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Abstract: This study aims to develop a straightforward and practical formula to estimate transverse
dispersion coefficients in meandering natural rivers, a critical factor for predicting solute transport.
We present a novel expression for the transverse dispersion coefficient based on dispersion and
hydraulic data sets obtained from tracer experiments conducted in natural rivers. A distinctive
feature of the formula is its reliance on one dimensionless hydraulic parameter, u

u∗
h

Rc
. To assess

the effectiveness and accuracy of our proposed formula, we compare it with previously established
equations commonly employed in the field. Furthermore, we apply the formula to natural river
bends situated in the Nakdong River of Korea. This equation serves to estimate the initial value of
the dispersion coefficient in two-dimensional solute transport modeling. As a result, the calibrated
value of the dimensionless transverse dispersion coefficient is 0.97, which is only a 16% difference
between the initial value of 0.81 as obtained from the formula. The formula presented in this study,
simplifying and utilizing the dimensionless hydraulic parameter, offers a promising approach to
estimating transverse dispersion in natural meandering rivers in cases where tracer and secondary
flow data are unavailable. Additionally, the formula can be refined with more recent dispersion
data, leading to a clearer, more straightforward, and validated formulation that captures the intricate
interplay between topography and transverse dispersion.

Keywords: transverse dispersion coefficient; meandering river; empirical equation; tracer data;
two-dimensional solute transport modeling

1. Introduction

Understanding the dispersion characteristics of rivers is crucial for various environ-
mental and engineering applications. While artificial rivers are designed to follow a specific
path, natural rivers tend to meander, making their dispersion characteristics unique. In
particular, accurate dispersion coefficients for meandering natural rivers are necessary for
predicting and mitigating the effects of pollutants or other materials transported by the
river flow. Although sophisticated models exist to estimate these coefficients, they may not
always be practical or feasible. Thus, there is a need for a simple formula that can be easily
implemented and provide a reasonable estimate of dispersion coefficients as an initial value
of numerical models.

Broadly, methods for determining the dispersion coefficient can be divided into two
categories: observation methods that use concentration data and estimation methods that
use basic hydraulics when concentration data are unavailable [1]. Estimation methods can
be further classified into theoretical equations that derive the coefficient of dispersion by
considering the effect of shear flow, and empirical equations that obtain the dispersion coef-
ficient through regression analysis based on a large number of concentration experimental
data. However, the complexity of theoretical equations can be simplified via empirical
methodology, and the empirical equation can be developed based upon a theoretical back-
ground, making the two methodologies complementary rather than contradictory [1]. The
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hierarchy of methods for determining the dispersion coefficient in open channel flow is
schematically drawn in Figure 1.

Of the two parameters of the two-dimensional mass transport equation (longitudinal
and transverse dispersion), the transverse dispersion coefficient (TDC) has been studied
by many researchers. About 55 years ago, Fischer [2] proposed the following simplified
expression for the dimensionless transverse dispersion coefficient in an artificial canal.

DT
hu∗

= 0.15 (1)

where DT is the transverse dispersion coefficient, h is the water depth, u∗ is the frictional
velocity and defined as

√
ghS0 in an open channel. g is the gravitational acceleration, and

S0 is the bed slope. Fischer et al. [3] proposed a range of values for the transverse dispersion
coefficient for slowly meandering rivers with moderate sidewall irregularities, as shown in
Equation (2).

DT
hu∗

= 0.30 ∼ 0.90 (2)

Rutherford [4] provided a summary of the range of transverse dispersion coefficients
based on the shape of open channels, as

DT/hu∗ = 0.15 ∼ 0.30 in straight channel
= 0.30 ∼ 0.90 in meandering channel
= 1.00 ∼ 3.00 in sharp channel

(3)

However, these equations are inadequate for application at river bends, as they pertain
to reach-scale coefficients and disregard the impact of channel curvature, which contributes
to an escalation in the transverse mixing rate. To elucidate the connection between the
transverse dispersion coefficient and river bends, multiple theoretical endeavors have
been undertaken. Fischer [5] formulated an equation based on the velocity profile and
subsequently simplified it via laboratory experiments conducted within a curved channel
featuring a constant radius of curvature, as

DT
hu∗

= 25
(

u
u∗

)2( h
Rc

)2
(4)

where u is the mean velocity, Rc is the radius of curvature. Yotsukura and Sayre [6] made
modifications to Equation (4) by incorporating datasets collected from the Missouri River
around a bend. They proposed that a more precise transverse dispersion coefficient could
be achieved by substituting the channel width (W) for the water depth (h), resulting in
Equation (5).

DT
hu∗

= 0.4
(

u
u∗

)2(W
Rc

)2
(5)

Sayre [7] later revised Equation (5) based on further experiments conducted in the
Missouri River, as shown in Equation (6).

DT
hu∗

= (0.3 ∼ 0.9)
(

u
u∗

)2(W
Rc

)2
(6)

In the 2000s, Jeon et al. [8] formulated an empirical equation through the utilization of
dimensional analysis and a regression method, employing dispersion datasets gathered
from various field tracer tests. In their equation, they used sinuosity, which is defined
as the ratio between the thalweg length and the down-valley distance, to account for the
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influences of multiple bends in natural streams instead of relying solely on the radius of
curvature.

DT
hu∗

= 0.029
(

u
u∗

)0.463(W
h

)0.299

(Sn)
0.733 (7)

where Sn is the sinuosity. Aghababaei et al. [9] also suggested a formula using the sinuosity.

DT
hu∗

= 0.159
(

W
h

)0.126( u
u∗

)−0.148
[

1 +

(
0.501

(
u
u∗

)0.447

(Sn − 1)0.275

)]
(8)

The aim of this study is to empirically propose a simplified expression for the trans-
verse dispersion coefficient. This expression is based solely on dispersion and fundamental
hydraulic data collected from tracer experiments conducted in natural rivers. The formu-
lated equation presented in this study pertains to the estimation method applicable when
secondary flow data are unavailable, as depicted in Figure 1. To assess the performance of
the proposed equation, a comparison is conducted against existing equations, evaluating its
accuracy and effectiveness via discrepancy analysis. Furthermore, the suggested formula is
applied to natural river bends situated in the Nakdong River of Korea. The formula can
be used to estimate the transverse dispersion coefficient’s initial value in two-dimensional
solute transport modeling.
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Figure 1. Choice of method for transverse dispersion coefficient with both “observation method” and
“estimation method” in open channel flow [1,5,8–13].

2. Methods

Almquist and Holley [14] presented a criterion by which the effects of meander on the
transverse mixing were discriminated. The criterion can be derived from the theoretical
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expression of a transverse dispersion coefficient, as proposed by Fischer [5]. It is described
as follows:

u
u∗

h
Rc

> 0.04 (9)

The criteria expressed by Almquist and Holley [14] are summarized in Figure 2. The
depiction presents four distinct regions characterizing various transverse mixing patterns
as follows: (1) Bend of insufficient length to induce supplementary mixing, irrespective
of secondary circulation intensity (reversible transport); (2) additional mixing driven by
secondary circulation, distinct from gradient transport (initial phase); (3) additional mix-
ing characterized by gradient transport due to secondary circulation (dispersive phase).
(4) Secondary circulation of insufficient strength to bring about supplementary mixing
(bend has no effect). The classification schema depicted in this figure is founded on funda-
mental mechanisms that have been comprehensively understood to an extent permitting
quantification and correlation with relevant dimensionless parameters.
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Figure 2. Criteria for transverse mixing induced by bend effects in meandering rivers (modified from
Almquist and Holley [14]).

Baek and Seo [1] formulated a hybrid equation that amalgamates theoretical foun-
dations with empirical simplification. Instead of relying on dimensional analysis, they
ascertained the functional connection between the dispersion coefficient and hydraulic
parameters by employing theoretical equations proposed by Boxall and Guymer [10], as
well as their own work [11]. In this approach, the constants in the theoretical equation
were treated as regression coefficients, which were established through regression analysis
utilizing dispersion datasets obtained from natural streams. The resulting equation is
presented as follows:

DT
hu∗

=

(
77.88

u
u∗

h
Rc

)2
(

1 − exp

(
− 1

77.88 u
u∗

h
Rc

))2

(10)

Although the functional relationship of Equation (10) has a theoretical background,
the equation consists of only hydraulic parameter, u

u∗
h

Rc
. In here, Equation (10) is revised as

the simplest form of transverse dispersion coefficient equation with the parameter of u
u∗

h
Rc

.

DT
hu∗

= α

(
u
u∗

h
Rc

)β

(11)
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where α and β are regression coefficients. In this study, the regression coefficients are
determined by using the dispersion and hydraulic data sets collected from 24 rivers world-
wide. The data sets are summarized in Table 1. As shown in this table, the dimensionless
transverse dispersion coefficient has large variations from 0.12 to 3.30. This is because the
river reaches have various geometric properties, such as the almost straight reach, mild
meandering channels, and sharply curved bends.

Table 1. Dispersion and hydraulic data set collected at natural streams.

Research River h (m) ¯
u (m/s) u* (m/s) Rc (m) W (m) Sn

¯
u
u*

h
Rc

DT
hu*

Yotsukura et al. (1970) [15] Missouri 2.74 1.75 0.074 3400 183 1.6 0.019 0.60

Yotsukura and Cobb (1972) [16] Athabasca 2.20 0.95 0.056 - 373 1.0 - 0.76

Fischer (1973) [17]

Atrisco 0.68 0.63 0.063 - 18.3 1.0 - 0.24

Bernardo 0.70 1.25 0.062 - 20 1.0 - 0.30

South 0.44 0.18 0.040 - 18.3 1.0 - 0.26

Holley and Abraham
(1973) [18]

Waal 4.70 0.82 0.056 3238 266 1.08 0.021 0.29

Ijssel 4.00 0.97 0.075 1111 69.5 2.01 0.047 0.51

Sayre and Yeh (1973) [19] Missouri 3.96 5.40 0.085 968 240 2.10 0.260 3.30

Jackman and Yotsukura (1977) [20] Potomac 1.74 0.58 0.051 1586 350 1.0 0.012 0.65

Sayre (1979) [7] Missouri
2.94 1.58 0.074 792 214 2.1 0.079 0.73

1.99 1.39 0.074 792 214 2.1 0.047 0.81

Beltaos (1980) [21]
Athabasca 2.05 0.86 0.078 1875 320 1.2 0.012 0.41

Beaver 0.96 0.50 0.044 116 42.7 1.3 0.094 1.01

Lau and Krisnappan (1981) [22] Grand 0.51 0.35 0.069 310 59.2 1.1 0.008 0.26

Somlyody (1982) [23]
Danube

2.90 0.87 0.051 9778 415 1.0 0.005 0.25

2.90 0.87 0.036 9778 418 1.0 0.007 0.13

4.20 0.95 0.059 9778 475 1.0 0.007 0.12

Holly and Nerat (1983) [24] Isere 2.25 1.40 0.059 1612 70 1.25 0.033 0.50

Demetracopoulos and Stefan
(1983) [25] Mississippi 1.00 0.67 0.079 733 178 1.18 0.012 1.26

Seo et al. (2006) [26]

Sum

0.69 0.34 0.049 381 54 1.66 0.013 0.46

1.02 0.58 0.056 700 65 1.19 0.015 1.21

0.68 0.31 0.046 - 80.1 1.0 - 0.30

Cheongmi 0.48 0.34 0.062 397 44.5 1.13 0.007 0.27

Hongcheon

0.75 0.35 0.047 437.5 58.6 2.38 0.013 0.64

1.10 0.21 0.057 559 69.9 1.4 0.007 0.23

0.97 0.20 0.053 355 67 1.54 0.010 0.32

Seo et al. (2016) [27]

Daegok 0.45 0.17 0.019 880.3 12 1.03 0.005 0.32

Daepo 0.43 0.65 0.061 308.4 9.2 1.03 0.015 0.53

Gam 0.3 0.53 0.055 316.7 33.5 1.13 0.009 0.43

Miho
1.27 0.27 0.030 221.3 42.5 1.55 0.052 0.69

0.49 0.40 0.048 345.6 31 1.54 0.012 0.58

Pouchoulin et al. (2020) [28] Rhone
9.23 0.60 0.065 1864 274 1.23 0.045 1.34

9.01 0.63 0.070 1864 275 1.23 0.043 2.21

Consequentially, based on the collected dispersion data of Table 1, the following
empirical formula is derived as

DT
hu∗

= 5.358
(

u
u∗

h
Rc

)0.578
(12)
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The comparison between the observed dispersion coefficient and the derived equation
is illustrated in Figure 3.
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3. Results

The newly derived equation, labeled Equation (12), is subjected to a comparative
analysis alongside pre-existing equations that incorporate either the radius of curvature
or the sinuosity as hydraulic parameters. In this regard, we specifically consider four
empirical equations, namely, Equation (5) (Yotsukura and Sayre [6]), Equation (7) (Jeon
et al. [8]), Equation (10) (Baek and Seo [1]), and Equation (8) (Aghababaei et al. [9]). These
equations were established using field data obtained from natural river systems and are
characterized by specific values rather than a range within their respective formulas, as
previously expounded in the introductory chapter. The calculated dispersion coefficients
yielded by the aforementioned four existing equations, as well as Equation (12) developed
in the present study, are graphically depicted in comparison to the observed dispersion
coefficients in Figure 4. A comprehensive error analysis of the outcomes generated by these
five equations is succinctly presented in Table 2.

From this figure and table, it can be seen that all equations except for Yotsukura and
Sayre’s equation are somewhat in good agreement with the observed dispersion coefficient.
Yotsukura and Sayre’s equation shows some scattering trend and gives high root-mean-
squared (RMS) error values. The difference is not significant, but the newly developed
formula demonstrates good results in terms of correlation coefficient and RMS error when
compared to the existing three formulas, as shown in Table 2.

Yotsukura and Sayre’s equation exhibits a tendency to scatter sensitively to variations
in the dimensionless hydraulic parameters, with the exponent being squared. The formula
by Baek and Seo [1] consisted solely of the dimensionless hydraulic parameter, u ¯/u_*
h/R_c and was derived based on theoretical background. However, it does not demonstrate
significant advantages in terms of maintaining its form. Therefore, it seems more favorable
to simplify and utilize it, like the formula developed in this study. The formulas by
Jeon et al. [8] and Aghababaei et al. [9] incorporate the sinuosity as a parameter instead
of the radius of curvature, R_c. These equations are considered suitable alternatives for
applying to multiple meandering reaches where a specific Rc cannot be determined.
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Table 2. Error analysis between observed values and results by five empirical equations.

Correlation Coefficient RMS Error

Yotsukura and Sayer (1976) [6] 0.76 19.49
Jeon et al. (2007) [8] 0.53 0.49

Baek and Seo (2013) [1] 0.63 0.54
Aghababaei et al. (2017) [9] 0.50 0.59

This study 0.79 0.34

As shown earlier, Figure 2 presents a criterion by which the effects of meander on
the transverse mixing were discriminated. The dispersive period in which is additional
transverse mixing induced by bends is u

u∗
h

Rc
> 0.04. In this study, another empirical

equation is derived based on the form of Equation (12) using the data sets when u
u∗

h
Rc

> 0.04
in Table 1. The result is

DT
hu∗

= 9.424
(

u
u∗

h
Rc

)0.895
(13)

The comparison between the observed dispersion coefficient and the derived equation
is illustrated in Figure 5.

Although the number of samples is insufficient, the accuracy of the estimation equa-
tion improves significantly, with the coefficient of determination (R2) reaching 0.90 when
conducting an error analysis between this equation, Equation (13), and the observed dis-
persion coefficient. Furthermore, the correlation coefficient and RMS error were 0.98 and
0.23, respectively, demonstrating superior performance compared to other formulas. In
natural rivers with pronounced meandering, the dispersion coefficient exhibits greater
sensitivity to parameter u

u∗
h

Rc
than any other parameter, indicating a highly robust propor-

tional relationship. To obtain more conclusive results, additional tracer experiments should
be conducted for rivers with the condition of u

u∗
h

Rc
> 0.04, enabling the accumulation of

dispersion data. Subsequently, Equation (13) can be updated based on such data, providing
a clearer, simpler, and validated formula that captures the interaction between topography
and transverse dispersion.
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4. Application and Discussion

The equations developed in this study were applied to natural river bends located
in the Nakdong River of Korea. These equations can be used to estimate an initial value
of the dispersion coefficient in two-dimensional solute transport modeling. Of course,
the accurate value of the dispersion coefficient can be obtained through a fine-tuning
process, which involves achieving the best match between measured concentration data
and simulated data from the numerical model. A simple and appropriate equation for the
initial value of the dispersion coefficient can significantly enhance simulation efficiency.
As the hydrodynamic model, the 2D finite element solver HDM-2D, a depth-averaged
numerical model initially developed by Song et al. [29], was utilized in this study. The
solute transport model, CTM-2D, initially developed by Seo et al. [30], was employed. The
depth-averaged form of the 2D advection–dispersion equation with a reaction term for the
non-conservative pollutant is a governing equation of CTM-2D.

As the study area to which the planar two-dimensional transport model was applied,
the reach from Gangjeong Weir to Dalseong Weir in the Nakdong River was selected. In
this area, as shown in Figure 6, the Geumho River (tributary) joins from the left bank to the
mainstream of the Nakdong River, and the radius of curvature (Rc) is about 1480 m. The
model parameters, the longitudinal and transverse dispersion coefficients, were calibrated
based on the electrical conductivity (EC) acquired from field measurements. The transverse
distribution of EC for each transect was measured in seven transects of the study area on
27 August 2014. The averaged hydraulics, such as flow rate, velocity, channel width, and
water depth, observed in this area are summarized in Table 3.

Table 3. Summary of hydraulic parameters in study area of Nakdong River.

Date River Q
(m3/s)

h
(m)

W
(m)

u
(m/s)

Rc
(m)

27 August 2014 Nakdong 312.3 5.47 436.6 0.154 1480

The initial value of the dimensionless transverse dispersion coefficient was calculated
using Equation (12) proposed in this study, resulting in a value of 0.81. Given that the
parameter u

u∗
h

Rc
is 0.037 within this reach, Equation (12) was selected due to the condition
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u
u∗

h
Rc

< 0.04. After assigning initial values to the numerical model, the precise values of the
longitudinal and transverse dispersion coefficients were determined by optimizing the fit
between measured concentration data and simulated data. Consequently, the calibrated
value of the transverse dispersion coefficient was found to be 0.97. This value is relatively
close to the initial value of 0.81, obtained from Equation (12). A comparison between the
measured concentration distribution and the simulated distribution is presented in Figure 7.
Additionally, an outline of the field application of proposed equations is summarized in
Figure 8.
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It examines what position the equations developed in this study occupy within the
hierarchy of methodologies for determining the transverse dispersion coefficient in river
mixing analysis. As shown earlier in Figure 1, Baek and Seo [31] presented a flowchart that
was proposed with the criteria to select a suitable method under specific hydraulic and
geometric conditions of the river among the so-called estimation method. Furthermore,
Baek [32] proposed a flowchart concerned about the so-called observation method. The
observation methods can be employed to compute the transverse dispersion coefficient in
rivers when tracer concentration data are available. Among the most commonly utilized
techniques is the change of moment method [33–35]. Routing procedures have also been
widely employed to evaluate dispersion coefficients for analyzing the mixing characteristics
of transient concentration conditions [36,37].

As shown in Figure 1, the proposed formulas in this study belong to the estimation
method and are helpful when secondary flow data are unavailable in natural meandering
rivers. In particular, when u

u∗
h

Rc
> 0.04, it is recommended to utilize Equation (13) proposed

in this study instead of relying on existing empirical equations, especially under conditions
that are expected to increase transverse dispersion due to severe curvature. However,
for many natural river reaches that fall within the conditions of u

u∗
h

Rc
< 0.04, it appears

more appropriate to employ Equation (12) presented in this study or the existing empirical
formula by Baek and Seo [1].

In situations where it is challenging to specify a single value for the radius of curvature
(e.g., when there are numerous alternating curves), sinuosity can be used as an alternative
parameter. In such cases, it is recommended to consider Jeon et al. [8] or Aghababaei
et al. [9] among the existing empirical formulas. Furthermore, for creeks or artificial
waterways with a small channel-width, Baek and Seo [31] suggested opting for Bansal [12]
or Deng et al. [13], as shown in Figure 1.

5. Conclusions

This study proposes a new expression for the transverse dispersion coefficient, which
is based on dispersion and hydraulic data sets obtained from tracer experiments conducted
on natural rivers worldwide. The proposed formulas, incorporating a single dimensionless
hydraulic parameter, u

u∗
h

Rc
, demonstrate promising results in terms of accuracy and effec-

tiveness compared to existing equations. Through a comparison with four commonly used
empirical equations in the field, the proposed formulas exhibit superior performance. In
contrast, the formula by Baek and Seo [1], derived from a theoretical background, does not
present significant advantages in maintaining its form. Therefore, the newly developed
formulas in this study, which simplify and utilize the dimensionless hydraulic parameter,
represent a favorable option for estimating transverse dispersion in natural meandering
rivers when both tracer and secondary flow data are unavailable.

In conclusion, the proposed formulas provide a simple and easily implementable
approach for estimating transverse dispersion coefficients in meandering natural rivers.
Their effectiveness and accuracy have been demonstrated through comparisons with
existing equations, highlighting their potential for practical applications in predicting
and mitigating the effects of pollutants or other materials transported by river flow. It is
recommended to conduct further research and validation of the formula in various river
systems to enhance its robustness and broaden its applicability.
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Notation List

α, β regression coefficients
DT the transverse dispersion coefficient
g the gravitational acceleration
h the water depth
Rc the radius of curvature
S0 the bed slope
Sn the sinuosity
u the mean velocity
u∗ the frictional velocity and defined as

√
ghS0 in an open channel here

W the channel width
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