source term in x and y directions, respectively; g is the gravitational
acceleration; and hi,j is the water depth from the free surface to the bed elevation zi,j in the
i-th column and j-th row.

Under complex terrain conditions, it is common for some grid cells to contain fluid
while their adjacent cells do not. Without correctly considering this situation, directly
discretizing the source term will lead to physical errors such as non-physical flow and
negative water depth, resulting in an unstable solution. To prevent non-physical oscillations
and enable the solver to handle complex terrains, it is crucial to address the treatment of
the dry–wet boundary [58–60].

As shown in Figure 5, there are four scenarios that can occur between two grids; these
include: (1) both grids are wet (2) both grids are dry, (3) one grid is dry and the other is wet
with the free surface of the wet grid higher than the dry grid, (4) one grid is dry and the
other is wet with the free surface of the wet grid lower than the dry grid.
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Additional processing should be assigned to some of the above-mentioned scenarios.
The first scenario, which involves a normal pressure difference due to an uneven free
surface, does not require any additional processing. Similarly, the second scenario, where
there is no fluid in the grid and the flow depth is 0, also does not require extra processing
since the source term is 0. The third scenario, where the free surface is higher than the dry
grid and there is a normal pressure difference, does not need additional processing either.
However, for the fourth scenario, where the free surface is lower than the dry terrain, direct
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application of the center difference scheme for discretization of the free surface can result in
a false pressure difference from the dry grid to the wet grid. This false pressure difference
directly affects the stability and conservation during the solution process. Consequently, it
is necessary to address the issue of false pressure difference in the fourth scenario.

To ensure the stability of the solution process, it is necessary to address the issue
of false mass pressure difference and non-physical momentum that arises when a dry
grid is higher than the free mass surface. In order to correct this error, we employ the
reconstruction method, as depicted in Figure 6. The reconstruction calculation formula of
mass free surface is as follows:

ηi+1 =

{
ηi (zi+1>ηi, hi+1 = 0)

ηi+1 (hi>0 or zi+1 < ηi)

ηi−1 =

{
ηi (zi−1>ηi, hi−1 = 0)

ηi−1 (hi−1>0 or zi−1 < ηi)

(15)
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Figure 6. Wet–dry boundary reconstruction.

This method involves eliminating the gradient between the high dry grid and the free
surface during the differencing process of the high dry grid. Specifically, when calculating
the source term of the central grid, we will reconstruct the elevation of the dry grid adjacent
to the free surface, ensuring that it is equal to the free surface. This reconstruction ensures
that there is no gradient difference between the two grids, effectively eliminating any
potential false momentum.

5. Model Validation
5.1. Comparison with the Analytical Solution Results

We chose a one-dimensional smooth bed dam break flow simulation case to verify
the stability of the solver in the shock region, and compared it with the analytical solution.
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This analytical solution is a classic example, and its water depth analytical form is mainly
divided into three parts:

H(x, t) =


h0 if x < −(gh0)

1/2t
1

9g

[
2(gh0)

1/2 − x
t

]2
if − (gh0)

1/2t ≤ x ≤ 2(gh0)
1/2t

0 if x > 2(gh0)
1/2t

(16)

h represents the initial water depth of the upstream, the upstream and downstream
take x = 1 as the dividing line, t represents the evolution time from the start of the collapse,
and the analytical formula of the velocity is:

U(x, t) =


0 for x < −(gh0)

1/2t
2
3

[
(gh0)

1/2 +
x
t

]
for − (gh0)

1/2t ≤ x ≤ 2(gh0)
1/2t

0 for x > 2(gh0)
1/2t

(17)

The case we set up was a rectangular river channel with a length of 180 m and
80 m width of water, with a depth of 1 m in the upstream, simulating an instantaneous
collapse state. The grid size dx was 0.05 m, and the simulation results using the solver
proposed(Figures 7–9) in this paper were as follows:
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Figure 7. Under the condition of smooth bed at T = 10.00 s, demonstrating a solver to simulate water
depth and analytical water depth.

The RMSE of the simulation results of our proposed solver was about 7.58 × 10−6,
and the MAE of the simulation results of our proposed solver was about 0.004. From the
above figure, we can see that the solver we propose can guarantee the stability well in the
shock wave environment, and the format constructed in this paper can guarantee the high
precision of the solution.
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5.2. Comparison of Solver Simulation Results with Real Landslide Cases

On 23 July 2019, a large-scale landslide occurred in Jichang town, Shuicheng County,
Liupanshui City, Guizhou Province, China, resulting in a deposit volume of approximately
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2 × 106 m3. This catastrophic event led to the destruction of 22 houses, claiming the lives of
42 people, with nine individuals reported as missing. In this study, we utilized simulation
data obtained from Guo [34] for our analysis. This case serves as a case study to assess both
the stability and generalization capabilities of the proposed hybrid SWE solver (Figure 10).
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Figure 10. Drone image of landslide in Jichang Town.

In our study, we applied our novel solver to simulate the Jichang Town landslide, a real-
world case. The simulation results demonstrated a remarkable level of agreement with the
actual landslide, validating the robustness and accuracy of our solver in practical scenarios.
This significant alignment between the simulated and real events reinforces the applicability
and reliability of our solver for real-world landslide prediction and hazard assessment.

We complemented our simulation findings by presenting compelling visual evidence.
Our side-by-side comparison included on-site drone photographs capturing the actual
landslide, juxtaposed with images illustrating the results of our simulation. This visual
comparison highlighted the striking resemblance between the two, further affirming the pre-
cision and effectiveness of our solver in closely mirroring real-world landslide occurrences
(Figure 11).
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(b) t = 20 s, (c) t = 50 s) in Jichang town.

The successful application of our solver to a real landslide case, coupled with the
strong alignment between the simulated and actual events, underscores the potential
of our approach for accurate hazard dynamics prediction. This achievement opens up
promising avenues for enhancing our understanding of landslide behavior and aiding in
the development of effective mitigation strategies in the face of such natural hazards.

5.3. Model Application in Woda Town Landslide

The Woda town landslide, which is situated upstream of the Jinsha River in the eastern
region of the Qinghai–Tibet Plateau in southwestern China, has been extensively studied,
monitored, and simulated [61,62]. In this study, we utilized simulation data obtained from
Liu and He [63] for our analysis. The total flood volume considered in the simulations
was approximately 2.9 × 107 m3. We employed the Coulomb friction model as the stress
constitutive model, with a friction coefficient of 0.3 as suggested by Liu and He [63].

Figure 12 presents a comprehensive comparison between the simulation results ob-
tained using the solver proposed in this paper and the widely recognized mountain disaster
simulation software, Massflow, under real-world terrain conditions. The simulation results
obtained from the proposed solver exhibited a high degree of congruence with the out-
comes derived from Massflow simulations, particularly in terms of the extent of inundation
and the distribution of flow depths.
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Figure 13 illustrates the flow depth histogram derived from the simulation results
obtained using the Massflow and the proposed solver. The histogram provides a frequency
distribution of the flow depth values obtained in the simulation results. In the x-axis of
Figure 13, flow depth is represented in meters, while the y-axis indicates the number of
grid cells associated with each flow depth value. The histogram distribution demonstrates
a striking similarity between the simulation results of the two models.
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The Woda landslide simulation results of the proposed solver are close to those of the
Massflow solver. The histogram distribution of the flow depth demonstrated a remarkable
similarity between the two solvers, indicating that the proposed solver exhibits reliable
performance in simulating landslide dynamics in various realistic terrains.
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6. Discussion and Conclusions

This study presents a novel approach for constructing the SWE solver by combining
theory and data-driven methodologies. The proposed method leverages neural networks
to replace the functionality of the convection flux solver, simplifying the modeling process
of the SWE solver. Additionally, theoretical modeling techniques are employed to handle
complex and diverse terrains and friction stress, ensuring the solver’s generalization
capability. By comparing the simulation results with analytical solutions, real-world
landslide cases, and the simulation software Massflow, this study validates the advanced
capability of our proposed solver in accurately simulating hazardous scenarios. The main
contributions and innovations of this study can be summarized as follows:

(1) Introduction of a deep learning method for the construction of the SWE solver:
We propose a novel data-driven spatial discretization method that utilizes convolutional
neural networks to learn fluid flux computations. This approach reduces the complexity
associated with traditional numerical methods such as flux discretization schemes and Rie-
mann solvers. Consequently, it simplifies the modeling process and lowers the theoretical
knowledge requirements of solver developers.

(2) Adoption of a hybrid method combining theoretical and data-driven modeling:
By combining the predicted flux from neural networks with relevant computational fluid
dynamics theories, the proposed model enables the solver to utilize the advantages of
the data-driven flux solver while adapting to real-world terrain conditions, therefore
ensuring both the generalization capability and the physical reasonableness. The proposed
model overcomes limitations encountered in previous DL-based SWE solvers, allowing our
solver to capture complex terrains and variations in stress constitutive properties without
requiring the retraining of neural networks for new terrain or friction conditions.

(3) Evaluation of the proposed solver’s performance is based on two real mountain
landslide cases: Through comparison with the widely used simulation software, Massflow,
simulation results demonstrated the stable performance of the proposed solver under
complex terrain conditions. The simulation outcomes closely aligned with those obtained
from the Massflow software, affirming the advanced capabilities of our solver in accurately
simulating hazard scenarios. These findings provide evidence of the solver’s generalization
capability in addressing problems encountered in complex and varying terrains.

The deep learning-based SWE solver presented in this study introduces a new per-
spective for modeling hazard dynamics through data-driven approaches. It overcomes
the limitations and challenges associated with traditional numerical methods and previ-
ous deep learning-based modeling techniques. This study serves as a valuable attempt
and exemplar in utilizing deep learning for solving PDEs. However, it is important to
acknowledge certain limitations:

(1) The study employs the first-order Euler method as the time integration scheme,
which may impact the solver’s temporal accuracy. Future research should consider ex-
ploring higher-order and more stable time integration methods to enhance the solver’s
temporal accuracy of the time marching scheme.

(2) The study utilizes fixed-size and shaped convolutional kernels to learn the fluid
flux solver, which may restrict the neural network’s ability to capture various flow field
characteristics. Further investigations can explore more flexible and adaptive convolutional
kernel structures to improve the network’s adaptability and expressive power in handling
diverse flow field situations.

(3) The neural network is trained using artificially generated random flow field data,
which may lead to overfitting or underfitting issues when dealing with real-world flow field
data. Future research can incorporate a broader range of real-world flow field data, ensuring
the training process incorporates more abundant and diverse examples. This approach
will enhance the performance and robustness of the neural network in generalizing to
real-world flow field scenarios.

In summary, this research paper contributes to the field of hazard dynamics simulation
by introducing a novel DL-based SWE solver. The combination of theory-based and data-
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driven methodologies enhances the solver’s capabilities in accurately simulating hazard
scenarios in complex terrains. The limitations highlighted pave the way for future research
to explore higher-order time integration methods, flexible convolutional kernel structures,
and richer real-world flow field data. By addressing these limitations, the proposed solver
can further advance the accuracy, efficiency, and generalization capabilities of hazard
dynamics simulations, opening up new possibilities for research in this domain.

Author Contributions: Conceptualization, S.Y. and G.K.; methodology, S.Y. and J.T.; software, S.Y.;
validation, S.Y.; formal analysis, S.Y.; investigation, J.G.; resources, S.Y. and G.K.; data curation, D.C.,
J.G. and H.J.; writing—original draft preparation, S.Y. and G.K.; writing—review and editing, S.Y.
and G.K.; visualization, S.Y.; supervision, G.K.; project administration, C.L., J.T. and G.K.; funding
acquisition, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research Program (2019YFC1510603); IWHR
Research and Development Support Program: JZ0199A032021; GHFUND A No. ghfund202302018283;
Open Research Fund of Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City
Technology: HYD2020OF02. National Natural Science Foundation of China: Grant No. U21A2008.

Data Availability Statement: Not applicable.

Acknowledgments: The authors also thank the anonymous reviewers for their helpful comments
and suggestions.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Liu, D.; Cui, Y.; Wang, H.; Jin, W.; Wu, C.; Bazai, N.A.; Zhang, G.; Carling, P.A.; Chen, H. Assessment of local outburst

flood risk from successive landslides: Case study of Baige landslide-dammed lake, upper Jinsha river, eastern Tibet. J. Hydrol.
2021, 599, 126294. [CrossRef]

2. Yan, Y.; Cui, Y.; Liu, D.; Tang, H.; Li, Y.; Tian, X.; Zhang, L.; Hu, S. Seismic signal characteristics and interpretation of the 2020
“6.17” Danba landslide dam failure hazard chain process. Landslides 2021, 18, 2175–2192. [CrossRef]

3. Kan, G.; Yao, C.; Li, Q.; Li, Z.; Yu, Z.; Liu, Z.; Ding, L.; He, X.; Liang, K. Improving event-based rainfall-runoff simulation using
an ensemble artificial neural network based hybrid data-driven model. Stoch. Environ. Res. Risk Assess. 2015, 29, 1345–1370.
[CrossRef]

4. Kan, G.; He, X.; Ding, L.; Li, J.; Hong, Y.; Zuo, D.; Ren, M.; Lei, T.; Liang, K. Fast hydrological model calibration based on the
heterogeneous parallel computing accelerated shuffled complex evolution method. Eng. Optim. 2017, 50, 106–119. [CrossRef]

5. Kan, G.; Li, J.; Zhang, X.; Ding, L.; He, X.; Liang, K.; Jiang, X.; Ren, M.; Li, H.; Wang, F. A new hybrid data-driven model for
event-based rainfall–runoff simulation. Neural Comput. Appl. 2017, 28, 2519–2534. [CrossRef]

6. Shunyu, Y.; Bazai, N.A.; Jinbo, T.; Hu, J.; Shujian, Y.; Qiang, Z.; Ahmed, T.; Jian, G. Dynamic process of a typical slope debris flow:
A case study of the wujia gully, Zengda, Sichuan Province, China. Nat. Hazards 2022, 112, 565–586. [CrossRef]

7. Yan, Y.; Tang, H.; Hu, K.; Turowski, J.M.; Wei, F. Deriving Debris-Flow Dynamics From Real-Time Impact-Force Measurements.
J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006715. [CrossRef]

8. Yan, Y.; Cui, Y.; Huang, X.; Zhang, W.; Yin, S.; Zhou, J.; Hu, S. Combining seismic signal dynamic inversion and numerical
modeling improves landslide process reconstruction. EGUsphere 2022, 10, 1233–1252. [CrossRef]

9. Cao, Z.; Pender, G.; Wallis, S.; Carling, P. Computational Dam-Break Hydraulics over Erodible Sediment Bed. J. Hydraul. Eng.
2004, 130, 689–703. [CrossRef]

10. Ouyang, C.; He, S.; Xu, Q. MacCormack-TVD Finite Difference Solution for Dam Break Hydraulics over Erodible Sediment Beds.
J. Hydraul. Eng. 2015, 141, 06014026. [CrossRef]

11. Bazai, N.A.; Cui, P.; Carling, P.A.; Wang, H.; Hassan, J.; Liu, D.; Zhang, G.; Wen, J. Increasing glacial lake outburst flood hazard in
response to surge glaciers in the Karakoram. Earth-Sci. Rev. 2020, 212, 103432. [CrossRef]

12. Touma, R. Central unstaggered finite volume schemes for hyperbolic systems: Applications to unsteady shallow water equations.
Appl. Math. Comput. 2009, 213, 47–59. [CrossRef]

13. Murillo, J.; Navas-Montilla, A. A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe
type solutions. Application to the 1D-2D shallow water equations. Adv. Water Resour. 2016, 98, 70–96. [CrossRef]

14. Ricchiuto, M. Contributions to the Development of Residual Discretizations for Hyperbolic Conservation Laws with Application to Shallow
Water Flows; Université Sciences et Technologies-Bordeaux I: Gradignan, France, 2011.

15. Ouyang, C.; He, S.; Xu, Q.; Luo, Y.; Zhang, W. A MacCormack-TVD finite difference method to simulate the mass flow in
mountainous terrain with variable computational domain. Comput. Geosci. 2013, 52, 1–10. [CrossRef]

https://doi.org/10.1016/j.jhydrol.2021.126294
https://doi.org/10.1007/s10346-021-01657-x
https://doi.org/10.1007/s00477-015-1040-6
https://doi.org/10.1080/0305215X.2017.1303053
https://doi.org/10.1007/s00521-016-2200-4
https://doi.org/10.1007/s11069-021-05194-7
https://doi.org/10.1029/2022JF006715
https://doi.org/10.5194/esurf-10-1233-2022
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000986
https://doi.org/10.1016/j.earscirev.2020.103432
https://doi.org/10.1016/j.amc.2009.02.059
https://doi.org/10.1016/j.advwatres.2016.10.019
https://doi.org/10.1016/j.cageo.2012.08.024


Water 2023, 15, 3140 19 of 20

16. Ouyang, C.; He, S.; Tang, C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced
area. Eng. Geol. 2015, 194, 62–72. [CrossRef]

17. Ouyang, C.; Wang, Z.; An, H.; Liu, X.; Wang, D. An example of a hazard and risk assessment for debris flows—A case study of
Niwan Gully, Wudu, China. Eng. Geol. 2019, 263, 105351. [CrossRef]

18. Ouyang, C.; An, H.; Zhou, S.; Wang, Z.; Su, P.; Wang, D.; Cheng, D.; She, J. Insights from the failure and dynamic characteristics
of two sequential landslides at Baige village along the Jinsha River, China. Landslides 2019, 16, 1397–1414. [CrossRef]

19. Ouyang, C.; Zhou, K.; Xu, Q.; Yin, J.; Peng, D.; Wang, D.; Li, W. Dynamic analysis and numerical modeling of the 2015 catastrophic
landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 2016, 14, 705–718. [CrossRef]

20. Iverson, R.M.; Ouyang, C. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-
integrated theory. Rev. Geophys. 2015, 53, 27–58. [CrossRef]

21. Rickenmann, D.; Laigle, D.; McArdell, B.W.; Hübl, J. Comparison of 2D debris-flow simulation models with field events. Comput.
Geosci. 2006, 10, 241–264. [CrossRef]

22. Peng, S.-H.; Lu, S.-C. FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern
Taiwan during Typhoon Morakot. J. Mt. Sci. 2013, 10, 207–218. [CrossRef]

23. Neglia, F.; Sulpizio, R.; Dioguardi, F.; Capra, L.; Sarocchi, D. Shallow-water models for volcanic granular flows: A review of
strengths and weaknesses of TITAN2D and FLO2D numerical codes. J. Volcanol. Geotherm. Res. 2021, 410, 107146. [CrossRef]

24. Nocentini, M.; Tofani, V.; Gigli, G.; Fidolini, F.; Casagli, N. Modeling debris flows in volcanic terrains for hazard mapping: The
case study of Ischia Island (Italy). Landslides 2014, 12, 831–846. [CrossRef]

25. Luppichini, M.; Favalli, M.; Isola, I.; Nannipieri, L.; Giannecchini, R.; Bini, M. Influence of Topographic Resolution and Accuracy
on Hydraulic Channel Flow Simulations: Case Study of the Versilia River (Italy). Remote Sens. 2019, 11, 1630. [CrossRef]

26. Pratomo, R.A. Sensitivity analysis of flash-flood modelling in Grenada, as a small island Caribbean states. AIP Conf. Proc. 2016,
1730, 070002.

27. Pérez-Molina, E.; Sliuzas, R.; Flacke, J.; Jetten, V. Developing a cellular automata model of urban growth to inform spatial policy
for flood mitigation: A case study in Kampala, Uganda. Comput. Environ. Urban Syst. 2017, 65, 53–65. [CrossRef]

28. Van den Bout, B.; Lombardo, L.; Chiyang, M.; van Westen, C.; Jetten, V. Physically-based catchment-scale prediction of slope
failure volume and geometry. Eng. Geol. 2021, 284, 105942. [CrossRef]

29. Bout, B.; Lombardo, L.; van Westen, C.J.; Jetten, V.G. Integration of two-phase solid fluid equations in a catchment model for
flashfloods, debris flows and shallow slope failures. Environ. Model. Softw. 2018, 105, 1–16. [CrossRef]

30. van den Bout, B.; van Asch, T.; Hu, W.; Tang, C.X.; Mavrouli, O.; Jetten, V.G.; van Westen, C.J. Towards a model for structured
mass movements: The OpenLISEM hazard model 2.0a. Geosci. Model Dev. 2021, 14, 1841–1864. [CrossRef]

31. Pratomo, R.A.; Jetten, V.; Alkema, D. A comparison of flash flood response at two different watersheds in Grenada, Caribbean
Islands. IOP Conf. Ser. Earth Environ. Sci. 2016, 29, 012004. [CrossRef]

32. Bout, B.; Jetten, V.G. The validity of flow approximations when simulating catchment-integrated flash floods. J. Hydrol.
2018, 556, 674–688. [CrossRef]

33. Umer, Y.M.; Jetten, V.G.; Ettema, J. Sensitivity of flood dynamics to different soil information sources in urbanized areas. J. Hydrol.
2019, 577, 123945. [CrossRef]

34. Guo, J.; Yi, S.; Yin, Y.; Cui, Y.; Qin, M.; Li, T.; Wang, C. The effect of topography on landslide kinematics: A case study of the
Jichang town landslide in Guizhou, China. Landslides 2020, 17, 959–973. [CrossRef]

35. Shen, W.; Li, T.; Li, P.; Guo, J. A modified finite difference model for the modeling of flowslides. Landslides 2018, 15, 1577–1593.
[CrossRef]

36. Bai, X.; He, S. Dynamic process of the massive Aru glacier collapse in Tibet. Landslides 2020, 17, 1353–1361. [CrossRef]
37. Denlinger, R.P.; Iverson, R.M. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation.

J. Geophys. Res. Earth Surf. 2004, 109. [CrossRef]
38. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
39. Marx, V. The big challenges of big data. Nature 2013, 498, 255–260. [CrossRef]
40. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understand-

ing for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]
41. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
42. Tompson, J.; Schlachter, K.; Sprechmann, P.; Perlin, K. Accelerating eulerian fluid simulation with convolutional networks. In

Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 3424–3433.
43. Bar-Sinai, Y.; Hoyer, S.; Hickey, J.; Brenner, M.P. Learning data-driven discretizations for partial differential equations. Proc. Natl.

Acad Sci. USA 2019, 116, 15344–15349. [CrossRef] [PubMed]
44. Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine learning-accelerated computational fluid

dynamics. Proc. Natl. Acad Sci. USA 2021, 118, e2101784118. [CrossRef]
45. Khoo, Y.; Lu, J.; Ying, L. Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 2021, 32, 421–435.

[CrossRef]
46. Adler, J.; Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 2017, 33, 124007.

[CrossRef]

https://doi.org/10.1016/j.enggeo.2014.07.012
https://doi.org/10.1016/j.enggeo.2019.105351
https://doi.org/10.1007/s10346-019-01177-9
https://doi.org/10.1007/s10346-016-0764-9
https://doi.org/10.1002/2013RG000447
https://doi.org/10.1007/s10596-005-9021-3
https://doi.org/10.1007/s11629-013-2510-2
https://doi.org/10.1016/j.jvolgeores.2020.107146
https://doi.org/10.1007/s10346-014-0524-7
https://doi.org/10.3390/rs11131630
https://doi.org/10.1016/j.compenvurbsys.2017.04.013
https://doi.org/10.1016/j.enggeo.2020.105942
https://doi.org/10.1016/j.envsoft.2018.03.017
https://doi.org/10.5194/gmd-14-1841-2021
https://doi.org/10.1088/1755-1315/29/1/012004
https://doi.org/10.1016/j.jhydrol.2017.11.033
https://doi.org/10.1016/j.jhydrol.2019.123945
https://doi.org/10.1007/s10346-019-01339-9
https://doi.org/10.1007/s10346-018-0980-6
https://doi.org/10.1007/s10346-019-01337-x
https://doi.org/10.1029/2003JF000085
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/498255a
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1073/pnas.1814058116
https://www.ncbi.nlm.nih.gov/pubmed/31311866
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1017/S0956792520000182
https://doi.org/10.1088/1361-6420/aa9581


Water 2023, 15, 3140 20 of 20

47. Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural
networks. Comput. Mech. 2019, 64, 525–545. [CrossRef]

48. Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 481–490.

49. Zhu, Y.; Zabaras, N. Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantifica-
tion. J. Comput. Phys. 2018, 366, 415–447. [CrossRef]

50. Bar, L.; Sochen, N. Unsupervised deep learning algorithm for PDE-based forward and inverse problems. arXiv 2019,
arXiv:1904.05417.

51. Pan, S.; Duraisamy, K. Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed
stability. SIAM J. Appl. Dyn. Syst. 2020, 19, 480–509. [CrossRef]

52. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

53. Smith, J.D.; Azizzadenesheli, K.; Ross, Z.E. Eikonet: Solving the eikonal equation with deep neural networks. IEEE Trans. Geosci.
Remote Sens. 2020, 59, 10685–10696. [CrossRef]

54. Yu, B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat.
2018, 6, 1–12.

55. Smith, J.D. Stability of a sand bed subjected to a shear flow of low Froude number. J. Geophys. Res. 1970, 75, 5928–5940. [CrossRef]
56. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

57. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
58. Kan, G.; He, X.; Li, J.; Ding, L.; Hong, Y.; Zhang, H.; Liang, K.; Zhang, M. Computer aided numerical methods for hydrological

model calibration: An overview and recent development. Arch. Comput. Methods Eng. 2019, 26, 35–59. [CrossRef]
59. Kan, G.; Lei, T.; Liang, K.; Li, J.; Ding, L.; He, X.; Yu, H.; Zhang, D.; Zuo, D.; Bao, Z. A multi-core CPU and many-core GPU

based fast parallel shuffled complex evolution global optimization approach. IEEE Trans. Parallel Distrib. Syst. 2016, 28, 332–344.
[CrossRef]

60. Liu, D.; Tang, J.; Wang, H.; Cao, Y.; Bazai, N.A.; Chen, H.; Liu, D. A New Method for Wet-Dry Front Treatment in Outburst Flood
Simulation. Water 2021, 13, 221. [CrossRef]

61. Li, B.; Jiang, W.; Li, Y.; Luo, Y.; Jiao, Q.; Wang, X.; Zhang, J. Comparison of different atmospheric phase screen correction models
in ground-based radar interferometry for landslide and open-pit mine monitoring. Int. J. Remote Sens. 2021, 42, 5925–5942.
[CrossRef]

62. Li, B.; Jiang, W.; Li, Y.; Luo, Y.; Qian, H.; Wang, Y.; Jiao, Q.; Zhang, Q.; Zhou, Z.; Zhang, J. Monitoring and analysis of
Woda landslide stability (China) combined with InSAR, GNSS and meteorological data. Nat. Hazards Earth Syst. Sci. Discuss.
2021, 2021, 1–23.

63. Liu, W.; He, S. Numerical Simulation of the Evolution Process of Disaster Chain Induced by Potential Landslide in Woda of Jinsha
River Basin. Adv. Eng. Sci. 2020, 52, 38–46. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1137/19M1267246
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/TGRS.2020.3039165
https://doi.org/10.1029/JC075i030p05928
https://doi.org/10.1007/s11831-017-9224-5
https://doi.org/10.1109/TPDS.2016.2575822
https://doi.org/10.3390/w13020221
https://doi.org/10.1080/01431161.2021.1931543
https://doi.org/10.15961/j.jsuese.201901119

	Introduction 
	Governing Equations 
	Convection Flux Term Calculation Based on the Data-Driven Method 
	Generation of the Training Dataset 
	Design of the Data-Driven Model 
	Model Training 
	The Trained Model 

	Construction of the Hybrid Solver 
	Model Validation 
	Comparison with the Analytical Solution Results 
	Comparison of Solver Simulation Results with Real Landslide Cases 
	Model Application in Woda Town Landslide 

	Discussion and Conclusions 
	References

