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Abstract: Addressing the challenges posed by Saline-Alkali land holds significant promise for
optimizing agricultural resources and fostering sustainable agricultural development in affected areas.
This study explores the efficacy of coal-based solid waste soil conditioner and vermicompost as mixed-
component soil amendments in varying proportions. Through comprehensive field experiments, we
investigate the impact of these amendments on soil physicochemical properties, microbial diversity,
and the growth of L. chinensis, a grass species native to saline areas. Our findings reveal that the
application of vermicompost-based soil amendments effectively reduced soil conductivity and led to
noteworthy improvements in the pH of Saline-Alkali soil. Moreover, these amendments demonstrated
a marked capacity to enhance soil organic matter and available nutrients, most notably available
phosphorus. Concurrently, the introduced soil amendments exhibited a positive influence on soil
microbial diversity. A correlation analysis underscores the pivotal roles of soil pH and organic matter
in shifting soil microbial communities. In response to amendments, L. chinensis exhibited varying
degrees of growth enhancement, with biomass increments ranging from 6.37% to 19.91%. In summary,
vermicompost and soil conditioner can improve Saline-Alkali land by supplementing organic matter
and effective nutrients, improving pH and conductivity, and regulating microbial community, so as to
realize the restoration and improvement of Saline-Alkali land; the greatest improvement was achieved
with soil conditioner and vermicompost application rates of 30,000 kg·ha−1 and 15,000 kg·ha−1,
respectively. Our results provide robust support for advocating for the integration of vermicompost-
based soil amendments in Saline-Alkali land management strategies.

Keywords: vermicompost; Saline-Alkali soil; ecosystem multifunctionality; soil microorganisms;
Leymus chinensis

1. Introduction

Saline-Alkali soil, widely distributed on Earth [1,2], constitutes a significant concern
due to its adverse impact on global food security and ecosystem functionality. Particularly,
the expensive extent of Saline-Alkali land in China, covering an area of 900 million ha [3],
underscores the gravity of the issue. Salinization-induced hydraulic potential reduction
curtails plant water absorption, subsequently impeding nutrient uptake. Concurrently,
salt accumulation within plants can potentially induce toxicity, disrupting cell metabolism,
retarding growth, and ultimately diminishing crop yields [4–6]. Notably, the profound
consequences of soil salinization have rendered vast tracts of land unsuitable for cultivation,
emerging as a pivotal constraint on agricultural productivity [7].
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Previous studies have shown that the incorporation of coal-based solid waste as a soil
conditioner in Saline-Alkali land can improve the soil’s physical properties. However, its
effectiveness is greatly restricted due to the low nutrient content and microbial diversity of
the soil amendment itself [8–11]. Vermicompost represents the feces excreted by worms
after they consume organic matter, which passes through their specialized digestive system,
and vermicompost is rich in both nutrients and microorganisms [12,13]. For example, Yuan
et al. and other scholars [14,15] believe that applying worm waste as an amendment to
Saline-Alkali soil can effectively increase the nutrient content of the soil and, to some extent,
improve its fertility. Lu et al. [16–18] reported that some elements in soil amendments
can bind to harmful ions in the soil, reducing their impact on plants. Bai et al. [19,20]
found that combining soil conditioner and organic fertilizer could reduce the soil pH and
available salt concentration; significantly improve organic matter and nutrient concentra-
tions; increase soil enzyme activities; significantly enhance root vigor and rhizosphere soil
microbial activity; and significantly increase the total root length, root surface area, and
root volume. These changes promote the formation of a plant–soil–microbial symbiotic
system. Because both vermicompost and soil amendments have excellent physical and
chemical properties, the combination of vermicompost and soil amendments may have a
certain role in improving alkali soil. However, there have been few studies on the effect of
vermicompost combined with other soil amendments on improving sandy Saline-Alkali
soil and characterizing their impact on microbial diversity.

This current study aimed to investigate the effects of vermicompost and a coal-based
soil conditioner as amendments on the physicochemical properties, microbial community
structure of the soil, and plant growth in Saline-Alkali soil, using L. chinensis as the indicator
species and a field plot experimental method. This study provides a theoretical basis for
the application of vermicompost-based mixed amendments to sandy Saline-Alkali land.

We hypothesized that (1) applying coal-based solid waste and vermicompost as an
amendment to Saline-Alkali soil can effectively increase the physicochemical properties of
the soil. (2) Applying coal-based solid waste and vermicompost can effectively improve
the physiological and biochemical indexes of plants. (3) The microbial diversity would also
be changed by soil amendments in Saline-Alkaline soils.

2. Materials and Methods
2.1. Experimental Materials

The experimental site is located at Qidun Village, Huangsha Town, Yulin City, Shaanxi
Province, Northwest China (109◦32′52′′ E, 38◦12′22′′ N) (Figure 1), with an altitude of
1125 m, an average annual temperature of 10.1 ◦C, an annual frost-free period of 151 days,
and an annual rainfall of 427.5 mm. The soil was classified as Salic Fluvisol (Word Ref-
erence Base for Soil Resources, WRB system). The texture was sandy loam containing
21.1% of sand, 61.7% of silt, and 17.2% clay. The soil of the experimental site was medium
Saline-Alkali, with a total salt content of 1.9 g·kg−1 in the top 20 cm of soil and belonging
to the soil classification of moderate Saline-Alkalization, the groundwater level in the salt
return period was only 30–40 cm, and the average groundwater level in the salt spraying
period was 1.5 m [3]. Seeds of the grass L. chinensis were purchased from a local agricultural
company, the development and utilization of coal will produce a large amount of coal-based
solid waste, which has excellent physical properties. The vermicompost was purchased
from a fertilizer company in Yulin (China); domestic sludge and cow manure were the main
components, and the solid waste soil conditioner based on the coal was independently
developed by the research team The contents of heavy metals in vermicompost and soil
conditioner were lower than the national standard. The basic characteristics of Saline-Alkali
soil at 0–20 cm depth, as well as the soil conditioner and vermicompost, are shown
in Table 1.
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Figure 1. Location of the test area.

Table 1. Composition of Saline-Alkali soil, soil conditioner, and vermicompost.

Indicator Saline–Alkali Soil Vermicompost Solid Waste Soil Conditioner National Standard
GB15618-2018 [20]

OM (g·kg−1) 5.09 88.57 343.58 -
AvP (mg·kg−1) 14.46 3.81 27.4 -
AvK (mg·kg−1) 70.00 886.56 0.79 -
AvN (mg·kg−1) 17.00 35.37 15.32 -

pH 8.90 6.78 7.32 -
Ni (mg·kg−1) 19.16 54 61 190.00
As (mg·kg−1) 1.98 2.66 1.48 25.0
Cr (mg·kg−1) 24.54 79 101 250.00
Zn (mg·kg−1) 31.01 230 156 300.00
Cu (mg·kg−1) 7.55 25 70 100.00
Cd (mg·kg−1) 0.03 0.09 0.03 0.60
Hg (mg·kg−1) 0.06 0.81 0.08 3.40

2.2. Experimental Design

The experiment used a randomized block design with three biological replicates of
each of the four treatments: control, SC-T1, SC-T2, and SC-T3. The control represented no
soil amendment, whereas the treatment groups received different application rates of the
combined amendment made up of soil conditioner and vermicompost. The application
rates for SC-T1 were 30,000 kg·ha−1 for soil conditioner and 15,000 kg·ha−1 for vermicom-
post; for SC-T2, the rates were 22,500 kg·ha−1 for both soil conditioner and vermicompost,
whereas, for SC-T3, the rates were 15,000 kg·ha−1 for soil conditioner and 30,000 kg·ha−1

for vermicompost [21]. All of the amendments were applied at the same time. The weights
of soil conditioner and vermicompost were evenly mixed and spread onto the correspond-
ing plots. After application, the soil was tilled and leveled with a rotary cultivator to a
depth of 20 cm. Each plot size was 3 m × 3 m (Figure 2), and the sowing rate of L. chinensis
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seeds was 6.0 g·m−2. The seeds were sown by strip seeding at a depth of 1 cm with an
inter-row spacing of 25 cm. Drip irrigation was used to water the plots using drip irrigation
with an irrigation volume of 20 m3/hm, and regular manual weeding was conducted. No
other fertilizer was applied to the plots. The experimental plots were set up on 23 May 2021,
and the soil and plant samples were taken on 10 September 2022.
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2.3. Soil Physicochemical Properties

Soil moisture was determined by the oven-drying method (105 ◦C, 24 h). Soil porosity
was determined using the cylinder (volume is 100 cm3). The pH(1:2.5) was determined
using a calibrated pH meter (PHSJ-4F, Leici, Shanghai, China). The Electrical Conductance
(EC) was determined using a conductivity meter (DDSJ-318T, Leici, Shanghai, China).
Soil organic matter (SOM) concentration was determined using the K2Cr2O7 colorimetric
oxidization [22]. The available potassium (AK) concentration was determined by am-
monium acetate solution extraction [23]. The available phosphorus (AP) concentration
was determined using the Olsen method [24]. The alkaline hydrolyzable nitrogen (AN)
concentration was determined using the alkali diffusion method [25]. The catalase (CAT) ac-
tivity was determined by potassium permanganate colorimetric titration [26]. The sucrase
(SUC) activity was determined using the 3,5-dinitrosalicylic acid colorimetric method [27].
The alkaline phosphatase (ALP) activity was determined using the phosphobenzenedis-
odium (4-aminoantipyrine) colorimetric method [28], whereas the polyphenol oxidase
(PPO) activity was determined using the colorimetric method [29].

2.4. Plant Traits

Five L. chinensis plants were collected at random from each plot. The plant height
and leaf area were measured using a ruler [30], whereas the stem diameter was measured
using vernier calipers. The collected L. chinensis plants were killed (80 ◦C, 24 h) and then
placed in an oven to dry for 24 h to a constant weight to obtain the dry weight. The
superoxide dismutase (SOD) activity was determined using the pyrogallol autoxidation
method [31], whereas the peroxidase (POD) activity was determined using the benzidine
test [32]. Malondialdehyde (MDA) concentration (a measure of lipid peroxidation, acting as
an indicator of oxidative stress) was determined using the thiobarbituric acid method [33].
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2.5. Soil Microbial Communities

Soil DNA was extracted using the OMEGA Soil DNA Kit (D5625-01; Omega Bio-Tek,
Norcross, GA, USA), and DNA concentration and purity was measured using the Nan-
oDrop 2000 spectrophotometer. Next, we amplified the V3-V4 hypervariable region of the
bacterial 16S rRNA gene using primers 338F (5′-barcode+ACTCCTACGGGAGGCAGCA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). Afterward, we combined PCR products
from the same sample in equal proportions and controlled for successful amplification
and relative band intensity, using 2% agarose gel electrophoresis. To quantify the PCR
product, we used the Quant-iT PicoGreen dsDNA Assay Kit, following the manufacturer’s
instructions, on a microplate reader from BioTek, FLx800. Finally, we sequenced the sam-
ples using the NovaSeq6000 SP Reagent Kit (500 cycles) on an Illumina NovaSeq system
for 2 × 250-bp paired-end sequencing [34].

2.6. Data Analysis

We analyzed the data using single-factor analysis of variance (one-way ANOVA) in
SPSS 23.0 software (IBM, Armonk, NY, USA) to test for significant differences, and we
subsequently performed multiple comparison analysis to identify significant differences
among treatments. Pearson’s correlation coefficient was used to reveal the relationships
among variables. The results of the quantitative analysis are reported as mean ± standard
deviation (SD), and the level of significance was set to p < 0.05. The CANOCO 5.0 was used
to perform a redundancy analysis (RDA) [35], and the TB tool was used to create heat maps.
A comprehensive evaluation of the alkali soil improvement effect of vermicompost mixed
with soil conditioner with different ratios was performed using membership function [36].

The formula for calculating the membership function is as follows:

R (Xi) = (Xi − Xmin)/(Xmax − Xmin) (1)

Calculation formula of inverse membership function value:

R’ (Xi) = 1 − (Xi − Xmin)/(Xmax − Xmin) (2)

where Xi is the measured value of the index, and Xmax and Xmin are the maximum and
minimum values, respectively, of a certain index of all of the tested materials.

3. Results
3.1. Growth and Oxidative Stress Tolerance of L. chinensis

Through the application of vermicompost combined with soil conditioner to improve
Saline-Alkali soil, it can effectively improve the physiological and biochemical indexes of
L. chinensis. Among them, SC-T3 treatment had the best lifting effect (Figure 3). Compared
with the control, the leaf area, biomass, and diameter of different treatments were increased,
and the leaf area and diameter reached a significant difference level (p < 0.05). Compared
with the control, the leaf area and diameter of SC-T1, SC-T2, and SC-T3 were increased
by 0.83%, 23.12%, and 48.14%, and 14.10%, 18.59%, and 30.13%, respectively (Figure 3a,d).
The stress resistance index of L. chinensis could be effectively improved by improving the
Saline-Alkali soil (Figure 3). Compared with the control, the catalase activity of L. chinensis
decreased significantly (Figure 3e), while the activities of POD and SOD increased to a
certain extent and reached a significant difference level. Among them, the activity of
superoxide dismutase increased with the increase in application amount of vermicompost.
The superoxide dismutase activity of SC-T1, SC-T2, and SC-T3 was increased by 170.4%,
188.6%, and 216.6%, respectively (Figure 3g,h).

Membership function formula was used to calculate the membership values of the
leaf area, biomass, plant height, diameter, CAT, POD, and SOD under different treatments,
and the membership values of MDA were calculated by inverse membership function
(Figure 4). The larger the value, the better the improvement of vegetation indexes, and



Water 2023, 15, 3075 6 of 17

the comprehensive scores of different treatments were all greater than the control, among
which SC-T3 scored the highest, with 4.76.
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Figure 3. Effects of different treatments on the growth of L. chinensis. Lowercase letters indicate
whether the samples of the same index are significantly different from each other (p < 0.05). Note:
CAT—catalase; MDA—malondialdehyde; POD—peroxidase; SOD—superoxide dismutase. (a) Leaf
area of L. chinensis; (b) Biomass of L. chinensis; (c) Plant height of L. chinensis; (d) Stem diameter of
L. chinensis; (e) Catalase activity of L. chinensis; (f) Malondialdehyde enzyme activity of L. chinensis;
(g) Peroxidase activity of L. chinensis; (h) Superoxide dismutase activity of L. chinensis.
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3.2. Effects of Soil Amendments on the Versatility of Saline-Alkali Soils

In general, the application of vermicompost combined with soil conditioner to improve
Saline-Alkali soil can effectively improve the versatility of Saline-Alkali soil (Figure 5).
Compared with the control, vermicompost combined with soil conditioner could effectively
improve the physical and chemical properties of Saline-Alkali soil, and soil organic matter,
soil available phosphorus, and available potassium reached significant difference levels
(p < 0.05). Compared with CK, the soil organic matter and available phosphorus in SC-T1,
SC-T2, and SC-T3 increased by 39.67%, 32.71%, and 17.83%, and 28.73%, 63.02%, and
59.81%, respectively (Figure 5e,f).

Compared with the control, the application of vermicompost combined with soil
conditioner not only improved the physical and chemical properties of soil in Saline-Alkali
soil, but also increased the activity of soil enzymes, in which the activities of catalase and
polyphenol oxidase reached a significant difference level (p < 0.05). Compared with the
control, the activity of polyphenol oxidase in SC-T1, SC-T2, and SC-T3 soil was increased by
45.33%, 50.67%, and 65.33%, respectively, and the activity of polyphenol oxidase increased
with the gradient increase of vermicompost application rate (Figure 5j).

The membership function formula was used to calculate the membership values of
the soil water content, porosity, organic matter, available phosphorus, available potassium,
alkali-hydrolyzed nitrogen, alkaline phosphatase, polyphenol oxidase, catalase, and sucrase
in different saline soils. The membership values of the pH and conductivity were calculated
using the inverse membership function (Figure 6). The larger the comprehensive evaluation
value, the better the improvement of vegetation indexes, and the comprehensive scores
of different treatments were all greater than the control, among which SC-T3 scored the
highest, with 8.12.
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Figure 5. Physical and chemical properties of Saline-Alkali soil. Lowercase letters indicate whether
the samples of the same index are significantly different from each other (p < 0.05). (a) Soil moisture
content of saline alkali soil with different treatments; (b) Soil porosity of saline alkali soil with different
treatments; (c) Soil pH of saline alkali soil with different treatments; (d) Electrical conductance(EC) of
saline alkali soil with different treatments; (e) Soil organic matter of saline alkali soil with different
treatments; (f) Available phosphorus (AVP) of saline alkali soil with different treatments; (g) Available
potassium (AVK) of saline alkali soil with different treatments; (h) Alkaline hydrolyzable nitrogen
(AVN) of saline alkali soil with different treatments; (i) Alkaline phosphatase (ALP) activity of saline
alkali soil with different treatments; (j) Polyphenol oxidase (PPO) of saline alkali soil with different
treatments; (k) Catalase (CAT) activity of saline alkali soil with different treatments; (l) Sucrase (SUC)
activity of saline alkali soil with different treatments.
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3.3. Soil Microbial Community Diversity

The mixed vermicompost soil conditioner soil amendments improved the Chao1 index
in all of the treatments compared with the control, with the SC-T2 amendment showing
the most significant improvement. The changes in Simpson and Shannon indices were
consistent across the treatments, with significant increases in both indices in the SC-T2 and
SC-T3 treatments (Figure 7).
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Membership values of Chao1, Shannon, Simpson, and Goods_coverage of the
α diversity index of soil microorganisms in Saline-Alkali soils under different treatments
were calculated (Figure 8). The higher the comprehensive evaluation value, the higher the
soil microbial activity, the SC-T3 showed the highest score (2.84).
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3.4. Material Composition of Soil Microorganisms at the Phylum Level

At the phylum classification level, microbial 16S rDNA gene sequencing identified a to-
tal of 37 bacterial phyla in the samples. Of these, 20 major phyla with an average abundance
of 0.05% or more were detected (Figure 9). The bacterial communities in the Saline-Alkali
soil under different treatments exhibited significant differences in frequency distribution.
Firstly, Proteobacteria was the dominant bacterial group, with a relative abundance ranging
from 26.69% to 33.70% in different treatments. The relative abundance of Proteobacteria in
the SC-T3 treatment was the highest, reaching 33.70%, followed by Actinobacteria, Chloroflexi,
Acidobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, Rokubacteria, and Cyanobacteria.
Secondly, in the 20 main phyla, the abundance of SC-T1, SC-T2, and SC-T3 was higher
than that of the control. This indicates that the application of the vermicompost and soil
conditioner blend is beneficial in the formation of dominant populations in soil microbial
communities and creates a unique microbial community in Saline-Alkali soil.
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3.5. Redundancy Analysis between Environmental Factors and Microbial
Community Characteristics

RDA (redundancy analysis) revealed the relationships between soil microbial com-
munities and environmental factors. Figure 10 shows the impact of soil environmental
factors on soil microbial phylum-level communities in response to the application of soil
amendments. Key soil environmental factors driving the microbial community composition
include soil moisture content (MC), porosity, EC, SOM, AP, AK, and AN. Soil pH and SOM
are important factors affecting microbial community changes (Figure 10). These factors are
in three quadrants, and their correlation with each other is not strong (Figure 10). The first
and second principal components explain 82.56% and 6.98% of the variance, respectively.
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3.6. Correlation Analysis between Soil Microbial Population and Physicochemical Properties and
Enzyme Activity of Soil

Figure 11 shows the impact of soil environmental factors and the plant enzyme activity
on the soil microbial community at the phylum level. The results indicate that the abun-
dance of the dominant phylum Proteobacteria had a significant positive correlation with
soil MC, pH, and SOM, as well as a significant negative correlation with AN. Actinobac-
teria abundance was significantly negatively correlated with AN and had a significant
positive correlation with AP. Gemmatimonadetes abundance was closely negatively corre-
lated with SOM and positively correlated with AN. Rokubacteria, on the other hand, was
extremely and negatively correlated with pH and positively correlated with AP. Cyanobac-
teria were closely negatively correlated with soil porosity and positively correlated with pH,
whereas Planctomycetes was significantly and negatively correlated with SOM and posi-
tively correlated with AN. Entotheonellaeota was extremely highly positively correlated
with soil porosity and negatively correlated with pH. The abundance of Patescibacteria
was positively correlated with SOM and negatively correlated with AN, whereas that
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of FinalVerrucomicrobia as extremely negatively correlated with AP, and Latescibacteria
abundance was positively correlated with soil porosity.
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4. Discussion

Saline-Alkali land is a valuable reserve of arable land in China. Improving such land is
essential to ensure food security, maintain the stability of existing arable land, and adhere to
the bottom line of basic self-sufficiency in grain production [37]. An excessive salt content
can cause soil surface compaction, poor soil permeability, and severely affect the growth
and development of vegetation, leading to low seedling densities and directly reducing
crop yield [38].

Previous studies have reported that vermicompost can improve soil porosity, air per-
meability, and drainage in degraded soil. Soil amendments can improve soil structure,
reduce soil salinity hazards, regulate soil acidity and alkalinity, and increase the soil water
content [39,40]. Many experiments have been conducted to improve degraded soil using
vermicompost and other soil amendments, which are environmentally friendly types of
organic fertilizer that can form a specific ecological niche with soil and vegetation, ulti-
mately improving the agronomic parameters of both [41,42]. In Saline-Alkali soil, organic
matter is unstable and easily decomposed, which results in organic matter deficiencies.
Vermicompost and soil amendments can directly increase the organic matter levels in
Saline-Alkali soil by replenishing it with abundant organic materials [43,44]. Jia et al. [45]
discovered that vermicompost amendment can increase crop biomass accumulation and
heavy metal transport and bioaccumulation in alfalfa, effectively improving the soil re-
mediation efficiency. Deng et al. [46] found, through laboratory and field experiments,
that vermicompost-based amendments can significantly reduce the pH of Saline-Alkali
soil and increase the SOM and available nutrients, findings that are consistent with the
results of the current study. This may be because organic soil amendments can regulate
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nitrate flux in soil by reducing gaseous nitrogen loss and reducing nitrogen leaching, and
hence improving soil fertility [47]. Earlier research showed that applying vermicompost
and soil conditioner to Saline-Alkali soil can impact on the abundance and composition
of the microbial community, dissolve and release nutrients in the soil through the soil–
plant–microbe interaction, and improve soil quality [48]. Xie et al. [49] found that using
organic fertilizer, compounded with soil conditioner, could effectively increase the con-
centrations of AK and AN in soil, with the concentration of AK increasing four-fold and
that of AN doubling, compared with the control. Although the concentrations of AK and
AN in soil increased after applying vermicompost-based amendments in the current study,
the effect was statistically non-significant, which may be related to the low survival rate
of microorganisms in vermicompost under field conditions. The soil enzyme activity is
affected by soil physicochemical properties, and the soil sucrase activity is significantly
positively correlated with the soil porosity and AP content, and the polyphenol oxidase
activity with AK. Therefore, the sucrase and polyphenol oxidase activities in vermicompost-
amended soils are higher than in the control, non-amended soil. Furthermore, applying
vermicompost-based amendments can significantly increase the height and biomass yield
of L. chinensis and enhance crop tolerance to oxidative stress, resulting in an increased yield
and crop quality [50]. These effects may be related to the high nutrient concentrations in
vermicompost and the excellent physical properties of the soil conditioner. Zeng et al. [51]
and others have shown that the anti-stress (antioxidant) enzyme activities in tobacco were
significantly improved by the application of organic fertilizer, a finding partly consistent
with the results of the present study. Taken as a whole, vermicompost combined with soil
amendments can effectively improve the soil physical and chemical indicators and plant
physiological and biochemical indicators, so as to achieve the goal of repairing alkali soil.

Soil provides a micro-environment for the growth and reproduction of microbial
communities, and soil microorganisms participate in the nutrient cycles of carbon and
nitrogen, and in the formation of humus and soil structure. Many studies have shown
that organic fertilizers can increase the diversity of soil microbial communities more than
chemical fertilizers [52]. However, studies on organic fertilizer compounded with soil
conditioner are limited. The present study used high-throughput sequencing to analyze
the soil microbial community structure and diversity of soil treated with vermicompost-
based amendments, and found that the three dominant microbial populations were similar
to those reported by Jin et al. and Yu et al., with the dominant phyla being microbes
that existed in most soils, namely actinomycetes, deformable rod bacteria, and acid rod
bacteria [53,54]. At the same time, the current study found that the microbial coverage
of the 20 major bacterial phyla in treatments SC-T1, SC-T2, and SC-T3 was significantly
higher than that of the control, indicating that applying vermicompost-based amendments
is beneficial to increasing microbial coverage in Saline-Alkali soil. This may be because the
soil microbial community is a relatively stable system, and the effect of applying organic
fertilizer is more obvious [55].

Vermicomposting contains a large number of beneficial microorganisms, which can
promote the decomposition of organic matter and mineralization of nutrients in soil con-
ditioner, especially the content of available phosphorus [56]. Our research shows that
vermicomposting can enhance the richness of some specific phyla, such as Acidobacteria,
Firmicutes, and Proteobacteria. Acidobacteria plays an important role in the nitrogen cycle
of earthworm fertilizer soil conditioner nutrient system, and can produce polyketide syn-
thase and nonribosomal peptide synthase. These enzymes can catalyze the synthesis of the
iron carrier in the soil conditioner, so as to improve soil nutrients and promote plant growth.
Firmicutes is considered to be a major co trophic microbiota, which plays an important role
in the degradation of soil conditioner fertilizer and increases the utilization efficiency of
soil nutrient system. Proteobacteria can participate in the nutrient decomposition process
of soil conditioner, and activate the fixed nutrients in soil conditioner to a free state [57].
Although some nutrients of soil conditioner are higher than that of earthworm fertilizer, its’
microbial species and quantity are lower than that of earthworm fertilizer. The appropriate
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proportion of earthworm fertilizer combined with soil conditioner combines the advantages
of both, which can accelerate the decomposition rate of organic matter in Saline-Alkali soil,
increase the amount of humus in Saline-Alkali soil, promote the formation of soil aggregate
structure, and then fertilize the soil.

Soil microbial communities are highly sensitive to changes in the soil environment. Al-
terations in soil physicochemical properties lead to changes in the structure of soil microbial
communities, which subsequently affect crops [58]. RDA indicated that soil pH and SOM
had an important impact on the microbial community composition at the phylum level,
and hence were key environmental drivers, a finding consistent with that of Zhao et al. [59].
This is because microorganisms are sensitive to changes in soil pH, so that increases in SOM
and decreases in pH caused by vermicompost-based amendments can lead to changes in
soil microbial diversity and community composition [60,61]. Actinobacteria and Proteobac-
teria are bacterial phyla that require high soil nutrient concentrations. Vermicompost-based
amendments contain abundant nutrients, providing a good environment for the growth of
such bacteria, thereby promoting an increase in their abundance. Proteobacteria are also
involved in nutrient recycling, increasing soil fertility and even crop growth. Other studies
have suggested a strong positive correlation between SOM and soil microbial community
structure, as soil microorganisms use available organic carbon components to promote
their physiological metabolism. Therefore, changes in SOM may alter the structure of
soil microbial communities [62–64]. Taken as a whole, this paper explores the impact on
the physical and chemical properties of alkali soil through the combination of vermicom-
post combined with soil amendments, so as to screen the optimal ratio and provide some
technical reference for improving alkali soil.

The current field-based study found links between soil properties, enzyme activity, and
microbial populations. Soil properties can clearly affect microbial communities via complex
mechanisms, further affect plant biochemical indicators, and the RDA and heatmap analysis
showed that the soil pH was highly correlated with Actinobacteria and Actinobacteria
was significantly negatively correlated with MDA. Improving soil pH in Saline-Alkali
soil can enhance the richness of Actinobacteria, thus inhibiting the impact of harmful
microorganisms in Saline-Alkali soil on plants, while MDA will be significantly reduced.
The incorporation of vermicompost-based amendments had a major impact on the soil and
plant properties. Further studies are necessary to understand these relationships and their
mechanisms, including exploring dominant bacterial groups, species combinations, soil
characteristics, and vermicompost amendments.

5. Conclusions

Combining vermicompost and solid waste soil conditioner improved the physico-
chemical properties of Saline-Alkali soil by reducing pH, depending on the treatment, and
increasing the SOM and available nutrients. It also improved the activity of soil polyphenol
oxidase and peroxidase. Amendments significantly improved the ecological parameters,
plant peroxidase, and superoxide dismutase activities, as well as the leaf area, stem thick-
ness, and oxidative stress tolerance. The physiological and biochemical indicators of
L. chinensis were also improved in response to soil amendments, with the most significant
improvement observed when 30,000 kg·ha−1 of soil conditioner and 15,000 kg·ha−1 of
vermicompost were applied together.

The microbial diversity of Saline-Alkali soil also improved after amendments were
applied, with the greatest responses being those of soil pH and SOM. Reducing soil pH is
one of the basic methods to improve Saline-Alkali land, which can significantly improve
plant stress resistance index and achieve the purpose of improving Saline-Alkali land.
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