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Abstract: Traditional 3D slope reliability analysis methods have high computational costs and are
difficult to popularize in engineering practice. Under the framework of the limit equilibrium method
with 3D slip surface normal stress correction, the critical horizontal acceleration coefficient Kc, which
is equivalent to the safety factor Fs, is selected to characterize the slope stability. The limit state
function uses the difference between Kc and the known critical value Kc0. A simplified method
for calculating the reliability of 3D slope is proposed. Through two typical slope examples, the
3D reliability calculation results of six methods after coupling two limit state functions and three
reliability algorithms are compared. The results show that this method is reliable and effective,
and the method coupled with subset simulation (SS) is the one with good calculation accuracy and
efficiency. In the case of long slopes, 2D analysis results may underestimate the probability of slope
instability, and 3D reliability of the slope must be analyzed.

Keywords: 3D slope reliability; limit equilibrium method; slip surface normal stress correction;
critical horizontal acceleration coefficient; limit state function

1. Introduction

Slope stability evaluation is one of the important and popular research topics in
geotechnical engineering. Due to the existence of complex loads and geological conditions,
as well as the inherent variability of soil physical and mechanical parameters, slope failure
is actually uncertain [1]. The influence of these uncertain factors on slope stability cannot
be considered by a single safety factor [2]. Slope reliability analysis is a useful supplement
to the deterministic method of slope stability [3].

In the past few decades, the research on slope reliability analysis methods has devel-
oped rapidly and achieved many meaningful results. However, most researchers simplified
the slope stability analysis problems into two-dimensional plane strain problems, ignoring
the three-dimensional effects of actual slopes, which will overestimate or underestimate
their stabilities [4–6]. Especially for slopes with obvious longitudinal changes in soil prop-
erties along the slope surface, concentrated loads acting on the surface, irregular potential
failure surfaces, or short slopes with non-negligible boundary conditions, their 3D effects
are particularly significant, and 3D reliability analysis must be carried out [7].

Three-dimensional slope reliability analysis requires higher computational costs than
two-dimensional simulation, and sometimes the calculation time is even more than one
month [8]. This is one of the reasons why 3D slope reliability analysis cannot be widely
used in practical engineering. However, in the preliminary design of highway engineering,
it is often necessary to quickly evaluate the stability of slopes of hundreds of sections [9].
In the study of 3D slope reinforcement measures, it is also necessary to quickly judge the
effects of different reinforcement measures [10,11]. In these cases, there is an urgent need
for a method that can quickly perform 3D slope reliability analysis without significant loss
of accuracy.
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In recent years, the research on 3D slope reliability analysis methods has gradually
increased with the improvement of computer performance. The existing 3D slope reliability
analysis methods mainly include the analytical method [12,13], stochastic finite element
method (SFEM) [1,14], stochastic limit equilibrium method (SLEM) [15], and stochastic
limit analysis method (SLAM) [16]. The research of these methods is carried out under the
framework of combining the deterministic method of 3D slope stability and the reliability
calculation method. The limit state performance function generally adopts the expression
form of the difference between safety factor Fs and one. The obvious differences in accuracy
and computational efficiency of various methods are mainly derived from the efficiency of
the solution method of safety factor and the reliability algorithm. The analytical method has
a small amount of calculation, but it is difficult to apply in engineering practice because the
sliding surface must be a special combination shape with a cylindrical surface in the middle
and a vertical plane or an ellipsoid surface at both ends. Based on the finite element method
and strength reduction technology, the stochastic finite element method has the advantage
of automatically obtaining the critical sliding surface. However, when the probability of
slope failure is very small, its computational cost is very high [17]. The stochastic limit
analysis method constructs the static allowable stress field or the maneuvering allowable
velocity field according to the large-scale geotechnical parameter samples, based on the
lower bound theorem or the upper bound theorem. The safety factor of the slope is solved
by means of mathematical programming. If the number of soil parameter samples is large,
the calculation efficiency is low. Therefore, the stochastic limit equilibrium method with a
clear concept and high computational efficiency is still the most widely used method in
engineering practice.

The conventional 3D slope limit equilibrium methods are obtained by extending
the 2D slice methods. According to the different assumptions of the inter-column force,
they can be divided into the 3D simplified Bishop method [18,19], 3D simplified Janbu
method [18,19], 3D Morgenstern–Price method [20,21], and so on. Safety factor expressions
are usually complex nonlinear implicit expressions, which require multiple numerical
iterations to solve, and sometimes encounter non-convergence problems. Some scholars
used the stochastic response surface method (SRSM) [22], intelligent response surface
method (IRSM) [23], genetic algorithm (GA) [8], support vector machine (SVM) [4], and
other surrogate models to simplify complex nonlinear implicit performance functions into
approximate equivalent explicit expressions, which effectively solves the difficult problem
of 3D slope reliability calculation. However, these methods require a large amount of data
to generate enough samples to obtain surrogate models. For highly nonlinear and small
failure probability problems, it is difficult to fit the surrogate models.

Sarma [24] proposed a good idea to replace the safety factor with a critical horizontal
acceleration coefficient Kc for slope stability analysis. In the process of solving Kc, no
numerical iteration occurs, and no non-convergence problem will be encountered. However,
the formula of the Sarma method is cumbersome and the solving process is not very
convenient. Zhu [25] proposed an explicit solution for the 3D slope safety factor by
correcting the normal stresses on the slip surface. His method does not need to assume
the inter-column force, so it does not belong to the “column method”. The calculation
principle of the method is simple without iteration and non-convergence problems, and the
calculation results are reliable. In this paper, a new method for calculating the reliability of
the 3D slope was proposed by using the critical horizontal acceleration coefficient as the
criterion of slope stability under the mode of the 3D limit equilibrium method with normal
stress correction of the sliding surface.

Among the reliability algorithms, the Monte Carlo simulation (MCS) method is the
most widely used because of its simple concept. As long as there are enough samples, the
approximate accurate reliability calculation results can be obtained. However, in the case
of slopes with small failure probability, the calculation is very time-consuming. The subset
simulation method (SS) reduces the sample requirements and is an efficient method for
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solving the reliability analysis of slopes with small failure probability [26]. In this paper,
the subset simulation method is used to calculate the reliability of the 3D slope.

In the author’s previous work [27], it has been proved that the limit state performance
function using the critical horizontal acceleration coefficient expression can indeed signifi-
cantly improve the computational efficiency probability of 2D slope reliability. In this paper,
we extend the previous work to the 3D slope and comprehensively study the accuracy and
efficiency of the obtained algorithm.

The research framework of this paper is as follows. Firstly, based on the 3D limit
equilibrium method with normal stress correction on the sliding surface, four main equilib-
rium equations including the critical horizontal acceleration coefficient and three correction
parameters were established. Secondly, according to the definition of the critical horizontal
acceleration coefficient, its explicit expression was derived. Thirdly, a simplified method for
calculating the reliability of the three-dimensional slope is proposed by using the difference
expression between the critical horizontal acceleration coefficient and the critical value and
combining it with the reliability algorithm. Finally, the effectiveness and reliability of the
proposed method are verified by two slope examples.

2. Three-Dimensional Limit Equilibrium Method Based on the Modification of
Normal Stresses over Slip Surface
2.1. Fundamental Assumptions

A 3D slope with a general shape sliding surface and a coordinate system are shown in
Figure 1a. It is assumed that the horizontal projections of the sliding direction of each point
on the sliding surface are parallel to each other and opposite to the positive direction of the
x-axis. The slope surface is represented by g(x, y), and the sliding surface is represented by
s(x, y). The slope is divided into many soil columns. As shown in Figure 1b, one of the soil
columns has a width of dx and a length of dy. The horizontal projection area of the soil
column is dA, and the angles with the x and y axes are αx and αy, respectively. The angle
between the outer normal direction and the z-axis is γz.
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body. (b) Soil column and forces.
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According to the geometric relation, dA can be calculated by Equation (1).

dA = ∆dxdy (1)

where
∆ =

√
1 + s′2x + s′2y (2)

s′x = tan αx, s′y = tan αy (3)

cos γz =
1√

1 + s′2x + s′2y
=

1
∆

(4)

Assuming that the soil column weight is w(x, y) and the horizontal acceleration
coefficient is K, then the horizontal seismic force is Kw(x, y), and the position of the action
point is (x, y, zc).

There are normal stress and shear stress at the bottom of the column, which are
expressed by σ(x, y) and τ(x, y), respectively. The pore water pressure is expressed by
u(x, y). The cohesion and effective internal friction angle of the soil at the sliding surface
are c(x, y) and ϕ(x, y), respectively.

The direction cosines of the normal force and shear force at the bottom of the column
are

(
nx

σ, ny
σ, nz

σ

)
and

(
nx

τ , ny
τ , nz

τ

)
, respectively. As the sliding direction is parallel to the

x-axis, ny
τ = 0. From the geometrical relation, it follows that

(
nx

σ, ny
σ, nz

σ

)
=

(
− s′x

∆
,−

s′y
∆

,
1
∆

)
(5)

(
nx

τ , ny
τ , nz

τ

)
=

(
1
∆′

, 0,
s′x
∆′

)
(6)

where
∆′ =

√
1 + s′2x (7)

In order to simplify the calculation, the initial normal stress distribution σ0(x, y) on
the sliding surface adopts the 3D extended form of the Fellenius method [28].

σ0(x, y) =
w(x, y)

1 + s′2x + s′2y
(8)

The initial normal stresses over the slip surface need to be corrected to make the 3D
sliding body meet the required equilibrium conditions. Let the correction function be
ξ(x, y), then

σ(x, y) = σ0(x, y)ξ(x, y) (9)

2.2. Three-Dimensional Limit Equilibrium Equations

For 3D slopes, only the reliability calculation results that rigorously meet the force
balance in three directions and the moment balance conditions around three axes are
accurate. The research shows that the quasi-rigorous solution is very close to the rigorous
solution, and the difference can be ignored. The former is more suitable for practical
engineering [25]. Therefore, in order to solve the problem of rapid analysis of 3D slope
reliability, a quasi-rigorous simplified method of 3D slope reliability based on four main
equilibrium equations of the sliding body is proposed.
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When the 3D sliding body reaches the limit equilibrium state under the action of the
force in three directions and the torque around the y-axis, the following equations can be
listed (in order to simplify, “(x, y)” in all formulas are omitted.):

x
σ · ny

σ·dA = 0 (10a)

x
(σ · nx

σ + τ · nx
τ) dA = K

x
wdxdy (10b)

x
(σ · nz

σ + τ · nz
τ) dA =

x
wdxdy (10c)

x
(σ · nz

σ + τ · nz
τ) · x · dA−

x
(σ · nx

σ + τ · nx
τ) · s·dA =

x
w · x · dxdy− K

x
w · zc · dxdy (10d)

Substituting Equations (7) and (8) into Equation (10a–d) leads to
x

σ · s′y·dxdy = 0 (11a)

x (
−σ · s′x + τ · ∆

∆′

)
dxdy = K

x
wdxdy (11b)

x (
σ + s′x ·

∆
∆′
· τ
)

dxdy =
x

wdxdy (11c)

x (
σ + s′x ·

∆
∆′
· τ
)
· x · dxdy−

x (
−σ · s′x + τ · ∆

∆′

)
· s · dxdy =

x
w · x · dxdy− K

x
w · zc · dxdy (11d)

It is assumed that safety factor values of the entire sliding surface are equal, and the re-
lationship between normal stress and shear stress obeys the Mohr–Coulomb failure criterion.

τ =
1
Fs
[(σ− u) tan ϕ + c] (12)

Let
ψ = tan ϕ (13a)

cu = c− u · tan ϕ (13b)

ρ =
∆
∆′

(13c)

Equation (11a–d) is rearranged as
x

σ · s′y·dxdy = 0 (14a)

x (
−s′x +

ρψ

Fs

)
· σ · dxdy = K

x
wdxdy− 1

Fs

x
ρ · cudxdy (14b)

x (
1 +

ρψs′x
Fs

)
· σ · dxdy =

x
wdxdy− 1

Fs

x
s′x · ρ · cudxdy (14c)

s [
(x + s · s′x) + ρψ(x·s′x−s)

Fs

]
· σ · dxdy =

s
w · x · dxdy− K

s
w · zc · dxdy− 1

Fs

s
ρ(x · s′x − s) · cu · dxdy (14d)

In order to make Equation (14a–d) statically determinate and solvable, the correction
function must contain three undetermined parameters and its general form can be taken as

ξ(x, y) = ξ0 + λ1ξ1 + λ2ξ2 + λ3ξ3 (15)
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Substituting Equations (12) and (15) into Equation (14a–d), we can obtain

λ1D1 + λ2D2 + λ3D3 = E (16a)

λ1

(
A11 +

B11

Fs

)
+ λ2

(
A12 +

B12

Fs

)
+ λ3

(
A13 +

B13

Fs

)
+ KG1 = A14 +

B14

Fs
(16b)

λ1

(
A21 +

B21

Fs

)
+ λ2

(
A22 +

B22

Fs

)
+ λ3

(
A23 +

B23

Fs

)
+ KG2 = A24 +

B24

Fs
(16c)

λ1

(
A31 +

B31

Fs

)
+ λ2

(
A32 +

B32

Fs

)
+ λ3

(
A33 +

B33

Fs

)
+ KG3 = A34 +

B34

Fs
(16d)

where

Di =
s

σ0ξis′ydxdy(i = 1, 2, 3) E = −
s

σ0ξ0s′ydxdy

A1i = −
s

σ0ξis′xdxdy(i = 1, 2, 3) A14 =
s

σ0ξ0s′xdxdy

A2i =
s

σ0ξidxdy(i = 1, 2, 3) A24 =
s

wdxdy−
s

σ0ξ0dxdy

A3i =
s

σ0ξi(x + s · s′x)dxdy(i = 1, 2, 3) A34 =
s

[w · x− σ0ξ0(x + s · s′x)] dxdy

B1i =
s

ρψσ0ξidxdy(i = 1, 2, 3) B14 = −
s

ρ(cu + ψσ0ξ0) dxdy

B2i =
s

ρψσ0ξis′xdxdy(i = 1, 2, 3) B24 = −
s

ρ(cu + ψσ0ξ0)s′xdxdy

B3i =
s

ρψσ0ξi(x · s′x − s)dxdy(i = 1, 2, 3) B34 = −
s

ρ(x · s′x − s)(cu + ψσ0ξ0) dxdy

G1 = −
s

wdxdy G2 = 0

G3 = −
s

w · zcdxdy

Assuming that safety factor Fs is a known parameter and the initial normal stress
distribution σ0 is determined, then D1 ∼ D3, A11 ∼ A14, A21 ∼ A24, A31 ∼ A34,
B11 ∼ B14, B21 ∼ B24, B31 ∼ B34, G1 ∼ G3, and E, these parameters can be solved by a
definite integral. Substituting the 31 parameters into Equation (16a–d), we can obtain the
statically determinate solvable limit equilibrium equations with four unknowns λ1, λ2, λ3
and K.

Equation (16a–d) can be rewritten in a matrix form
D1 D2 D3 0

A11 +
B11
Fs

A12 +
B12
Fs

A13 +
B13
Fs

G1

A21 +
B21
Fs

A22 +
B22
Fs

A23 +
B23
Fs

G2

A31 +
B31
Fs

A32 +
B32
Fs

A33 +
B33
Fs

G3




λ1
λ2
λ3
K

 =


E

A14 +
B14
Fs

A24 +
B24
Fs

A34 +
B34
Fs

 (17)

According to Cramer’s rule, λ1, λ2, λ3 and K can be solved.

λ1 =
∆1

∆0
(18a)

λ2 =
∆2

∆0
(18b)

λ3 =
∆3

∆0
(18c)

K =
∆4

∆0
(18d)

where

∆0 =

∣∣∣∣∣∣∣∣∣
D1 D2 D3 0

A11 +
B11
Fs

A12 +
B12
Fs

A13 +
B13
Fs

G1

A21 +
B21
Fs

A22 +
B22
Fs

A23 +
B23
Fs

G2

A31 +
B31
Fs

A32 +
B32
Fs

A33 +
B33
Fs

G3

∣∣∣∣∣∣∣∣∣ (19)
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∆1 =

∣∣∣∣∣∣∣∣∣
E D2 D3 0

A14 +
B14
Fs

A12 +
B12
Fs

A13 +
B13
Fs

G1

A24 +
B24
Fs

A22 +
B22
Fs

A23 +
B23
Fs

G2

A34 +
B34
Fs

A32 +
B32
Fs

A33 +
B33
Fs

G3

∣∣∣∣∣∣∣∣∣ (20)

∆2 =

∣∣∣∣∣∣∣∣∣
D1 E D3 0

A11 +
B11
Fs

A14 +
B14
Fs

A13 +
B13
Fs

G1

A21 +
B21
Fs

A24 +
B24
Fs

A23 +
B23
Fs

G2

A31 +
B31
Fs

A34 +
B34
Fs

A33 +
B33
Fs

G3

∣∣∣∣∣∣∣∣∣ (21)

∆3 =

∣∣∣∣∣∣∣∣∣
D1 D2 E 0

A11 +
B11
Fs

A12 +
B12
Fs

A14 +
B14
Fs

G1

A21 +
B21
Fs

A22 +
B22
Fs

A24 +
B24
Fs

G2

A31 +
B31
Fs

A32 +
B32
Fs

A34 +
B34
Fs

G3

∣∣∣∣∣∣∣∣∣ (22)

∆4 =

∣∣∣∣∣∣∣∣∣
D1 D2 D3 E

A11 +
B11
Fs

A12 +
B12
Fs

A13 +
B13
Fs

A14 +
B14
Fs

A21 +
B21
Fs

A22 +
B22
Fs

A23 +
B23
Fs

A24 +
B24
Fs

A31 +
B31
Fs

A32 +
B32
Fs

A33 +
B33
Fs

A34 +
B34
Fs

∣∣∣∣∣∣∣∣∣ (23)

3. Simplified Method of 3D Slope Reliability Calculation
3.1. Critical Horizontal Acceleration Coefficient Kc

Sarma [24] defined a parameter called the critical horizontal acceleration coefficient
Kc. When the horizontal seismic force is applied to make the sliding body reach the
critical equilibrium state (that is, safety factor Fs is equal to one), the ratio of the maximum
horizontal seismic force to the gravity can be expressed by the critical horizontal acceleration
coefficient Kc. Later, Sarma [29] further elaborated on the relationship between safety factor
Fs and critical horizontal acceleration coefficient Kc. Safety factor Fs refers to the coefficient
of available shear strength and movable shear stress when the sliding body enters the
equilibrium state. It can be seen from the definition of the two parameters that the effects
of Fs and Kc are equivalent. Kc can also be used as an index to measure safety factor Fs.

According to the above ideas, Fs = 1 can be substituted into Equations (18d), (19), and (23)
to obtain Kc.

Kc =

∣∣∣∣∣∣∣∣
D1 D2 D3 E

A11 + B11 A12 + B12 A13 + B13 A14 + B14
A21 + B21 A22 + B22 A23 + B23 A24 + B24
A31 + B31 A32 + B32 A33 + B33 A34 + B34

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D1 D2 D3 0

A11 + B11 A12 + B12 A13 + B13 G1
A21 + B21 A22 + B22 A23 + B23 G2
A31 + B31 A32 + B32 A33 + B33 G3

∣∣∣∣∣∣∣∣
(24)

3.2. Limit State Performance Function

The seismic force acting on the sliding body is expressed by the horizontal acceleration
coefficient K. Sarma found that the functional relationship between K and safety factor Fs
is monotonically decreasing when the sliding body is in critical equilibrium, as shown in
Figure 2. As Fs decreases, K increases. When Fs = 1, K = Kc. Kc is greater than zero. While
K equals zero, Fs is greater than one. According to the above analysis, when the slope is
stable, Fs is greater than one, or Kc is greater than zero.

Similar to the safety factor having a boundary value of one, Kc also has a boundary
value. The critical value of Kc is represented by the known horizontal seismic coefficient
Kc0 that actually acts on the slope. There is no seismic force on the slope, Kc0 = 0. With
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seismic force, Kc0 is a known value greater than zero. In summary, the limit state perfor-
mance function expression can be written as the difference between Kc and Kc0 as shown
in Equation (25). The determination condition of slope stability can be changed from
conventional Fs > 1 to Kc > Kc0 [30].
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Figure 2. The relation curve of Fs and K.

In addition, it can be found from the expression composition of Equation (24) that
Kc is an explicit function of soil strength parameters c and ϕ. The calculation method
is simple and easy to understand and does not need iterative calculation, which will
not lead to non-convergence problems. Therefore, using Equation (25) as the limit state
performance function is bound to significantly improve the calculation efficiency of 3D
slope reliability analysis.

Z = Kc − Kc0 (25)

3.3. Three-Dimensional Slope Reliability Calculation Method

According to the limit state performance function defined in Equation (25), the slope
failure probability can be expressed as

PF = P(Kc(x) < Kc0) (26)

where {x : X1, X2, · · ·Xn} denotes a random variable.
From Equation (24), Kc can be solved directly without iteration. When the distribution

type, mean, and variance of random variables are known, the first-order second-moment
method (FOSM) can be used to solve the approximate analytical solution of the reliability
index [13,31].

β =
µZ
σZ

=
(Kc)Xi

∗ − Kc0√
n
∑

i=1

(
∂Z
∂Xi

σXi

)2
(27)

PF = Φ(−β) (28)

The partial derivatives of the limit state performance function in Equation (27) can be
approximated by the difference method in Equation (29).

∂Z
∂Xi

=
Z+

i − Z−i
2σXi

(29)

where Z+
i = Z(X∗1 , X∗2 , · · · , X∗i + σXi , · · · , X∗n), Z−i = Z(X∗1 , X∗2 , · · · , X∗i − σXi , · · · , X∗n), X∗i

denotes the mean value of the i-th random variable.
The MCS method is recognized as a high-precision method in reliability algorithms.

It is based on the law of large numbers, using the frequency of failure events in a large
number of samples to approximate the failure probability. Only when the sample size
N is large enough, the unbiased estimation of slope failure probability can be obtained.



Water 2023, 15, 3139 9 of 16

However, computational inefficiency is the main drawback of the MCS method, especially
for small failure probability problems.

>
PF =

1
N

N

∑
i=1

IF(x) (30)

where IF(x) is the indicator function.

IF(x) =
{

1, Kc(x) < 0
0, Kc(x) ≥ 0

(31)

Au [26] proposed an improved MCS method called the subset simulation (SS) method,
which can effectively improve the computational efficiency of small failure probability
problems. The SS method divides the probability space into multiple sequence subsets by
introducing intermediate failure events. The small failure probability is calculated by the
product of a series of conditional probabilities.

Let F = {Kc(x) < Kc0} be the target event of 3D slope reliability analysis, and the
intermediate subset is Fi = {Kc(x) < Kci, i = 1, 2, · · · , m}, which conforms to the following
relationship: F1 ⊃ F2 ⊃ · · · ⊃ Fm = F and Kc1 > Kc2 > · · · > Kcm−1 > Kcm = Kc0. That is,

Fk = ∩k
i=1Fi(k = 1, 2, · · · , m) (32)

PF = P(F) = P(Fm) = P(F1)∏m
i=2 P(Fi|Fi−1 ) (33)

Let
>
P1 = P(F1),

>
Pi = P(Fi|Fi−1 ) = P(Kc(x) < Kci|Kc(x) < Kci−1 )(i = 1, 2, · · · , m),

then the unbiased estimate of Equation (34) is
>
PF = ∏m

i=1
>
Pi (34)

On the basis of the method in this paper, the specific steps of calculating the failure
probability and reliability index of the slope by the subset simulation method are shown in
Chen [27], which will not be repeated here.

4. Numerical Examples

By analyzing the calculation results of the 3D slope reliability of two classical examples,
the feasibility of the proposed method is verified. The limit state performance function
adopts the proposed Kc expression (denoted as Kc method) and Fs expression (denoted as
Fs method, the specific calculation method is shown in Zhu [25]). The FOSM approximate
analytical method, MCS, and SS methods were used to calculate the reliability. By coupling
two limit state performance functions and three reliability algorithms, six methods are
obtained, which are called the Kc + MCS method, Kc + SS method, Fs + MCS method,
Fs + SS method, Kc + FOSM method, and Fs + FOSM method, respectively. The reliability
index, failure probability, and calculation time of the six methods were compared. The
calculation time is the CPU occupancy time of the program running on the same computer.

4.1. Example 1

Example 1 is derived from the homogeneous slope in Arai [32]. The geometric
dimensions of the slope section are shown in Figure 3, and the soil parameters are
listed in Table 1. The cohesion and internal friction angle of the soil are independent
of each other and obey the normal distribution. Considering the two cases with and
without seismic force on the slope, Kc0 is 0 and 0.1, respectively. Both sliding surfaces
are spherical, and the position and range are shown in Figure 4. The equations are
(x− 26.22)2 + y2 + (z− 46.86)2 = 34.482 (denoted by sliding surface 1, abbreviated as
S1) and (x− 29.529)2 + y2 + (z− 49.306)2 = 35.6672 (denoted by sliding surface 2, abbre-
viated as S2). The results of the six methods are shown in Table 2.
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Table 1. Material parameters of the slope in Example 1.

Cohesion c (kPa) Friction Angle ϕ (◦) Unit Weight γ (kN/m3)

µc σc µφ σφ

41.65 8.00 15.00 3.00 18.82

Table 2. Comparison of reliability analysis results of Example 1.

Performance
Functions

Reliability
Methods

Horizontal Seismic
Coefficient Kc0

Sampling
Number N β Pf

Slip Surface
Shape

Computation
Time t (s)

Fs method MCS 0 40,000 2.6376 0.0042 3D S1 21.70
Kc method MCS 0 40,000 2.6606 0.0039 3D S1 12.45
Fs method SS 0 40,000 2.6780 0.0037 3D S1 6.80
Kc method SS 0 40,000 2.6438 0.0041 3D S1 5.45
Fs method FOSM 0 2.6596 0.0039 3D S1 0.30
Kc method FOSM 0 2.6937 0.0035 3D S1 0.13

Bishop GA + FORM 0 2.6100 0.0045 [8] 3D S1 >3.8 h
Bishop

(GeoStudio) MCS 0 40,000 2.2422 0.0120 2D circular S1

Kc method MCS 0.1 40,000 1.8317 0.0335 3D S2 12.98
Kc method SS 0.1 40,000 1.8633 0.0312 3D S2 5.33
Kc method FOSM 0.1 1.8432 0.0326 3D S2 0.14

Bishop
(GeoStudio) MCS 0.1 40,000 1.1870 0.1176 2D circular S2

MCS—Monte Carlo simulation; SS—subset simulation; GA—genetic algorithm; FORM—first-order reliability
method; FOSM—first-order second-moment method.
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Figure 4. The sliding surface position and range of Example 1. (a) Three-dimensional slip surface at
Kc0 = 0. (b) Three-dimensional slip surface at Kc0 = 0.1.

In the case of no seismic load on the slope (i.e., Kc0 = 0.1) and the sliding surface is S1,
the calculation results in Tun [8] are taken as the reference values. Among the six methods,
the relative errors of the reliability index and failure probability of Fs + MCS method are the
smallest, while that of the Kc + FOSM method is the largest. The relative error of the Kc + SS
method is the second smallest. Except that the relative error of the failure probability of the
Kc + FOSM method reaches 22.22%, those of other results are less than 20%. However, the
computational efficiency of the six methods is very different. The calculation time of the
Fs + MCS method is the longest, but it is much less than that in Tun [8]. Both the Kc + FOSM
and Fs + FOSM methods have very short CPU time, even less than 0.5 s. The calculation
time of the Kc + SS method is slightly less than that of the Fs + SS method, which is about
half of the Kc + MCS method and one-fourth of the Fs + MCS method.

When there is a seismic load on the slope (i.e., Kc0 = 0.1) and the slip surface is S2, the
failure probability of the 3D slope increases and the reliability index decreases. The results
of Kc + MCS, Kc + SS, and Kc + FOSM are very close. The maximum relative errors of the
reliability index and failure probability are 3.80% and 7.37%, respectively. In Example 1,
the reliability indexes of the 3D slope are slightly higher than that of the 2D slope.

From the above, it can be concluded that the Kc performance function can improve
the efficiency of the 3D slope reliability analysis without an obvious loss of precision. The
method coupled with the SS method can further reduce the amount of calculation.

4.2. Example 2

The second example is a slope with three soil layers, which is adapted from a slope
stability test question of the Australian Computer Aided Design Association (ASCD) [33].
The distribution of the soil layer in the slope section is shown in Figure 5. The material
parameter variables are normally distributed and are listed in Table 3.

In order to compare with the 2D results, several 3D slope reliability analyses with
different lengths are carried out. Firstly, a 3D slope with a spherical sliding surface of 40 m
long is designed. Then, keeping the shape of the cross-section of the slope unchanged, the
length of the slope is expanded by an integer multiple (the slope length expansion multiple
is denoted by η). The sliding surfaces of long slopes are all ellipsoids, and their longitudinal
axis length increases with the slope length. The positions and ranges of two kinds of sliding
surfaces are shown in Figure 6. Table 4 lists the results of the 3D slope reliability calculation
with different methods under the condition of two kinds of sliding surfaces. The curves of
the reliability index and failure probability with slope length are shown in Figure 7.

It can be seen from Table 4 that the failure probability of Fs + MCS, Kc + MCS, Fs + SS,
and Kc + SS is basically the same as that of Tun [8] in the case of the 3D spherical slip
surface, with the maximum relative error of reliability index at less than 5%. The calculated
results of Fs + FOSM and Kc + FOSM are quite different from those of Tun [8], with the
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maximum relative error of failure probability at more than 50%. In terms of calculation
efficiency, the calculation time of the six methods is still very different, but they are far
less than that of Tun [8]. Among these methods, the Kc + SS method is the one with good
calculation accuracy and efficiency.
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Table 3. Material parameters of the slope in Example 2.

Soil Layer
Cohesion c (kPa) Friction Angle ϕ (◦) Unit Weight γ (kN/m3)

µc σc µφ σφ

Layer 1 0 0 38 0.1 19.5
Layer 2 5.3 0.53 23 4.6 19.5
Layer 3 7.2 1.44 20 4.0 19.5

Table 4. Results of reliability analysis of Example 2 by different methods.

Performance
Functions

Reliability
Methods

Sampling
Number N β Pf Slip Surface Shape Computation

Time t (s)

Fs method MCS 100,000 2.8576 0.0021 3D sphere 58.98
Kc method MCS 100,000 2.8894 0.0019 3D sphere 31.48
Fs method SS 100,000 2.8682 0.0021 3D sphere 18.23
Kc method SS 100,000 2.8707 0.0020 3D sphere 16.89
Fs method FOSM 2.7411 0.0031 3D sphere 0.80
Kc method FOSM 2.7152 0.0033 3D sphere 0.44

Bishop GA + FORM 2.8900 0.0019 [8] 3D sphere ~7 h
Kc method MCS 100,000 2.5414 0.0055 3D ellipsoid (η = 7) 163.59
Kc method SS 100,000 2.5360 0.0056 3D ellipsoid (η = 7) 56.92
Kc method FOSM 2.4290 0.0076 3D ellipsoid (η = 7) 0.61

Bishop (GeoStudio) MCS 100,000 2.5465 0.0054 2D circular

MCS—Monte Carlo simulation; SS—subset simulation; GA—genetic algorithm; FORM—first-order reliability
method; FOSM—first-order second-moment method.

When the slope length is increased by seven times (η = 7), the failure probabilities
of the Kc + MCS and Kc + SS methods are very close and slightly larger than those of
the 2D results. It can be seen that the results of the 2D slope reliability analysis are not
always conservative.

Figure 7 shows the trend of increasing failure probability and decreasing reliability
index with increasing slope length. When η = 6, the reliability results of the 3D slope are
roughly equal to those of the 2D slope. If η is greater than 6, the failure probability of
the 3D slope will exceed that of the 2D slope. For the case of long slopes, only the 2D
reliability analysis does not necessarily provide a conservative result. It is consistent with
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the conclusions of Xiao [1] and Qi [34]. It is very necessary to analyze the 3D reliability of
the actual long slope.
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5. Conclusions

The traditional 3D slope reliability analysis method has low computational efficiency.
The reason is that the limit state function is generally expressed by the safety factor, which
needs to be solved iteratively. Under the framework of the limit equilibrium method of the
3D slip surface normal stress correction, the critical horizontal acceleration coefficient Kc is
used as an alternative to the safety factor Fs to measure the stability of the slope. Coupled
with the reliability algorithm, a simplified method for calculating the reliability of the 3D
slope is proposed.

By studying two 3D slope examples, the following conclusions can be drawn:

(1) This method has the advantages of simple calculation, no iterative convergence
problem, and high calculation efficiency. Combined with the SS method, it can fully
reflect the advantages of high accuracy and efficiency.

Figure 7. Cont.
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5. Conclusions

The traditional 3D slope reliability analysis method has low computational efficiency.
The reason is that the limit state function is generally expressed by the safety factor, which
needs to be solved iteratively. Under the framework of the limit equilibrium method of the
3D slip surface normal stress correction, the critical horizontal acceleration coefficient Kc is
used as an alternative to the safety factor Fs to measure the stability of the slope. Coupled
with the reliability algorithm, a simplified method for calculating the reliability of the 3D
slope is proposed.

By studying two 3D slope examples, the following conclusions can be drawn:

(1) This method has the advantages of simple calculation, no iterative convergence
problem, and high calculation efficiency. Combined with the SS method, it can fully
reflect the advantages of high accuracy and efficiency.

Figure 7. Relationship curves between reliability results and slope length. (a) The curve of failure
probability with slope length. (b) The curve of reliability index with slope length.

5. Conclusions

The traditional 3D slope reliability analysis method has low computational efficiency.
The reason is that the limit state function is generally expressed by the safety factor, which
needs to be solved iteratively. Under the framework of the limit equilibrium method of the
3D slip surface normal stress correction, the critical horizontal acceleration coefficient Kc is
used as an alternative to the safety factor Fs to measure the stability of the slope. Coupled
with the reliability algorithm, a simplified method for calculating the reliability of the 3D
slope is proposed.

By studying two 3D slope examples, the following conclusions can be drawn:

(1) This method has the advantages of simple calculation, no iterative convergence
problem, and high calculation efficiency. Combined with the SS method, it can fully
reflect the advantages of high accuracy and efficiency.

(2) By changing Kc0 to a value greater than zero, this method can conveniently calcu-
late 3D slope reliability under seismic loads without large-scale modification of the
calculation program.

(3) In the case of a long slope, the results of 2D reliability calculation do not necessarily
underestimate the stability of the slope, so it is necessary to carry out 3D slope
reliability analysis.

This method only considers the force balance in three directions and moment balance
in the y-axis direction and does not belong to the rigorous 3D limit equilibrium method.
However, the quasi-rigorous solution is very close to the rigorous solution, and the differ-
ence can be ignored. At present, the spatial variability of soil parameters and the influence
of groundwater on the reliability of 3D slopes are not considered in this method. Especially,
the variability of soil parameters in the direction of slope length will make the results of 3D
slope reliability analysis significantly different from those of the 2D slope. That will be the
focus of the next research work on this method. In addition, on the basis of this method
and a large number of practical 3D slope reliability studies, the design charts can be made
for designers to use conveniently, which can improve the practical application value of
this method.
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