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Abstract: This study utilized the Random Forest (RF) algorithm to assess groundwater potential
(GWP) in the mid-mountain region of the Coquimbo region, north-central Chile. A comprehensive
evaluation of twenty-one factors, primarily derived from Digital Elevation Models (DEM) and
satellite data, was conducted against a database of 3822 groundwater discharge points. The majority
of them consisted of shallow wells with relatively low yields. The main objective was to develop a
groundwater potential (GWP) map for the study area. Among the factors considered, six variables,
including two anthropogenic factors (distance to roads and presence of agricultural communities)
and four natural factors (slope, elevation, concavity, and ruggedness index), were identified as the
most influential indicators of GWP. The RF approach demonstrated excellent performance, achieving
an Area Under the Curve (AUC) value of 0.95, sensitivity of 0.88, specificity of 0.86, and kappa
coefficient of 0.74 in the test set. The majority of the study area exhibited low GWP, while only 14% of
the area demonstrated high or very high GWP. In addition to providing valuable guidance for future
hydrogeological investigations in the region, the GWP map serves as a valuable tool for identifying
the areas that are most vulnerable to water shortages. This is particularly significant, as the region
has been severely affected by extended drought, making water supply a critical concern.

Keywords: groundwater potential mapping; random forest; mid-mountain dryland; Coquimbo
region; north-central Chile; water shortage; hydrogeology

1. Introduction

Arid and semi-arid zones, characterized by limited rainfall compared to potential
evapotranspiration, cover a significant portion of the Earth’s surface and are inhabited by
approximately 35% of the global population, often with high levels of poverty [1,2]. Despite
water scarcity, these regions are experiencing rapid population growth [1,3], leading to
increased demands for water resources. Furthermore, climate variability and long-term
trends exacerbate the existing challenges, placing additional stress on already scarce water
supplies [4,5].

To effectively manage water resources in these areas, integrated strategies must be
developed based on detailed knowledge of local hydrogeology conditions and other rele-
vant factors. However, characterizing hydrogeology is challenging and costly, especially in
remote or thinly settled agricultural regions [6,7]. The Coquimbo region in north-central
Chile, the focus of this study, presents a case in point. This region has been severely im-
pacted by climate variability, experiencing an extended period (~15 years) of low to very
low precipitation, often referred to as a “mega-drought” [8–10].
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The rainfed, mid-mountain areas with moderate to steep slopes, situated between
200–2000 m above sea level (masl), have been particularly affected by this mega-drought. In
these areas, the local population relies heavily on rainfall as the primary water source [11].

Although these regions typically have low population density, recurrent water scarcity
has imposed significant economic pressure on local governments responsible for ensuring
water supply. For instance, between 2011 and 2014, the Coquimbo regional government
spent over USD 10 million on water delivery, primarily through water trucks, to rural
communities [12]. The situation has further worsened, with expenditures exceeding USD
3.8 million in 2019 alone to address the effects of drought in the region. Paradoxically,
these mid-mountain zones, which face recurring water scarcity, receive limited attention in
hydrological and hydrogeological studies compared to the more economically productive
floodplains and alluvial deposits of lower-lying river valleys and tributaries. Consequently,
there is a lack of reliable information on water resources in these extensive, sparsely
populated mid-mountain zones [13,14].

A previous study [15] attempted to address this issue by using basic statistical and
geostatistical techniques to assess the distribution of wells and springs in the dryland
midmountain areas of the Coquimbo region. The authors identified linear patterns in the
distribution, exhibiting two preferential orientations, NW and NE, which aligned with
geological-structural controls rooted in the region’s Mesozoic and older structural features.
However, the study acknowledged that incorporating new information, including both
hard and soft data, could provide further insights into water availability. This includes the
influence of natural attributes on local hydrological processes and the potential value of
nontraditional inputs, such as anthropogenic features.

In this research, we aim to build upon the aforementioned study, by integrating
information on natural factors (hydrological, lithological, structural, and geomorphological)
and anthropogenic factors (social and road connectivity) simultaneously, which represents
a novel aspect of our work. By utilizing GIS techniques and employing the Random
Forest machine learning algorithm, we develop a groundwater potential map for the study
area. Our objective is to assess how this approach can serve as a general framework for
future groundwater resource development programs and aid in the early identification of
vulnerable zones facing extended water shortage periods in rural areas, both within Chile
and globally.

2. Area of Study

The study area is in the Coquimbo region, north-central Chile, between 29◦02′ and
32◦16′ S and 69◦49′ and 71◦40′ W. As previously mentioned, the area has experienced a
severe drought period for almost 15 years. Figure 1 illustrates the decline in annual rainfall
amounts in Ovalle, located in the central part of the Region, from 1980 to 2020, highlighting
the general trend of decreasing precipitation.

We focused on the middle mountain dryland zone between 200 and 2000 masl in ele-
vation, corresponding to the N–S central belt of the region, which covers an area of approxi-
mately 23,200 km2 (Figure 2). The area transitions between semi-desert and mediterranean-
desert climate [16]; precipitation has an orographic dependence varying between 25 and
300 mm/year between the coastal areas and mountains, and there is a marked decrease
in precipitation moving from south to north [17]. Specifically for the dryland areas of the
Coquimbo region that are of interest in the present work, precipitation registers mean
values between 100 and 200 mm/year [18,19], with potential evapotranspiration greater
than 1000 mm/year [20].
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Figure 2. Coquimbo Region, specific area considered in the study (elevations between 200 and
2000 masl) and distribution of groundwater discharge locations (wells and springs).

The Coquimbo Region has a population of around 760,000, of which 81% live in urban
and suburban areas near the coast, while the remaining 19% live in rural areas scattered
mostly through the study area. A significant proportion of the rural population lives within
a type of common property and land use system that dates from the nineteenth century,
known as Comunidades Agrícolas (“Agricultural Communities”), which occurs almost
exclusively in the Coquimbo Region. Due to the lack of permanent surface water courses,
it is common for these communities to rely on water from springs or shallow wells, which,
in turn, represents a constraint for a major, more intensive agricultural development [20].

The study area is lacking in extensive sedimentary rock aquifers; in general, ground-
water resources are present at shallow depths (tens to a few hundred meters) in areally-
restricted deposits of volcanoclastic sediments, in granitic intrusives that have signifi-
cant fracture permeability, or in weathering deposits of granitic origin (locally known as
“maicillo”). The main source of recharge in the region is infiltration from winter precip-
itation in sporadic years of especially high rainfall, mainly associated with the El Niño
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phase of the ENSO phenomenon. Thus, given the isolated nature and limited storage in the
aquifers, water supply in the region is extremely vulnerable to drought.

3. Methods

We conducted our analysis in four sequential steps: (1) Compilation of a database of
known groundwater discharge locations (wells and springs); (2) Compilation of a spatial
database of natural and anthropic factors potentially determining groundwater availability;
(3) Analysis of the assembled data to develop a groundwater potential map; (4) Diagnostic
checking of the map predictions and interpretation of the results (a general overview is
given in Figure 3). Each of these steps is discussed in more detail in the following sections.
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3.1. Groundwater Discharge Database

We developed a database of groundwater discharge locations based on registered
groundwater use rights available from the Chilean Water Authority (Dirección General
de Aguas, DGA). Although the DGA data concentrate primarily on water wells, they also
include information about springs. The DGA data were supplemented with a smaller set
of wells supporting a photovoltaic irrigation program for small-scale farmers through the
Instituto de Desarrollo Agropecuario (INDAP). Thus, we obtained information on a total of
5972 wells and 57 springs occurring within the study area.

From this dataset, we extracted all wells and springs located between 200 and 2000 masl.
After a visual inspection of Google Earth images, we then removed any wells or springs
located in irrigated agricultural land. This was done as their existence and location could
potentially be influenced by irrigation water return-flows, i.e., excess infiltration from
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irrigated lands (that is recaptured in shallow wells or discharges from irrigation-sourced
springs) and not by the different factors considered in this study. We also deleted any loca-
tions in alluvial fill where groundwater was most likely sourced from neighboring rivers or
estuaries with permanent surface flow [21]. The final database consisted of 3822 groundwa-
ter discharge points, comprising 3799 wells and 23 springs. For the sake of simplicity, we
will not differentiate between wells and springs for the remainder of this paper, referring to
both water sources as “wells”.

It is important to acknowledge that most wells in the database have low flow rates
(Table 1). Indeed, 87% of the wells have a declared discharge below 2 L/s, and less than 5%
of the water sources in the database have flow rates greater than 10 L/s.

Table 1. Distribution of wells by flow range.

Discharge (L/s) Frequency %

0.01–1 2928 76.61
1.1–2 430 11.25
2.1–5 298 7.80

5.1–10 64 1.68
10.1–50 90 2.35

50.1–100 10 0.26
>100 2 0.05

3.2. Groundwater Conditioning Factors (GCF)

Groundwater availability and flow are primarily determined by the interaction of
multiple factors, such as climate, geomorphology (e.g., slope, drainage patterns), geol-
ogy/lithology (e.g., rock type, presence, and characteristics of discontinuities in bedrock),
and anthropogenic factors (e.g., land use). These can be referred to as “Groundwater
Conditioning Factors” (GCFs). In the present study, we considered 21 GCFs that may
influence the availability of groundwater, and therefore the spatial distribution of wells.
The GCFs chosen for this work were selected based on literature review of studies in areas
that were climatically and physiographically comparable to the Coquimbo region [22,23].

We also considered the actual availability in our study area of information on the
various possible GCFs to be selected. We followed standard statistical protocol by binning
continuous variables (e.g., elevation, slope, NDVI) into discrete categories to calculate
meaningful probabilities and as an aid to graphical display of the results. Breaks between
bins were chosen to correspond to natural divisions in the data, customary values in the
literature, or as determined by expert judgment [22]. Brief descriptions of the factors chosen,
and the sources from which we obtained the values for each one, are presented as follows.

3.2.1. Topographic Factors

- Elevation: Probably the most considered topographic characteristic in groundwater po-
tential studies is elevation (e.g., [22,24,25]). Elevation is a natural constraint on human
settlements, infrastructure, and road connectivity, and has been associated with the
existence of springs [26]. To obtain this layer, we downloaded twelve Digital Elevation
Model (DEM) images (30 m resolution) of ASTER Global DEM (Terra satellite) from
the USGS Earth Explorer web platform at https://earthexplorer.usgs.gov/, accessed
on 1 July, 2018. We processed the images using the Mosaicking and Clip Grid with
Polygon modules of the System for Automated Geoscientific Analyses (SAGA/GIS,
version 2.2.2) [27]. To avoid the inherent complications in working with images of
different granularity, we used the same 30 m resolution for all the topographic-related
factors listed below.

- Slope: Slope may be an important factor for detecting areas of potential groundwater
presence, since it has a dominant influence on the direction of surface water runoff
and thus groundwater recharge [28]. We derived information on slope from the raster
elevation data using the Slope function in ArcGIS (version 10.3).

https://earthexplorer.usgs.gov/
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- Aspect: The aspect, or direction towards which sloping ground faces, was determined
based on the maximum downward slope (i.e., steepest descent) from the center of
an area to the surrounding areas. To evaluate this, Arc Map’s Aspect function was
applied to the elevation data. The result is an azimuth for each pixel from 0◦ (north)
clockwise to 360◦, represented by an orientation code in 45◦ increments.

- Terrain Ruggedness Index (TRI): TRI characterizes the topographic heterogeneity of
the terrain. We used the Terrain Ruggedness Index module of SAGA/GIS to extract a
non-dimensional measure of TRI.

- Topographic Wetness Index (TWI): Previous investigations have proposed that ele-
vated soil moisture at a given site indicates an area retains more water than it loses;
thus, such locations are favorable for recharge and may indicate higher groundwa-
ter potential [29]. We used the Topographic Wetness Index (One Step) module of
SAGA/GIS to estimate the TWI [30].

- Distance to Drainage Network: A textural analysis of the drainage network assists
in the evaluation of the characteristics of groundwater recharge zones [31]. The
SAGA/GIS module Channel Network was applied to the elevation raster data to
develop this layer. We chose an “initiation threshold” of 1 × 107 and a “minimum
segment length” of 50 m [19]. The resulting vector layer, in polyline shapefile format,
included a total of 1122 lines within the study area, most of which exhibited a dendritic
drainage pattern. From this, we obtained the distance from the nearest drainage
network line, in meters, to each pixel, by applying the Euclidean Distance function of
Arc Map to the vector output of the Drainage Network command.

- Drainage Network Density: We used the Line Density function of Arc Map, with a
search radius of 1000 m, to extract this layer from the shapefile vector output of the
Drainage Network module (see above). The output of this operation is a pixel (raster)
value indicating the total length of the drainage network per pixel surface area (units
of km/km2, or 1/km).

The following six factors are all slightly different measures of the same characteristic of
topography (that is, curvature of the topographic surface). Although redundancy between
these factors may limit their usefulness, there are small differences in their ability to
discriminate between behaviors. Ultimately, however, subsequent analyses showed that
none of these six factors appeared in the top ranks as indicators of groundwater availability.
In Section 3 (i.e., Results and Discussion), we therefore limit our discussion to the influence
of the first-listed of these factors (Convergence Index), while the remaining five factors are
described here primarily for the sake of completeness.

- Convergence Index (CI): The relief structure of a terrain can be classified as belonging
to either convergent areas (“channels”) or divergent areas (“ridges”). The CI was
estimated from elevation and orientation data using the SAGA/GIS Convergence
Index module.

- General Curvature: This parameter identifies deviations from a hypothetical horizon-
tal plane as being either convex or concave areas within the terrain. It was obtained
using the Curvature function in Arc Map. Positive values indicate a convex-upward
surface, while negative values indicate concave-upward surfaces and a flat surface
has a value of zero [32].

- Plan Curvature: It is related to the convergence or divergence of flow at a given surface
location (a pixel), measured perpendicular to the direction of the maximum slope [33].
We generated this layer using the Curvature function of Arc Map.

- Profile Curvature: The profile curvature refers to the curvature of a line formed by
the intersection of an imaginary vertical plane and the ground surface along the line
of steepest descent [34]. As with the general curvature (above), we calculated profile
curvature by applying the Curvature function of ArcGIS.

- Convexity: The convexity of each pixel was evaluated applying the Terrain Surface
Convexity module of SAGA/GIS.
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- Concavity: This relief attribute gives the opposite result to the Convexity layer, identi-
fying flat or concave-upward areas (valleys or gullies), where sediments and runoff
tends to naturally accumulate. It was obtained with the Terrain Surface Convexity
module of SAGA/GIS.

3.2.2. Geological Factors

- Lithology: Rock types often play an important role in determining the occurrence and
distribution of groundwater [35]. We evaluated the distribution of lithology in our
study area using the 1:1,000,000 scale geological map of Chile [36], simplified according
to the suggestions of [15]. We also changed the resulting vector format to raster data
using the Arc Map functions Polygon to Raster and Reclassify, to obtain a layer with a
spatial resolution of 30 m, in keeping with the resolution of the topographic factors
listed in the previous section.

- Distance to Faults: First, we obtained fault locations from [36] and supplemented these
with fault maps for the study area by [37]. The two sources of data were joined using
the Merge module in Arc Map. From this, the distance to fault layer was generated by
applying the Euclidean Distance function in Arc Map to the data of the Fault layer.
The resulting raster data consists of the distance, in meters, between a given pixel and
the nearest mapped fault, at 30 m resolution.

- Fault Density: We used the Line Density function in Arc Map with a search radius of
1000 m to generate a 30 m resolution raster layer of fault density, expressed in units of
linear length of fault traces per area (km/km2 or, equivalently, 1/km).

3.2.3. Vegetation-Related Factors

We used the vegetation indices NDVI and SAVI to characterize vegetation cover in
the study area. For both layers, we used six scenes downloaded from the USGS web
platform (earthexplorer.usgs.gov, accessed on 1 July 2018), dated 11 January 2000, and
18 January 2000. These dates are during summer in the field area, in an active La Niña
year. We chose this timing for the images under the assumption that the soil cover would
be representative of stable, non-seasonal vegetation indicative of perennial soil water
and, ultimately, elevated recharge. In addition, we made atmospheric and topographic
corrections to the spectral bands of the satellite images (i.e., the six scenes) in SAGA/GIS,
using the procedure described by [38].

- NDVI: This index uses the contrast of the absorption of the red bank of the electromag-
netic spectrum by chlorophyll pigment and the high reflectivity of plant materials in
the near-infrared bank to generate an estimate of “greenness,” or relative vegetation
biomass [39]. We used the Vegetation Index (Slope Based) module of SAGA/GIS, ap-
plied to input data from Band 4 (“B4”, 0.77–0.90 µm) and Band 3 (“B3”, 0.63–0.69 µm)
from Landsat 7 ETM+ images; from this information, we calculated NDVI from [40]:

NDVI = (B4 − B3)/(B4 + B3), (1)

The result was a 30 m resolution raster layer, with values −1 ≤ NDVI ≤ +1.

- SAVI: Like NDVI, SAVI is a measure of vegetation reflectance, but SAVI incorporates an
adjustment factor, L, that accounts for the brightness of the ground surface underlying
the vegetation. We used a value of L = 0.5, which was suggested by [41] as appropriate
for arid zones. A SAVI raster layer at the required 30 m resolution was obtained by
applying the Vegetation Index (Slope Based) module of SAGA/GIS to Band 4 and
Band 3 of the Landsat 7 ETM+ images.

3.2.4. Anthropic Factors

- Agricultural communities: As explained earlier, the Comunidades Agrícolas (Agri-
cultural Communities) are an ancient, spatially extended form of land tenure in rural
North-Central Chile, especially in the Coquimbo Region, in which partially hereditary
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groups organize common ownership and occupy, exploit, or cultivate rural land for
forestry and/or farming [42]. This practice dates back at least to Spanish colonial
times (i.e., the 17th century) and continues today. Because of the heavy dependence of
agricultural activity on groundwater resources in rural dryland areas, it is reasonable
to expect a strong association between wells locations and agricultural communities.
It is unclear, however, whether the current locations of human settlements are the
result of ease of access to groundwater, or if the need for water resources to support
agriculture drives exploration and exploitation of groundwater, and both may be true.

Despite the fact that what was described corresponds to a “chicken vs. egg” type of
situation where it is not easy to distinguish causality, it was nevertheless considered of
interest in this work to incorporate agricultural communities as one of the GCFs assessed.
Thus, data on the existence and distribution of agricultural communities [18,43] were
processed as a raster layer (30 m resolution) using the Polygon to Raster and Reclassify
functions of Arc Map. The resulting Agricultural Communities layer consisted of binary
(i.e., 0 or 1) pixel values in which 1 indicates that the pixel belongs to the territory of a
community and 0 indicates that the pixel is not part of the holdings of an agricultural
community.

- Distance to roads: In a study in Iraq, it was shown that wells were preferentially located
in proximity to existing facilities or infrastructure such as roads [44]. With this in mind,
we decided to incorporate this element as an additional GCF, based on the shapefile
Red Caminera de Chile (“Chilean road network”) available at www.mapas.mop.cl,
accessed 1 August 2018. From the road network layer, we generated the distance to
roads layer using the Euclidean Distance function of Arc Map. The result was a raster
layer at 30 m resolution of pixel values indicating distance in meters from each pixel
to the nearest road.

- Road Density: We used the Line Density function of Arc Map with a search radius
of 500 m to obtain a raster layer at 30 m resolution, with pixel values indicating the
length of roads per square kilometer of surface area for that pixel (units of km/km2,
or, equivalently, 1/km).

3.3. Frequency Ratios

Although not being the core technique in this work (which is presented in the next
subsection), frequency ratio (FR) was initially calculated as a preliminary method to identify
and illustrate, in a simple way, the quantitative relationship between the presence of wells
and the classes of the different GCFs [24]. The FR is defined as [22,24]:

FR = (A/B)/(C/D), (2)

where A is the area occupied by a given bin of the factor, B is the total area occupied by the
factor, C is the number of pixels occupied by the factor, and D is the total number of pixels
in the domain. Equation (2) is equivalent to the ratio between the “percentage of area with
wells for each class of a factor divided by the percentage of the domain for each class of a
factor” [29], and previous investigators interpret values of FR > 1 as an indication of strong
association between wells and a (sub)class of a factor, whereas values FR < 1 generally
indicate a lower or weaker association [22]. In this study, we extended the concept of the FR
to apply not only to the presence of wells, but also to the percentage of discharge associated
with the subclasses of each GCF (i.e., the percentage of discharge for each class of a factor
divided by the percentage of the domain for each class of a factor).

3.4. Groundwater Potential Model
3.4.1. The Random Forest Algorithm and the Groundwater Potential Map

In this study, we used the Random Forest (RF) algorithm to predict the presence
of wells (and, by extension, inferred groundwater availability) within our study area,
considering this problem as a binary classification task where the predicted probability of

www.mapas.mop.cl
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presence is returned. The RF model, which belongs to the family of “Machine Learning”
techniques, was first introduced by [45]. Machine Learning (ML) is defined as a subfield
of computer science that gives computers the ability to learn without being explicitly
programmed; of existing ML techniques, RF is considered one of the most powerful of
the fully automated ML algorithms [46]. Two good reviews of the RF method have been
published relatively recently [47,48], the second one being specifically oriented to the
applications of RF in assessments of water resources.

For the present study, we chose to use the Random Forest (RF) algorithm as imple-
mented in ModelMap package [49] of the statistical computing environment R as the solely
ML algorithm as this technique has shown its superior performance across several families
of ML models including neural networks and deep neural networks. ModelMap builds
predictive models of continuous or categorical response variables using an RF algorithm,
giving the user the option to validate the models with independent test data sets or out-of-
bag (OOB) estimates on the training data. The package comprises three main R packages:
PresenceAbsence, randomForest and raster; together, these packages allow user-friendly
modeling, validation, and mapping of response variables over large geographic areas
within the R computational framework [50,51]. The versions used were: R, version 4.0.5;
ModelMap, version 3.4.0.3; and raster, version 3.5-15.

To train the RF algorithm for the study area, we complemented the database of
3822 wells with an additional set of 3820 randomly located points corresponding to absence
of wells (it was verified that they actually were displayed in areas with no wells); thus, the
algorithm classified each pixel according to the presence/absence of wells and associated
these categories with the GCFs. The presence/absence database was divided into training
(70%) and validation (30%) subsets [24]. The model output (for each 30 × 30 m pixel)
were probability values (of predicting the presence of a well) ranging from 0 to 1 [23]. The
model was initially built with 1000 trees (ntree = 1000), as it is not possible to know a priori
when the stabilization of the error will occur [52]. In any case, a sensitivity analysis on this
hyperparameter, as well as on mtry (number of variables to try at each node of RF trees), is
given in Appendix A.

From this, we obtained a groundwater potential map using the modelmap make
function of the ModelMap package, considering four categories: low, moderate, high, and
very high groundwater potential (corresponding to output probabilities from 0 to 0.24,
from 0.25 to 0.49, from 0.5 to 0.74, and above 0.74, respectively).

3.4.2. Model Assessment

We used two main approaches to assess two separate aspects of the RF model: per-
formance and interpretation in terms of variable importance. For model performance we
selected Receiver Operating Characteristics (ROC), the Area under the Curve (AUC), sensi-
tivity, specificity and Kappa. For model interpretation we used Variable Importance based
on Mean Decrease Accuracy (MDA), and Mean Decrease Gini (MDG). These measures of
model performance and interpretation are described in more detail below.

- Classification performance: The Receiver Operating Characteristics (ROC) curve is a
method for quantifying model prediction accuracy in binary classification problems
that is commonly applied to probabilistic models and forecasting systems [26,50,51];
in particular, this method has been used to assess model accuracy in groundwater
potential mapping studies (e.g., [46,53,54]). The ROC curve is a cumulative probability
plot of “true positive rates” (also known as sensitivity), versus “false positive rates”
(also known as specificity) for a range of cutoff values (thresholds for detection). At
the same time, we calculated the associated Area Under the Curve (AUC), a threshold
independent measure of model quality. In this context AUC is a number between
0 and 1; the closer a value is to 1, the better the ability of the model to discriminate
between the cases, with 1 indicating perfect discrimination. An AUC of 0.5 indicates
the model predictions are the same as a random guess, while values between 0 and
0.5 imply the model is worse at prediction than a random guess [24,51].
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- Variable importance: The relative importance of the GCFs was evaluated using
two measures: the Mean Decrease Accuracy (MDA) and the Mean Decrease Gini
(MDG) [46,55]. MDA measures the difference in model accuracy before and after a
permutation of the predictor variable values. A low value of MDA indicates that
the response (predicted) variable is relatively insensitive to changes (permutations)
of the predictor variable. Conversely, a predictor variable is considered “important”
when there is a significant difference between the value of the response variable before
and after the change (i.e., a higher value of MDA is obtained). On the other hand,
MDG measures the ability of a predictor variable to correctly separate and group
cases within a dataset that tend to fall into the same class during construction of an
RF model [47]. In the present work, this implies separating and accurately grouping
cases where wells exist, in comparison to cases where wells are absent. The larger the
magnitude of MDG for a given variable, the better classifier it is. According to [46],
MDA is more important for variable selection, while MDG is more important for
defining explanatory associations between selected variables.

4. Results and Discussion
4.1. Relationships between GCFs, Wells and Discharge by FR

The relationships of various GCFs and their subclasses to the presence of wells and
related discharge are presented in Table 2 and Figure 4. The former includes areas, number
of wells, and nominal discharge (i.e., cumulative total for all the wells for each subclass of
the GCFs), along with the FR values for both wells (FRW) and discharge (FRQ).

Table 2. GCF (classes and subclasses) characterization and wells and discharge distributions. nT:
Total number of wells; nc: Number of wells for each subcategory; QT: Total discharge (granted); Qs:
Cumulative discharge of wells for each subcategory; AT: Total Area; Ac: Area for each subcategory;
FRW: Frequency ratio of wells; FRQ: Frequency ratio of discharge.

nT: 3822 QT: 5154.5 L/s AT:
23,235.2 km2 FRW FRQ

GCF nc (%) QS
(L/s) (%) Ac

(km2) (%)

Topographic Factors

Elevation (masl)
200–500 1814 47.4 3135.4 60.8 5146 22.1 2.1 2.8
500–1000 1704 44.6 1656.0 32.1 8592 37.0 1.2 0.9
1000–1500 262 6.9 346.0 6.7 5961 25.7 0.3 0.3
1500–2000 42 1.1 17.1 0.3 3537 15.2 0.1 0.0

Slope (◦)
0–5 1689 44.2 2738.2 53.1 2538 10.9 4.1 4.9
5–10 1370 35.9 1640.6 31.8 3980 17.1 2.1 1.9
10–15 444 11.6 437.2 8.5 4041 17.4 0.7 0.5
15–30 303 7.9 303.5 5.9 10,059 43.3 0.2 0.1
30–45 16 0.4 34.9 0.7 2592 11.2 0.0 0.1
45–72 0 0.00 0.00 0.00 25 0.1 0.0 0.0
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Table 2. Cont.

nT: 3822 QT: 5154.5 L/s AT:
23,235.2 km2 FRW FRQ

Aspect (◦)

Flat terrain 0 0 0 0 26 0.1 0.0 0.0
337.5–22.5 N 767 20.1 927.0 18.0 2875 12.4 1.6 1.5
22.5–67.5 NE 519 13.6 608.4 11.8 2736 11.8 1.2 1.0
67.5–112.5 E 399 10.4 323.2 6.3 2567 11.0 0.9 0.6
112.5–157.5 SE 289 7.6 436.3 8.5 2472 10.6 0.7 0.8
157.5–202.5 S 257 6.7 412.7 8.0 2574 11.1 0.6 0.7
202.5–247.5 SW 389 10.2 699.4 13.6 3283 14.1 0.7 1.0
247.5–292.5 W 504 13.2 966.4 18.7 3470 14.9 0.9 1.3
292.5–337.5 NW 698 18.2 781.0 15.1 3233 13.9 1.3 1.1

Terrain Ruggedness Index, TRI (m)
0–4 Flat terrain surface 3032 79.3 4376.6 84.9 6534 28.1 2.8 3.0
4–8 Near flat surface 671 17.6 536.2 10.4 8065 34.7 0.5 0.3
8–12 Moderately rugged surface 100 2.6 206.4 4.0 5589 24.1 0.1 0.2
12–16 Highly rugged surface 16 0.4 25.8 0.5 2474 10.6 0.0 0.0
16–70 Extremely rugged surface 3 0.1 9.3 0.2 574 2.5 0.0 0.1

Topographic Wetness Index, TWI
2.6–6.6 Very low 674 17.63 1147.1 22.2 13,859 59.6 0.3 0.4
6.6–9 Low 1287 33.68 1436.99 27.9 6333 27.3 1.2 1.0
9–12.2 Moderate 945 24.73 1139.65 22.1 2179 9.4 2.6 2.4
12.2–16.7 High 694 18.15 1128.91 21.9 684 2.9 6.3 7.6
16.7–26.6 Very high 222 5.81 301.84 5.9 180 0.7 8.3 8.4

Distance to Drainage Network (m)
0–500 1682 44.01 3471.78 67.35 4974 21.4 2.1 3.1
500–1000 639 16.72 729.41 14.15 4321 18.6 0.9 0.8
1000–2000 928 24.28 706.18 13.70 6985 30.1 0.8 0.5
>2000 573 14.99 247.11 4.79 6951 29.9 0.5 0.2

Drainage Network Density (km/km2)
0–0.1 1626 42.54 1034.18 20.06 14,534 62.6 0.7 0.3
0.1–0.5 491 12.85 552.51 10.72 2751 11.8 1.1 0.9
0.5–1 1413 36.97 2702.67 52.43 4919 21.2 1.7 2.5
1–2 292 7.64 865.12 16.78 1015 4.4 1.7 3.8
2–5.32 0 0 0 0 12 0.1 0.0 0.0

Convergence Index
(−100)–(−50) Highly divergent surface 60 1.57 116.42 2.26 40 0.2 7.9 11.3
(−50)–(−25) Moderate divergent surface 338 8.84 409.62 7.95 355 1.5 5.9 5.3
(−25)–(−5) Low divergent surface 1452 37.99 1365.21 26.49 3941 17.0 2.2 1.6
(−5)–5 Flat surface 1634 42.75 2602.18 50.48 14,525 62.5 0.7 0.8
5–25 Low convergent surface 318 8.32 625.48 12.13 4048 17.4 0.5 0.7
25–50 Moderate convergent surface 18 0.47 35.07 0.68 273 1.2 0.4 0.6
50–100 Highly convergent surface 2 0.05 0.50 0.01 54 0.2 0.3 0.1

General Curvature (1/100 m)
(−10)–(−0.72) High concavity 268 7.01 242.08 4.70 1812 7.8 0.9 0.6
(−0.72)–(−0.28) Medium concavity 1101 28.81 1226.70 23.80 4698 20.2 1.4 1.2
(−0.28)–(0.15) Flat surface 1903 49.79 2555.54 49.58 8328 35.8 1.4 1.4
0.15–0.66 Medium convexity 519 13.58 1037.91 20.14 6123 26.4 0.5 0.8
0.66–7.9 High convexity 31 0.81 92.24 1.79 2275 9.8 0.1 0.2

Plain Curvature (1/100 m)
(−4.46)–(−0.4687) High concavity 180 4.71 86.28 1.67 1466 6.3 0.7 0.3
(−0.4687)–(−0.161) Medium concavity 915 23.94 1042.40 20.22 4498 19.4 1.2 1.0
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Table 2. Cont.

nT: 3822 QT: 5154.5 L/s AT:
23,235.2 km2 FRW FRQ

(−0.161)–0.0841 Flat surface 1920 50.24 2556.58 49.60 8275 35.6 1.4 1.4
0.0841–0.3913 Medium convexity 763 19.96 1370.23 26.58 6577 28.3 0.7 0.9
0.391–3.37 High convexity 44 1.15 98.99 1.92 2419 10.4 0.1 0.2

Profile Curvature (1/100 m)
(−7.49)–(−0.57) High convexity 7 0.18 82.67 1.60 794 3.4 0.1 0.5
(−0.57)–(−0.21) Medium convexity 181 4.74 183.55 3.56 3652 15.7 0.3 0.2
(−0.21)–0.022 Flat surface 1189 31.11 1837.73 35.65 7258 31.2 1.0 1.1
0.022–0.377 Medium concavity 2037 53.30 2617.27 50.78 9222 39.7 1.3 1.3
0.377–7.60 High concavity 408 10.68 433.25 8.41 2309 9.9 1.1 0.8

Convexity
0–20 Flat surface 0 0.00 0.00 0.00 31 0.1 0.0 0.0
20–40 Very low convexity 602 15.75 822.51 15.96 2123 9.1 1.7 1.8
40–45 Low convexity 1425 37.28 1617.69 31.38 4661 20.1 1.9 1.6
45–50 Medium convexity 1485 38.85 2362.07 45.83 6851 29.5 1.3 1.6
50–60 High convexity 309 8.08 351.96 6.83 8210 35.3 0.2 0.2
60–83.3 Very high convexity 1 0.03 0.25 0.00 1359 5.8 0.0 0.0

Concavity
0–20 Flat surface 0 0.00 0.00 0.00 16 0.1 0.0 0.0
20–40 Very low concavity 1 0.03 0.25 0.00 1370 5.9 0.0 0.0
40–45 Low concavity 32 0.84 30.06 0.58 2871 12.4 0.1 0.0
45–50 Medium concavity 278 7.27 323.90 6.28 5352 23.0 0.3 0.3
50–60 High concavity 2909 76.11 3977.76 77.17 11,520 49.6 1.5 1.6
60–84.5 Very high concavity 602 15.75 822.51 15.96 2106 9.1 1.7 1.8

Geological Factors
Lithology
Cenozoic to Paleozoic granitic rocks 2130 55.73 1246.33 24.18 9716 41.8 1.3 0.6
Neogen sediments 985 25.77 3114.74 60.43 2918 12.6 2.0 4.8
Mesozoic to Cenozoic volcanic-sedimentary rocks 707 18.50 793.41 15.39 10,601 45.6 0.4 0.3

Distance to Faults (m)
0–500 791 20.70 1215.99 23.59 5282 22.7 0.9 1.0
500–1000 714 18.68 980.28 19.02 4256 18.3 1.0 1.0
1000–2000 1024 26.79 1064.15 20.65 5982 25.7 1.0 0.8
>2000 1293 33.83 1894.06 36.75 7715 33.2 1.0 1.1

Fault Density (km/km2)
0–0.1 2378 62.22 3010.29 58.4 14,077 60.6 1.0 1.0
0.1–0.5 545 14.26 900.85 17.48 3176 13.7 1.0 1.3
0.5–1 777 20.33 1139.71 22.11 4887 21.0 1.0 1.1
1–2 121 3.17 103.42 2.01 1082 4.7 0.7 0.4
2–2.8 1 0.03 0.20 0.00 13 0.1 0.3 0.0

Vegetation-Related Factors

NDVI
(−1)–0 Water body 0 0.00 0.00 0 48 0.2 0.0 0.0
0–0.1 Non-vegetated soil 344 9.00 1563.50 30.33 7381 31.8 0.3 1.0
0.1–0.25 Prairies and shrubs 2364 61.85 2090.45 40.56 13,126 56.5 1.1 0.7

0.25–1 Dense covered vegetation
(growth peak) 1114 29.15 1500.53 29.11 2679 11.5 2.5 2.5

SAVI
(−1.5)–0 Water body 0 0.00 0.00 0.00 48 0.2 0.0 0.0
0–0.1 Non-vegetated soil 71 1.86 700.77 13.60 2325 10.0 0.2 1.4
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Table 2. Cont.

nT: 3822 QT: 5154.5 L/s AT:
23,235.2 km2 FRW FRQ

0.1–0.5 Prairies and shrubs 3226 84.41 3574.50 69.35 19,729 84.9 1.0 0.8

0.5–1 Medium cover density
vegetation 520 13.61 871.14 16.90 1059 4.6 3.0 3.7

1–1.5 Dense covered vegetation,
forest 5 0.13 8.07 0.16 74 0.3 0.4 0.5

Anthropic Factors

Agricultural Communities
Present 2754 72.06 1559.40 30.25 7584 32.6 2.2 0.9
Absents 1068 27.94 3595.07 69.75 15,651 67.4 0.4 1.0

Distance to Roads (m)
0–500 2369 61.98 2730.06 52.96 3980 17.1 3.6 3.1
500–1000 648 16.95 857.00 16.63 3122 13.4 1.3 1.2
1000–2000 434 11.36 880.61 17.08 4871 21.0 0.5 0.8
>2000 371 9.71 686.81 13.32 11,262 48.5 0.2 0.3

Road density (km/km2)
0–0.1 1488 38.93 2461.17 47.67 19,382 83.5 0.5 0.6
0.1–0.5 131 3.43 210.44 4.08 409 1.8 1.9 2.3
0.5–1 309 8.08 281.10 5.45 850 3.7 2.2 1.5
1–2 1589 41.58 1775.06 34.44 2223 9.6 4.3 3.6
2–4 305 7.98 426.71 8.28 366 1.6 5.0 5.2
4–6.6 0 0 0 0 3 0.01 0.0 0.0

It is clear from inspection of the entries in Table 2 that FRW and FRQ are closely
correlated, so, except for special cases as noted below, the following remarks are valid for
either metric.

With respect to topographically related GCFs, the analyses presented in Table 2 indicate
that wells, and the corresponding discharges, are preferentially associated to areas of low
elevation (most predominantly in the range of 200–500 masl), low slope (less than 5◦), and
low ruggedness (TRI < 4). This is consistent with the findings of previous investigators
(e.g., [22,24,29]), who generally agree that higher elevations, steeper slopes, and greater
surface curvatures are associated with higher runoff, lower infiltration, and therefore
reduced potential for groundwater occurrence.

It is worthwhile examining the FR values obtained for the Convergence Index (CI). The
highest values are associated with the “high divergence” subclass, an outcome that tends
to be counterintuitive. In fact, this result is obtained because of the small percent area (0.2%
of the total study area), which distorts the calculation by placing a small number in the
denominator of the ratio. In fact, careful inspection of the values in Table 2 shows that by far
most wells and discharge are associated with flat to low-divergence surfaces in the range of
−25≤ CI≤ 5, with counts nc = 3086, whereas highly divergent surfaces (−100≤ CI≤ −50)
only accounted for nc = 60 counts. The appearance of this artifact highlights a generally
not addressed weakness of using FR as an indicator of the importance of a conditioning
variable and requires careful interpretation of the results of this type of qualitative measure.
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Figure 4. Groundwater Conditioning Factors (GCFs) and subclasses considered in this work (for
the sake of clarity and information, the figure also include the thematic layers of drainage network,
faults, and roads, that are not GCFs by themselves, but are required to obtain some of them).

With respect to non-topographic GCFs, there is a notable association of groundwater
(wells and discharge) with areas of moderate to dense vegetation, as would be expected
for locations where the water table is located near the surface. In terms of surficial ge-
ology, groundwater occurrences are primarily associated with Neogene sediments, and
secondarily in association with granitic rocks. In this case, the differences between FRW
and FRQ are likely significant, since the highest discharges are associated with wells in the
Neogene sediments, which possess higher primary hydraulic conductivities. Associations
with other geological factors, such as distance to faults or fault densities, are not observed.
Unsurprisingly, however, the highest FR values occur for higher drainage densities and
shorter distances from the drainage network, and anthropic factors such as the presence of
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agricultural communities and the distance to, and density of, roads are factors of apparent
importance.

4.2. RF Model Performance Analysis

As discussed before, from the original 7642-point dataset, we trained the RF classifica-
tion algorithm based on a 70/30 ratio of train–test split and estimated model performance in
terms of OOB prediction on the training data and the independent test set. Table 3 presents
the AUC, sensitivity, specificity and Kappa performance metric. The overall performance
can be considered high for classification tasks as AUC approaches 1 and Kappa can be
considered substantial or good, the same as for sensitivity and specificity.

Table 3. Random Forest performance metrics for presence/absence classification.

Validation AUC Sensitivity Specificity Kappa

OOB 0.9457 0.8969 0.8523 0.7494
Test set 0.9448 0.8799 0.8638 0.7436

Figure 5 shows the behavior of the classification errors by type and OOB error as
the number of decision trees in the RF model increases. All types of errors can be seen to
decrease rapidly until around 200 decision trees, after which the rate of improvement in
the models decreases and the number of errors stabilizes. At around 600 decision trees the
so called “convergence of errors” is reached, after which the prediction quality does not
improve, regardless of how much the number of trees is increased.
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The general characteristics of the model are presented graphically in Figures 6 and 7.
Figure 6A shows histograms of the number of predictions of the presence and absence of
wells for the full range of probability cutoffs for the presence of wells. This figure shows
that the vast majority of true detects (presence) have prediction probabilities above 0.4,
while the majority of true non-detects (absence) fall below prediction probabilities of 0.6.



Water 2023, 15, 3005 17 of 27

Given the double humped distribution presented here, we chose a probability of 0.5 for the
presence/absence cutoff value. In Figure 6B, the prediction probability is seen to increase
as the number of observations within the bin increases, approximately along the 1:1 line,
which indicates a “well-calibrated” model [50].

Water 2023, 15, x FOR PEER REVIEW 17 of 28 
 

 

 

Figure 5. RF model classification error (the green line corresponds to class 1 error or presence, the 

red line corresponds to class 0 error, and the black line corresponds to OOB error). 

The general characteristics of the model are presented graphically in Figures 6 and 7. 

Figure 6A shows histograms of the number of predictions of the presence and absence of 

wells for the full range of probability cutoffs for the presence of wells. This figure shows 

that the vast majority of true detects (presence) have prediction probabilities above 0.4, 

while the majority of true non-detects (absence) fall below prediction probabilities of 0.6. 

Given the double humped distribution presented here, we chose a probability of 0.5 for 

the presence/absence cutoff value. In Figure 6B, the prediction probability is seen to in-

crease as the number of observations within the bin increases, approximately along the 

1:1 line, which indicates a “well-calibrated” model [50]. 

 

Figure 6. Prediction histogram (A) and calibration plot (B). In (A) the black color within each bar 

corresponds to the cases that are wells (presences) while the gray color for those cases corresponds 

to non-well cases (absences). 

Figure 6. Prediction histogram (A) and calibration plot (B). In (A) the black color within each bar
corresponds to the cases that are wells (presences) while the gray color for those cases corresponds to
non-well cases (absences).

Water 2023, 15, x FOR PEER REVIEW 18 of 28 
 

 

Figure 7A presents the ROC-AUC curve, also known as the “success rate,” from the 

training stage. The area under the ROC-AUC curve represents the probability that a point 

chosen as a presence (a well detect) has a higher predicted probability than a point that is 

not a well. For the present study, the model has an approximately 95% probability of mak-

ing a correct classification. Alternative measures of model accuracy are presented in Fig-

ure 6B; specifically, sensitivity, specificity, and “Kappa,” where the cutoff probability is 

plotted on the abscissa and the magnitude of the accuracy measurements are plotted on 

the ordinate. 

 

Figure 7. Success rate (A) and performance metrics (B) of the RF model. The diagonal grey line (A) represents the 

ROC curve for random guessing 

 

These measures of accuracy tend to converge when the model is well calibrated and 

has good discrimination capacity [50]. In the present case, sensitivity and specificity con-

verge near 0.87, while the maximum value of Kappa is close to 0.74. It has been suggested 

that such values represent a “moderate to near-strong fit” [46], and [23] obtained Kappa 

values of 0.42, 0.61, and 0.43 for Random Forest, MARS, and C5.0 models, respectively. 

Integrating the performance metrics considered above provides support for a value of 0.5 

as a reasonable cutoff probability separating the presence and absence of groundwater. 

4.3. RF Model Interpretation in Terms of Relative Importance of GCFs 

4.3.1.  GCFs of High Importance 

In Figure 8, we present graphically two rankings (MDA and MDG) of the importance 

of the GCFs considered for the development of the RF model, which can be used for in-

terpreting the effects of individual model predictors. 

Figure 7. Success rate (A) and performance metrics (B) of the RF model. The diagonal grey line
(A) represents the ROC curve for random guessing.

Figure 7A presents the ROC-AUC curve, also known as the “success rate,” from the
training stage. The area under the ROC-AUC curve represents the probability that a point
chosen as a presence (a well detect) has a higher predicted probability than a point that
is not a well. For the present study, the model has an approximately 95% probability of
making a correct classification. Alternative measures of model accuracy are presented in
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Figure 6B; specifically, sensitivity, specificity, and “Kappa,” where the cutoff probability is
plotted on the abscissa and the magnitude of the accuracy measurements are plotted on the
ordinate.

These measures of accuracy tend to converge when the model is well calibrated and has
good discrimination capacity [50]. In the present case, sensitivity and specificity converge
near 0.87, while the maximum value of Kappa is close to 0.74. It has been suggested
that such values represent a “moderate to near-strong fit” [46], and [23] obtained Kappa
values of 0.42, 0.61, and 0.43 for Random Forest, MARS, and C5.0 models, respectively.
Integrating the performance metrics considered above provides support for a value of 0.5
as a reasonable cutoff probability separating the presence and absence of groundwater.

4.3. RF Model Interpretation in Terms of Relative Importance of GCFs
4.3.1. GCFs of High Importance

In Figure 8, we present graphically two rankings (MDA and MDG) of the importance
of the GCFs considered for the development of the RF model, which can be used for
interpreting the effects of individual model predictors.
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Figure 8. Mean decrease accuracy (A) and mean decrease Gini (B) of the RF model.

The higher the ranking received by a variable, the more important it is as an indicator
of groundwater presence. Anthropic factors (agricultural communities and road distance)
feature prominently in the top three factors of both measures (MDA and MDG), consistent
with a strong human influence on the location of wells. This is obviously the case for
agricultural communities, where wells are a key element for subsistence-farming activities
associated with these communities. Similarly, the distance to roads is likely to be an impor-
tant indication of well location, because it is associated with the use, access, construction,
and maintenance of wells. Therefore, it turns out that in our study area, the existence
(or non-existence) of wells is not solely a function of natural (geologic, topographic, etc.)
factors, but is strongly dependent on anthropogenic factors as well. Similar findings were
reported in [56], where it was shown that man-made water sources (wells and qanats)
tend to be preferentially placed in areas with lower slope angles, and generally at lower
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elevations, that are commonly associated with agriculture. This is different from the find-
ings of investigators working on the development of spring potential maps (i.e., natural
groundwater outflow), who found much less dependence on anthropogenic features, and
much greater dependence on topographical and hydrogeological characteristics [22,57,58].

It is worthwhile to perform an additional analysis with respect to this result. In
this respect, it could be thought that the distance to roads could indeed determine the
convenience of drilling a well, but that by itself would not necessarily be an indicator
of favorable conditions for the presence of groundwater. However, it is important to
remember the physiographic characteristics of the study area of the present work, i.e., areas
of mountainous relief. In this context, it is to be expected that the roads are built and
arranged through the valleys (low areas) between the slopes of the hills. In fact, Figure 9
presents a given longitudinal profile in the middle part of the study area. As can be seen in
the figure, the (rural) roads correspond, as well as the gulches (dry creeks), to low areas,
which would be consistent to a water sink, i.e., an area with an accumulation of water
(associated with the runoff that flows from the surrounding slopes of the hills). Thus, the
fact that roads have evidenced a special importance as GCF is not entirely random but can
be associated, quite reliably, with a physically based situation.
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Figure 9. Google Earth-based elevation profile (at 636 masl; 30◦57′ S, 71◦11′ W). Orange lines show
the presence of roads, whereas blue ones correspond to gulches (dry creeks). Blue arrows represent
potential infiltrated water movement from higher to lower zones.

For non-anthropic (i.e., natural) GCFs, the influence of elevation stands out in the
MDA rankings. Based on the MDG ranking, both slope and ruggedness index show a high
level of importance. As discussed previously, these factors are directly related to runoff
and infiltration processes, and therefore to the availability of groundwater.

4.3.2. GCFs of Low Importance

In addition to identifying GCFs of high importance for locating groundwater resources,
it is worthwhile to examine some of the variables that have been used as indicators of
groundwater potential in previous studies, but which did not demonstrate a high impor-
tance ranking in the current one. In particular, the factors Lithology and Fault Density
placed at or near the bottom of both the MDA and MDG rankings, although previous
investigations have found good associations with these factors [15].

In terms of lithology, the Neogene sediments are generally high in permeability,
although their areal extent is relatively small (only 12.6% of the study area). The low area
occupied by these sediments likely accentuates the calculated values of FR (Table 2), similar
to the FR values for CI, and the high discharges associated with wells in these sediments
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clearly influence the discharge-based values (FRQ = 4.8, versus FRW = 2.0). However, the
small percentage of the study area occupied by these sediments may render them relatively
unimportant for classification in the RF model. In addition, the maps upon which the
distribution of lithology were based may not be sufficiently detailed (i.e., large-scaled)
to adequately represent the distribution of the high permeability, but areally restricted
Neogene sediments. Granitic rocks, on the other hand, commonly demonstrate only
modest permeability, primarily arising from near-surface fracturing; locally, however, areas
of maicillo deposits (weathered sediments) may have high permeability (and therefore high
discharge). Because the high permeability areas are restricted in areal extent, granitic rocks
as a category likely do not present to the RF model a consistent association with either
wells or discharge.

For the GCF Fault Density, the two sources of fault data used in this study [36,37] are
mapped at a scale consistent with the present analysis; however, they specifically identify
the surface traces of faults, and they concentrate on mapping major features. In contrast,
most wells are likely associated with secondary fracturing, and are rarely located in the
plane of a major fault. A detailed examination of wells and mapped faults in the Punitaqui
sub-basin located in the middle part of the study area [6] and presenting a high density
of wells (Figure 2), shows apparent groupings of them in clusters, many of which appear
to be aligned along NW and NE linear trends (Figure 10). However, there is little, if any,
visual association with the mapped faults in the area. Although it is possible that the wells
align along faults that are too small to have been included in the maps used in this study,
without more detailed fault mapping it must be concluded that fault density turned out
to be, at best of minor importance, for the regional (i.e., 100 s km) study scale approach
considered in this work.
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Figure 10. Distribution of wells and lineaments in the Punitaqui basin (for its location look at
Figure 1).

Previous investigators have obtained results that are rather similar to those of the
present study for the influence of both lithology and faulting on groundwater potential.
Using an RF model [24], lithology was found to be the tenth and thirteenth out of thirteen
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factors (10/13 and 13/13) ranked by MDA and MDG, respectively, in their study of springs
at the Moghan Basin, Iran. The investigators found mixed results for the influence of
faulting on groundwater potential, with distance to faults ranking moderately high in
importance (3/13 and 5/13 for MDA and MDG, respectively), but fault density only being
of secondary importance (6/13 and 10/13 for MDA and MDG, respectively). Furthermore,
neither fault density nor distance to faults were ranked as having any importance by other
ML methods (Classification and Regression Tree/CART or Boosted Regression Tree/BRT)
they used. Other more recent studies have, in general, obtained results that have also shown
that fault density is not an important indicator of groundwater potential, whereas the results
for distance from faults varies from moderate importance to insignificant (e.g., [7,23,55,59].
In summary, although geological-structural elements such as faulting have an intuitive
appeal as important controls on groundwater occurrence [15], since the presence and/or
density of faults influence recharge processes [59] and groundwater migration patterns,
ML based studies find they are of moderate or low utility as indicators of groundwater.

4.4. Groundwater Potential Map

The key output of the RF model is the groundwater potential map for the study area,
presented in Figure 11.
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Most of the study area is classified as low groundwater potential (GWP). Only about
14.1% of the total study area is classified as high or very high GWP; the majority of the
high or very high GWP areas are restricted to narrow zones near riverbeds or alluvial fill
deposits, with some additional zones in the west-central and southwest portions of the
study area. Also, a qualitative inspection of the validation wells for a sub-area plotted in
Figure 11B shows that existing wells do, indeed, lie within the zones of high and very high
GWP.
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It is worth noting that the well database upon which the RF model was based consisted
primarily of wells with low flow rates, and this characteristic of the data must be considered
when interpreting the results presented in a map such as Figure 11. Thus, areas of high
or very high GWP do not necessarily equate to high flow rates. In a practical sense,
however, this is not an important restriction on the significance and usefulness of the map.
Because the region is lightly populated and groundwater use is dominated by individual
landholders and small agricultural communities, there is little need for high-yield wells.
Thus, for this region, the groundwater potential map of Figure 11 therefore constitutes an
appropriate guide for future groundwater exploration efforts.

Additionally, the model output may be important for assessing areas at greater risk
of water shortage. Indeed, the study area is in a region of the country that is subject to
recurring water scarcity [8,12], and these problems are likely to continue or worsen in
response to changing climate. Thus, it is reasonable to expect that wells located in regions
of low or moderate GWP may be more vulnerable to a decrease in precipitation and/or
excessive exploitation than wells located in higher GWP areas. A useful and interesting
extension of the present study might be to refine the assessment of “at risk” areas using
the groundwater potential map, with other indications of groundwater stress (e.g., data on
well abandonment), as inputs to an ML evaluation specifically addressing water resource
vulnerability.

4.5. Final Remarks

Together with the above-mentioned considerations, it is useful to assess the reliability
of the GWP map in terms of the characteristics of existent wells as a function of GWP
classes in the validation set. For that, we formed a characterization matrix for the pixels
with wells (presence) in the test set. The characterization matrix (Table 4) shows the number
of wells (both counts and as a percentage of the total number of wells in the test set) that
fall into pixels with a given GWP. In addition, we provide the total discharge in L/s and
as a percentage of the total discharge for all wells in the validation dataset for the wells in
each GWP class, and the areal coverage represented by the pixels in each category.

Table 4. Characterization matrix for wells in the validation dataset.

GWP Wells Discharge Area

counts % L/s % km2 %
Low 38 3.3 84.0 5.4 16,437.6 70.8

Moderate 101 8.9 281.2 18.0 3512.2 15.1
High 206 18.2 586.1 37.6 2171.8 9.3

Very High 788 69.6 609.2 39.0 1113.7 4.8
Totals 133 100.0 1560.5 100.00 23,235.3 100.0

According to Table 4, approximately 86% of the validation wells were in areas of high
to very high groundwater potential, which provides confidence in the predictive quality
of the model. As was discussed previously, there is no requirement for the wells located
in the high or very high GWP areas to have high discharge rates individually (i.e., per
well); however, these two categories account for 77% of the total granted discharge of the
validation wells dataset.

Taken together, the main findings discussed in this section support the conclusion that
the developed model is a reliable indicator of zones with high potential for groundwater.
Keeping in mind the caveat, discussed before, that high groundwater potential does not
necessarily equate to high discharge rates in the study area, the probability map obtained
and the methodology used in its construction have at least two practical applications in the
context of water resource management in the arid to semi-arid areas of Chile and elsewhere:
(a) they provide valuable information on groundwater potential to guide exploration for
future groundwater resources; and (b) they are likely to be useful for identifying rural areas
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most vulnerable to changing climate and extended drought, such as that which the region
has been experiencing for the past >10 years.

5. Conclusions

Arid and semi-arid regions, covering over 30% of the Earth’s land surface, face chal-
lenges due to limited water resources and the impacts of climate change. To mitigate
the effects of drought and changing precipitation patterns, it is crucial to develop water
resource management strategies based on a deep understanding of the local hydrologic
cycle. However, detailed characterization of hydrogeology in rural or remote areas is often
economically unfeasible.

In this study, we present a case study of the Coquimbo region in north-central Chile, a
thinly settled arid to semi-arid area where traditional field investigations for hydrogeology
characterization are impractical. Instead, we employed Geographic Information System
(GIS) and machine learning (ML) tools to analyze natural and anthropogenic factors, aiming
to evaluate groundwater potential. By utilizing the Random Forest (RF) ML technique and
originally considering 21 groundwater conditioning factors (GCFs) along with existing
springs and wells data, we developed a regional-scale groundwater potential map. The RF
approach demonstrated reliable identification of areas with high groundwater potential,
achieving significant performance levels with an AUC of 0.95 and Kappa of 0.74 for the
study area.

Surprisingly, our study revealed that natural factors such as bedrock geology and
faulting were relatively weak indicators of groundwater potential, contrary to initial expec-
tations.

Lithology and fault density ranked low among the 21 GCFs, aligning with findings
from other ML-based studies. Conversely, anthropogenic factors emerged as strong indica-
tors of groundwater presence, occupying top positions in terms of important criteria (Mean
Decrease Accuracy, or MDA, and Mean Decrease Gini, or MDG) investigated in this study.

Practically, the application of ML techniques allowed us to discern patterns of wells
and leverage past groundwater exploration and exploitation experiences. This approach
enables the identification of areas with high groundwater potential, even if they currently
lack wells, making them suitable for future exploration efforts. It is important to note that
although an area may exhibit high groundwater potential, it does not necessarily guarantee
high discharge rates. While this limitation is not significant for this study, as the wells
primarily serve individuals or small agricultural communities with relatively low yield
requirements, incorporating discharge considerations would be necessary when applying
the methodology to explore high-yield wells for municipal or industrial purposes.

Moreover, besides its relevance in groundwater exploration, the groundwater poten-
tial map developed in this study holds valuable insights into areas sensitive to drought,
overuse, and water stress. The Coquimbo region, like many arid and semi-arid regions
worldwide, has been grappling with water scarcity for over a decade. Wells located in low
groundwater-potential areas are particularly vulnerable to the impacts of changing climate,
precipitation patterns, and infiltration rates. Identification of these vulnerable zones using
the groundwater potential map can serve as an initial step for targeted governmental
intervention, aimed at alleviating the long-term water scarcity challenges faced by affected
rural communities.

Finally, and based on the findings of this study, some recommendations can be made
for future research and water resource management in arid and semi-arid regions: (1) In-
tegration of anthropogenic factors: The significant influence of anthropogenic factors on
groundwater potential suggests the importance of considering human activities and infras-
tructure in water resource management strategies. Incorporating data on social factors, road
connectivity, and other anthropogenic features can enhance the accuracy and effectiveness
of groundwater potential mapping; (2) Validation and refinement: While the Random For-
est (RF) approach showed promising results in this study, further validation and refinement
of the model should be pursued; (3) Continued collection of groundwater data, including
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well yield and discharge rates, can help improve the accuracy of groundwater potential
predictions and ensure their applicability to different contexts; (4) Long-term monitoring:
Given the impacts of climate change and the prolonged water scarcity experienced in arid
and semi-arid regions, long-term monitoring of groundwater resources is crucial. Regular
monitoring can provide valuable insights into the dynamics of groundwater availability,
recharge rates, and potential impacts of climate variability. This information can guide
adaptive management strategies and facilitate early detection of water stress.
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Appendix A

Two hyperparameters of the Random Forest models were chosen for sensitivity analy-
sis: The number of random forest trees of the RF model (ntree) and the number of variables
to try at each node of RF trees (mtry). The set of selected values for each hyperparameter
can be compared with default values used during model building (ntree = 1000, mtry = p/3
where p is the number of predictors, 21 in our case). Note that for reproducibility, a
seed = 40 was used to avoid randomness in the outcomes and to account only for the
selected hyperparameters in the results obtained.

Table A1. Sensitivity analysis of Random Forest (RF) performance metrics with respect to the number
of random forest trees of the RF model (ntree) and the number of variables to try at each node of RF
trees (mtry).

ntree 250 500 1000

mtry 3 7 10 15 3 7 10 15 3 7 10 15

AUC 0.944 0.942 0.942 0.941 0.944 0.943 0.942 0.941 0.945 0.943 0.943 0.942
Sensitivity 0.895 0.897 0.901 0.897 0.893 0.900 0.898 0.900 0.896 0.898 0.897 0.899
Specificity 0.855 0.855 0.859 0.857 0.855 0.856 0.857 0.860 0.854 0.857 0.856 0.856
Kappa 0.750 0.753 0.760 0.754 0.748 0.756 0.755 0.760 0.750 0.755 0.754 0.755

References
1. Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, M.; Simmers, I. Global synthesis of groundwater recharge

in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370.
2. Lictevout, E. Acces a l’eau des Populations Vulnerables en Zone Aride: Un Probleme de Ressource, de Gestion ou d’information?

Thèse pour Obtenir le Grade de Docteur de l’Université de Montpellier. 2018. Available online: https://theses.hal.science/tel-02
045888/document (accessed on 5 November 2022).

3. UNDDD. United Decade for Desert and the Fight against Desertification. 2017. Available online: http://www.un.org/en/events/
desertification_decade/whynow.shtml (accessed on 12 August 2019).

https://theses.hal.science/tel-02045888/document
https://theses.hal.science/tel-02045888/document
http://www.un.org/en/events/desertification_decade/whynow.shtml
http://www.un.org/en/events/desertification_decade/whynow.shtml


Water 2023, 15, 3005 25 of 27

4. Arab Water Council. Vulnerability of Arid and Semi-Arid Regions to Climate Change: Impacts and Adaptive Strategies. Online
Report. 2009. Available online: https://www.eldis.org/document/A60488 (accessed on 21 August 2021).

5. Souvignet, M.; Gaese, H.; Ribbe, L.; Kretschmer, N.; Oyarzún, R. Statistical downscaling of precipitation and temperature in
North-Central Chile: An assessment of possible climate change impacts in an arid Andean watershed. Hydrol. Sci. J. 2010, 55,
41–57. [CrossRef]

6. Sandoval, E.; Baldo, G.; Núñez, J.; Oyarzún, J.; Fairley, J.P.; Ajami, H.; Arumí, J.L.; Aguirre, E.; Maturana, H.; Oyarzún, R.
Groundwater recharge assessment in a rural, arid, mid-mountain basin in North-Central Chile. Hydrol. Sci. J. 2018, 63, 1873–1889.
[CrossRef]

7. Razavi-Termeh, S.V.; Khosravi, K.; Sadeghi-Niaraki, A.; Choi, S.; Singh, V.P. Improving groundwater potential mapping using
metaheuristic approaches. Hydrol. Sci. J. 2020, 65, 2729–2749. [CrossRef]

8. Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J.L. Influence of Pacific Ocean multidecadal variability on the distributional properties
of hydrological variables in north-central Chile. J. Hydrol. 2013, 501, 227–240. [CrossRef]

9. Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.;
Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. HESS
2017, 21, 6307–6363. [CrossRef]

10. Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought
(2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [CrossRef]

11. CNID. Ciencia e Innovación para los Desafíos del agua en Chile. Consejo Nacional de Innovación para el Desarrollo. 2016.
Available online: https://ctci.minciencia.gob.cl/wp-content/uploads/2017/07/Ciencia-e-Innovaci%C3%B3n-para-los-Desaf%
C3%ADos-del-Agua-en-Chile-2017.pdf (accessed on 21 March 2020).

12. CR2. Report to the Nation. The 2010–2015 Mega-Drought: A Lesson for the Future. Center for Climate and Resilience Research.
2015. Available online: http://www.cr2.cl/wp-content/uploads/2015/11/Megadrought_report.pdf (accessed on 18 September
2019).

13. Taucare, M.; Daniele, L.; Viguier, B.; Vallejos, A.; Arancibia, G. Groundwater resources and recharge processes in the Western
Andean Front of Central Chile. Sci. Total Environ. 2020, 722, 137824. [CrossRef]

14. Taucare, M.; Viguier, B.; Daniele, L.; Heuser, G.; Arancibia, G.; Leonardi, V. Connectivity of fractures and groundwater flows
analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile). Hydrogeol. J. 2020,
28, 2429–2438. [CrossRef]

15. Oyarzún, R.; Oyarzún, J.; Fairley, J.; Núñez, J.; Gómez, N.; Arumí, J.; Maturana, H. A simple approach for the analysis of the
structural-geologic control of groundwater in an arid rural, mid-mountain, granitic and volcanic-sedimentary terrain: The case of
the Coquimbo Region, North-Central Chile. J. Arid Environ. 2017, 142, 31–35. [CrossRef]

16. Novoa, J.; López, D. IV Región: El escenario Geográfico Físico. In Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su
Conservación: Región de Coquimbo, Capítulo 2; Squeo, F., Arancio, G., Gutiérrez, J., Eds.; Ediciones Universidad de La Serena:
La Serena, Chile, 2001; pp. 13–28. Available online: http://www.biouls.cl/lrojo/Manuscrito/Capitulo%2002%20Escenario%20
Geografico.PDF (accessed on 1 March 2019).

17. Favier, V.; Falvey, M.; Rabatel, A.; Praderio, E.; López, D. Interpreting discrepancies between discharge and precipitation in
high-altitude area of Chile’s Norte Chico region (26–32◦S). Water Resour. Res. 2009, 45, W02424. [CrossRef]

18. CNR. Estudio de los Recursos Hídricos en el Secano de IV Región para una Propuesta de Desarrollo Agrícola. Comisión Nacional
de Riego. 2003. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/9499 (accessed on 1 August 2021).

19. Tapia, S. Identificación y Evaluación de Zonas Potenciales de Recarga de Aguas Subterráneas en el Sector de la Mina Escuela
Brillador Mediante Sistemas de Información Geográfica. BSc graduation work, Civil and Environmental Engineering. University
of La Serena, La Serena, Chile, 2015.

20. Luengo, P.; Oyarzún, R.; Oyarzún, J.; Alvarez, P.; Canut de Bon, C. Aguas subterráneas en macizos rocosas fracturados: Su
utilización en zonas rurales montañosas del Centro Norte de Chile. In Proceedings of the VIII Congreso Latino Americano de
Hidrología Subterránea (ALSHUD), Asunción, Paraguay, 25–29 September 2006.

21. Gómez, N. Relaciones Geohidrológicas en Cuencas de la Región de Coquimbo, con Énfasis en Zonas de Secano de Media Montaña.
BSc graduation work, Civil and Environmental Engineering. University of La Serena, La Serena, Chile, 2017; p. 896.

22. Naghibi, S.A.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Rezaei, A. Groundwater qanat potential mapping using frequency ratio and
Shannon´s entropy models in the Moghan watershed, Iran. Earth Sci. Inform. 2015, 8, 171–186. [CrossRef]

23. Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using C5.0, random forest, and multi-
variate adaptive regression spline models in GIS. Environ. Monit. Assess. 2018, 190, 149. [CrossRef]

24. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classifi-
cation and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [CrossRef]
[PubMed]

25. Taheri, F.; Jafari, H.; Rezaei, N.; Bagheri, R. The use of continuous fuzzy and traditional classification models for groundwater
potentially mapping in areas underlain by granitic hard-rock aquifers. Environ. Earth Sci. 2020, 79, 91. [CrossRef]

26. Mousavi, S.; Golkarian, A.; Naghibi, S.; Kalantar, B.; Pradhan, B. GIS-based Groundwater spring potential mapping Using Data
Mining Boosted Regression Tree and Probabilistic Frequency Ratio Model in Iran. AIMS Geosci. 2017, 3, 91–115.

https://www.eldis.org/document/A60488
https://doi.org/10.1080/02626660903526045
https://doi.org/10.1080/02626667.2018.1545095
https://doi.org/10.1080/02626667.2020.1828589
https://doi.org/10.1016/j.jhydrol.2013.07.035
https://doi.org/10.5194/hess-21-6307-2017
https://doi.org/10.1002/joc.6219
https://ctci.minciencia.gob.cl/wp-content/uploads/2017/07/Ciencia-e-Innovaci%C3%B3n-para-los-Desaf%C3%ADos-del-Agua-en-Chile-2017.pdf
https://ctci.minciencia.gob.cl/wp-content/uploads/2017/07/Ciencia-e-Innovaci%C3%B3n-para-los-Desaf%C3%ADos-del-Agua-en-Chile-2017.pdf
http://www.cr2.cl/wp-content/uploads/2015/11/Megadrought_report.pdf
https://doi.org/10.1016/j.scitotenv.2020.137824
https://doi.org/10.1007/s10040-020-02200-3
https://doi.org/10.1016/j.jaridenv.2017.03.003
http://www.biouls.cl/lrojo/Manuscrito/Capitulo%2002%20Escenario%20Geografico.PDF
http://www.biouls.cl/lrojo/Manuscrito/Capitulo%2002%20Escenario%20Geografico.PDF
https://doi.org/10.1029/2008WR006802
https://bibliotecadigital.ciren.cl/handle/20.500.13082/9499
https://doi.org/10.1007/s12145-014-0145-7
https://doi.org/10.1007/s10661-018-6507-8
https://doi.org/10.1007/s10661-015-5049-6
https://www.ncbi.nlm.nih.gov/pubmed/26687087
https://doi.org/10.1007/s12665-020-8830-y


Water 2023, 15, 3005 26 of 27

27. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated
Geoscientific Analyses (SAGA) v. 2.1.4. GMD 2015, 8, 1991–2007. [CrossRef]

28. Prasanta, G.; Sujay, B.; Narayan, C. Mapping of groundwater potential zones in hard rock terrain using geoinformatics: A case of
Kumari watershed in western part of West Bengal. MESE 2016, 2, 1. [CrossRef]

29. Oh, H.; Kim, Y.; Choi, J.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City,
Korea. J. Hydrol. 2011, 399, 158–172. [CrossRef]
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