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Abstract: The density, temperature, and punch head velocity are dominant factors to the variation of
the compacted snow hardness measured by penetrometers. This effect is essential to the construction
and operation of compacted snow roads. The Improved Motor-driven Snow Penetrometers (IMSP) are
utilized in this research to control the penetration speed and measure the true cone hardness during
snow penetration. This study employs a multi-method approach combining orthogonal experiments
and the Support Vector Regression (SVR) technique to analyze the effects of these three factors on
snow hardness. The results of this investigation indicate that, under identical conditions, density is
positively correlated with the hardness of compacted snow, and its sensitivity and significance to
the compacted snow hardness are the greatest. Temperature and penetration speed have an effect
on hardness, which cannot be completely ignored. The hardness of snow close to its melting point,
regardless of its density, decreases significantly at high penetration rates. This study investigates the
factors that influence the hardness of compacted snow and provides substantial technical support for
the design, construction, and maintenance of snow roads.

Keywords: ice and snow structures; compacted snow hardness factors; compacted snow density;
orthogonal experiment; the Support Vector Regression (SVR)

1. Introduction

Recent trends in ice and snow sports have led to a proliferation of studies that focusing
on the mechanical properties of compacted snow. As an important mechanical property
of compacted snow, the hardness plays a significant role in determining the skiing road
performance, because the penetration ability, friction force, and apparent contact area of
skis are closely related to the snow hardness [1–3].

Up to now, great efforts have been devoted to exploring the variation of snow me-
chanical property, with a focus on the influence by temperature, loading rate, density,
and other parameters. Gold [4] utilized the Snow Hardness Gauge, National Research
Council type, to investigate the snow density, temperature, and other factors that may
affect the hardness of snow. Subsequently, the relationship between snow hardness and
density, as well as the relationship between snow hardness and temperature, were pro-
posed. Schweizer et al. [5] found most mechanical characteristics of snow were shown
to be rate-dependent. Temperature had a significant impact on toughness, failure strain,
and the amount of deformation required before failure starts. Landauer [6] conducted
snow uniaxial compression experiments using two distinct methods: constant strain rate
and constant load, and believed that the strain rate of snow was related to snow density,
force, and temperature. Lintzén et al. [7] performed a study on the mechanical proper-
ties of machine-made snow and found that old machine-made snow has lower strength
than new machine-made snow. In general, the uniaxial strength of machine-made snow
with the same density as natural snow is comparable. Surveys such as that conducted by
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Wang et al. [8] have shown that as the loading rate increased, the uniaxial compressive
strength of compacted snow first increased and then decreased. With increasing density,
the uniaxial compressive strength of compacted snow increases as well. In addition, as the
temperature decreases, snow’s uniaxial compressive strength increases, particularly under
low loading rates and high density. The uniaxial compressive strength of snow cover is
significantly influenced by loading rate, density, and temperature.

The existing body of research on compacted snow hardness suggests that the density
of compacted snow, the temperature, and the velocity of the compaction punch head cone
are dominant factors. However, little attention has been paid to which one of these three
elements is most sensitive and significant. A systematic understanding of how these three
factors simultaneously affect compacted snow hardness is still lacking.

In order to contribute to the solution of the problems described above, this study
employees the orthogonal experiments and the Support Vector Regression (SVR with or-
thogonal test data) focused on these three factors: compacted snow density, temperature,
and punch cone penetration speed. The orthogonal test method is selected for its validity
and efficiency [9,10]. The SVR technique has a number of attractive features: SVR can
efficiently manage a nonlinear regression problem by projecting the original feature into
a kernel space where data can be linearly discriminated [11,12]. A further advantage of
SVR is that it learns a model to characterize the importance of a variable between input
and output, whereas a traditional regression method requires the assumption of an inaccu-
rate model [13]. It is an efficient method to incorporate orthogonal experiments into the
analysis of SVR, which makes the model high-accuracy without being overly complex [14].
This study investigated the combined impact of these three factors on snow hardness
and provided valuable information for the construction and application of compacted
snow structures.

2. Materials and Methods
2.1. Overview of the Research Area

This experiment was conducted from mid-December 2022 to late January 2023 in Bin
County, Harbin. Bin County, which is located in the Northeast China Plain, is a typical
example of the temperate monsoon climate. Winter lasts for a long time, with an average
monthly temperature of −15.8 ◦C. The snowfall season runs from November to January.
The maximal snow depth is approximately 41 cm, and the average annual snowfall is
23.6 mm [8]. In order to avoid human influence as much as possible, the snow material is
obtained from the experiment site (45◦59′ N, 127◦15′ E) far away from the urban district (as
shown in Figure 1).
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2.2. Research Equipment

The hardness value of snow is measured by the Improved Motor-driven Snow Pen-
etrometer (IMSP) [15]. With traditional mechanical penetrometers (such as the Ramm-
sonde), it is hard to avoid systematical errors caused by different operators. This part of
systematical error will be avoided by the IMSP.

Figure 2 illustrates the components of the IMSP instrument.
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Figure 2. Improved Motor-driven Snow Penetrometer.

The IMSP device is composed of top and bottom parts. The bottom part is a bearing
table attached to the column that supports the snow sample. A stepper motor, a penetrating
rod, and a control box make up the top part. The laser displacement sensor can be sliding
downward with the penetrating rod. A pressure sensor is attached to the top end of the
penetrating rod, and the cone is a 60-degree punch head.

During the usage period, the IMSP is connected to a 220 V AC power source, and the
penetration pace is input by the control box. Driven by a stepper motor, the rod penetrates
the snow sample downward at a uniform speed. When the cone comes into contact with
the surface of the snow sample, the laser displacement sensor and pressure sensor all begin
to effectively collect data. A digital signal which is received by the computer is obtained
after the conversion of the response of the sensor. An Ethernet data-acquisition program
was available to synchronously store the data of force and displacement, and obtain the
relationship between the hardness true value and displacement [15].
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3. Orthogonal Test Method
3.1. Factors Affecting the Hardness of Compacted Snow

Snow metamorphism is usually carried out in stages. At the first stage of metamor-
phism, the hardness of the compacted snow was found to increase rapidly with increasing
growth of bonds in snow. After the first stage of metamorphism, the growth rate of bonds
decreases so that snow hardness grows slowly [16]. The particle size of the experimental
snow crystals is primarily around 0.6 mm. On a mesoscopic scale, the majority of snow
crystals are broken, and the growth of bonds has attained a certain magnitude (as depicted
in Figure 3). At this stage, the snow crystal has undergone metamorphosis to some extent,
and this state is significantly more stable than that of fresh snow. Therefore, this study
indicates that variations in snow crystals during the experiment will have little effect on
the snow hardness.

Water 2023, 15, x FOR PEER REVIEW 4 of 15 
 

 

in Figure 3). At this stage, the snow crystal has undergone metamorphosis to some extent, 
and this state is significantly more stable than that of fresh snow. Therefore, this study 
indicates that variations in snow crystals during the experiment will have little effect on 
the snow hardness. 

  
(a) (b) 

Figure 3. Snow crystal after the first stage of metamorphism: (a) Single snow crystal; (b) Multiple 
snow crystals. 

Collect snowfall from the experimental site that has undergone the first stage of met-
amorphism, and use the mass/volume method to control the density of different snow 
samples. The operation of the mass/volume method is shown in Figure 4a. The test boxes 
used in this experiment are wooden and detachable. The inner wall section of the test box 
is 0.25 m × 0.25 m. Layering compaction can guarantee that the total snow sample is as 
uniform as possible [17]. The compacted sample preparation is shown in Figure 4b. 

With a temperature-controlling refrigerator, the prepared snow samples are stored. 
The IMSP control box manages the cone penetration speed. 

  
(a) (b) 

Figure 4. Compacted snow sample: (a) Control the density of the snow sample with a high-precision 
electronic scale; (b) Preparation of snow samples by layering compaction. 

3.2. Arrangement and Results of Orthogonal Experiment 
Applying the orthogonal experimental technique, three-factor, eight-level test was 

carried out, and the input factors were optionally corresponding to the three columns of 
the L64(89) orthogonal table. The constant penetration velocity of the IMSP punch head, 
the density, and the temperature of the compacted snow sample are the three factors. The 

Figure 3. Snow crystal after the first stage of metamorphism: (a) Single snow crystal; (b) Multiple
snow crystals.

Collect snowfall from the experimental site that has undergone the first stage of
metamorphism, and use the mass/volume method to control the density of different snow
samples. The operation of the mass/volume method is shown in Figure 4a. The test boxes
used in this experiment are wooden and detachable. The inner wall section of the test box
is 0.25 m × 0.25 m. Layering compaction can guarantee that the total snow sample is as
uniform as possible [17]. The compacted sample preparation is shown in Figure 4b.
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With a temperature-controlling refrigerator, the prepared snow samples are stored.
The IMSP control box manages the cone penetration speed.

3.2. Arrangement and Results of Orthogonal Experiment

Applying the orthogonal experimental technique, three-factor, eight-level test was
carried out, and the input factors were optionally corresponding to the three columns of
the L64(89) orthogonal table. The constant penetration velocity of the IMSP punch head,
the density, and the temperature of the compacted snow sample are the three factors. The
minimum constant penetration velocity of the IMSP punch head is 15.03 mm/s and the
maximum is 21.11 mm/s; the minimum density of compacted snow samples is 354 kg/m3

and the maximum is 438 kg/m3. The minimum temperature value is −38 ◦C, and the
maximum is −3 ◦C. With equal spacing between each level, these three factors are fixed at
eight levels. V represents the cone penetration speed; ρ represents the density of compacted
snow samples; and T represents the temperature of compacted snow samples. The design
method and experimental factors, in order, are detailed in Table 1.

Table 1. Level number of factors for compacted snow hardness test.

Level Number
Factors

V (mm/s) ρ (kg/m3) T (◦C)

1 15.03 426 −3
2 15.90 438 −8
3 16.77 354 −13
4 17.64 366 −18
5 18.50 378 −23
6 19.37 390 −28
7 20.39 402 −33
8 21.11 414 −38

Table 2 details the specific experimental design, including experimental factor settings
and experimental outcomes (the IMSP Value). Among them, e represents the empty column
of the orthogonal experimental table.

Table 2. Orthogonal experiment arrangement and test results.

Test Number
Factor Level Empty

Column IMSP
Value (kPa)

Test
Number

Factor Level Empty
Column IMSP Value

(kPa)
V ρ T e V ρ T e

1 1 1 1 1 717.88 33 5 1 5 2 869.88
2 1 2 2 2 1030.80 34 5 2 6 1 888.56
3 1 3 3 3 187.04 35 5 3 7 4 457.92
4 1 4 4 4 309.32 36 5 4 8 3 630.40
5 1 5 5 5 325.68 37 5 5 1 6 255.24
6 1 6 6 6 371.40 38 5 6 2 5 441.52
7 1 7 7 7 436.44 39 5 7 3 8 469.88
8 1 8 8 8 791.60 40 5 8 4 7 519.20
9 2 1 2 3 696.52 41 6 1 6 4 820.04

10 2 2 1 4 1075.16 42 6 2 5 3 799.80
11 2 3 4 1 326.76 43 6 3 8 2 363.64
12 2 4 3 2 295.84 44 6 4 7 1 468.60
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Table 2. Cont.

Test Number
Factor Level Empty

Column IMSP
Value (kPa)

Test
Number

Factor Level Empty
Column IMSP Value

(kPa)
V ρ T e V ρ T e

13 2 5 6 7 405.80 45 6 5 2 8 415.92
14 2 6 5 8 574.20 46 6 6 1 7 525.88
15 2 7 8 5 651.32 47 6 7 4 6 619.52
16 2 8 7 6 799.40 48 6 8 3 5 562.60
17 3 1 3 6 938.96 49 7 1 7 5 891.88
18 3 2 4 5 1000.28 50 7 2 8 6 1150.84
19 3 3 1 8 231.96 51 7 3 5 7 365.88
20 3 4 2 7 376.12 52 7 4 6 8 420.48
21 3 5 7 2 463.60 53 7 5 3 1 634.56
22 3 6 8 1 466.40 54 7 6 4 2 567.28
23 3 7 5 4 588.44 55 7 7 1 3 402.20
24 3 8 6 3 667.64 56 7 8 2 4 466.52
25 4 1 4 8 426.20 57 8 1 8 7 909.32
26 4 2 3 7 925.00 58 8 2 7 8 1116.48
27 4 3 2 6 311.40 59 8 3 6 5 390.84
28 4 4 1 5 388.48 60 8 4 5 6 384.04
29 4 5 8 4 379.04 61 8 5 4 3 646.20
30 4 6 7 3 344.92 62 8 6 3 4 397.24
31 4 7 6 2 592.48 63 8 7 2 1 572.80
32 4 8 5 1 613.24 64 8 8 1 2 612.36

In orthogonal experiments analysis, an empty column is often used as the error column,
which is the sum of the effects on hardness by other factors, except those already proposed
(i.e., density, temperature and punch head velocity). Error analysis can be used to describe
the significance of factors in the variance analysis of orthogonal experiments [18].

3.3. Range Analysis Results and Discussions

The orthogonal table states that range analysis allows one to assess the sensitivity of
each factor to the IMSP Value [19].

In reference to the general method of orthogonal experimental processing, the IMSP
Value of ith-factor and jth-level number is specified as Fj

i . Furthermore, the total average of
all data, F(X), can be calculated:

F(X) =
1

64

3

∑
i=1

8

∑
j=1

Fj
i = 574.17kPa, (1)

Take the average of all the IMSP Value that appear at jth-level of ith-factor in the
experimental design, which is indicated as the average level value of ith-factor at jth-level,
denoted as Fj

i . The range of ith-factor’s effect on the hardness of compacted snow (∆Fi) is

defined by the difference between the maximum and minimum values among Fj
i , and j is

from 1 to 8. Table 3 represents the range analysis of the experimental results.

Table 3. Mean and range analysis (kPa) of orthogonal test.

Factors F1
i F2

i F3
i F4

i F5
i F6

i F7
i F8

i ∆Fi

V 521.27 603.13 591.68 497.60 566.57 572.01 612.46 628.66 131.07
ρ 783.84 998.36 329.43 409.16 440.75 461.11 541.64 629.07 668.94
T 526.14 538.95 551.39 551.85 565.14 569.66 622.41 667.83 141.69
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The results are directly compared with the previously reported findings on snow
hardness. Zhang conducted measurements of the compacted snow in Harbin utilizing the
IMSP [15]. In Figure 4.5 (a) of reference [15], the hardness value of hexagonal dendritic
snow crystals is measured to be approximately 490 kPa at the density of 400 kg/m3. This is
similar to the F7

ρ presented in Table 3 of this study (i.e., the average hardness of 402 kg/m3

of snow is 541.64 kPa within the experimental range). This observation suggests that the
orthogonal test analysis maintains a certain degree of reliability.

The range of sample density, ∆Fρ, is 668.94 kPa, which is significantly greater than the
ranges of sample temperature (141.69 kPa) and cone penetration speed (131.07 kPa). The
range analysis of various factors reveals that, within the factor range of this experiment,
the impact of compacted snow density on hardness is by far the greatest, surpassing the
impact of temperature and penetration speed.

3.4. Variance Analysis

The range analysis method does not account for the effects of data variations carried on
by the testing circumstances, nor does it provide a standard for evaluating the significance
of each factor’s influence [20]. In contrast to the range analysis method, the variance
analysis method appropriately corrects this weakness [21,22].

Using the quantitative F-test results, it can be determined if the effects of particular
factor is significant. The following are the fundamental steps of variance analysis [23].

For a particular factor i, let SSi be

SSi =
1
8

8

∑
j=1

(8Fj
i)

2
− 1

64
[64F(X)]

2

= 8
8

∑
j=1

(Fj
i)

2
− 64[F(X)]

2, (i = V, ρ, T) (2)

SSi signifies the effect of the ith-factor on the experimental results, which is also known
as the sum of squares of ith-factor’s deviations.

The expression for the variance of the ith-factor (i.e., Vi) is as follows:

Vi =
SSi
d fi

, (3)

The degree of freedom of the ith-factor, which is 7 in this study, is denoted by dfi.
To increase the reliability of the F-test, Vi should be evaluated against Ve, calculating

FTESTi (empty column in the orthogonal table serves to show the experimental error
variance Ve for this study). The FTEST for the ith-factor is as follows:

FTESTi =
Vi
Ve

, (4)

Table 4 lists the analysis results for variance.

Table 4. Analysis results for variance calculated from every factor and error term.

Sources SSi dfi Vi FTESTi

V 114,441.90 7 16,348.84 4.44
ρ 2,765,486.06 7 395,069.44 107.35
T 126,117.76 7 18,016.82 4.90
e 25,760.88 7 3680.13 ——

Figure 5 shows the result of FTESTi with Fα(7, 7) for comparison.
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Figure 5. FTEST of various factors and Fα(7, 7) comparison results. A higher FTEST than Fα(7, 7)
indicates that this factor is significant, at least at an inspection level of α.

It can be observed that the penetration velocity and sample temperature FTESTs are
both greater than F0.05(7, 7), so it can be concluded that the penetration velocity and sample
temperature are significant at a 0.05 inspection level. And the FTEST of the sample density
is greater than F0.001(7, 7), so it can be concluded that, at an inspection level of 0.001, the
sample density is statistically significant.

The results of the analysis of variance indicate that:

1. Sample density has the most significant influence on the hardness of the sample;
2. The penetration velocity and sample temperature are significant at an inspection level

of 0.05 and cannot be ignored.

4. Support Vector Regression (SVR) Algorithm for Model Development

Obtaining a continuous fitting function between each factor and the output variable,
the IMSP Value, will make it more straightforward to study the properties that affect
snow hardness within the experimental range. This can be an important addition to
orthogonal experiment analysis. Numerous academic works have employed the orthogonal
experiment-SVR to investigate different issues, obtaining favorable achievements [24,25].
To accomplish continuous fitting, this article employs the Support Vector Regression (SVR),
which has multiple advantages and is widely utilized in regression analysis [26,27].

4.1. The Selection of Kernel Function

The selection of kernel function types is the most widely studied problem within the
field of SVR model research. This study employs a Gaussian Radial Basis Function (RBF)
kernel. The Gaussian RBF kernel can suit multiple functions more precisely than Linear
SVR, Sigmoid SVR, and Polynomial SVR [28].

Equation (5) represents the fitting function of this SVR model, which combines the
Gaussian RBF kernel function and the support coefficient.

F =
n

∑
i=1

ki · G(X, X′), (5)
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In this experiment, X is the support vector for the algorithm; G(X, X′) is the mapping
of each support vector under the Gaussian RBF kernel; and ki is the support coefficient for
each Gaussian RBF kernel.

Equation (6) expresses the kernel function of the Gaussian distribution.

G(X, X′) = e
− ‖X−X′‖2

2σ2 , (6)

4.2. The Particle Swarm Optimization-Support Vector Regression (PSO-SVR) Parameter
Optimization Architecture and Proceeding

In this research, the PSO method, which is often used in SVR, is applied to optimize
the penalty factor c and the SVR model parameter γ [29–31].

In actual operation, parameter optimization is accomplished with the architecture
depicted in Figure 6.
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Figure 6. PSO-SVR architecture to optimize the penalty factor c and the SVR model parameter γ.

The optimization steps of PSO-SVR are shown as follows:

1. Initialize all particle positions and speeds at random;
2. Based on the fitness function of the snow hardness estimate issue, the fitness value of

each particle is determined;
3. The fitness value of each particle is compared with both Pbest (i.e., the best position

visited by this particle so far) and Gbest (i.e., the best position found by all the particles
so far). In the event that the fitness value surpasses the current value of Pbest, it is
necessary to update Pbest with the new fitness value. In the event that the fitness
value surpasses the current value of Gbest, the Gbest should be updated with the new
fitness value;

4. In order to expand the space for particles and prevent convergence to local optima, it
is necessary to reset the penalty factor c of the SVR on each update;

5. Update the position and speed of every individual particle until the predetermined
maximum number of iterations has been attained. Subsequently, output the optimal
parameters. Alternatively, go back to Step 2.
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4.3. The Result of PSO-SVR Algorithm

With 64 orthogonal experiment results (i.e., Table 2), the PSO-SVR algorithm is applied
to the experiment to fit the continuous function of the three factors (i.e., density, temperature
and punch head velocity) and the IMSP Value. The support vector and coefficients must be
calculated first. Each input factor must be adjusted prior to training ω = (X, t) in order to
set the iteration range of the Gaussian RBF kernel function parameter and penalty factor c.
The output value G is normalized based on Equation (7), with the normalization interval
[ymin, ymax] set to [−1, 1]. Equation (8) represents the function expression fitted by the
SVR, where ω is the support vector, n is the number of support vectors, ki is the coefficient
corresponding to the i-th support vector Gaussian RBF kernel, and b is the constant term of
the function. Through reverse normalization, the ultimate predicted value G is obtained.{

ω′ = ymax−ymin
ωmax−ωmin

(ω−ωmin) + ymin

G′ = ymax−ymin
Gmax−Gmin

(G− Gmin) + ymin
, (7)

G′ =
n

∑
i=1

ki exp(−γ
∥∥ω′ −ω′∗∥∥2

) + b, (8)

58 support vectors are identified among the final 64 training sample points. Table 2
can be utilized as training samples to determine Table A1 in Appendix A. Table A1 pro-
vides a listing of the normalized support vectors and coefficient terms, with a constant
term b of −0.224.

The normalized support vector, corresponding coefficient term, and constant term b
are introduced into Equation (8) to determine the continuous function relationship between
the three experimental factors and the output variable, the IMSP Value (i.e., the SVR model).

Figure 7 depicts a comparison between the predict values obtained from algorithm
training and the true experimental values.
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is extremely close to the actual values, showing the accuracy performance of this SVR model.

The SVR model can get a minimal deviation between the actual value and the predict
value, and this model has good nonlinear fitting ability. After seeking for parameters by
PSO optimization, the SVR model parameter γ in this study is 0.497, and the penalty factor
c is 8.594. The fitness parameter is 0.025, and the R2 value is 0.901.

At a particular penetration velocity, using temperature and density as horizontal
coordinates and the IMSP Value as the vertical coordinates, the coordinate system of SVR
model can be drawn as Figure 8.
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According to Figure 8, Our most intriguing finding is the relationship between com-
pacted snow temperature and hardness. On the one hand, when the density is low and the
penetration speed is constant, the hardness shows a trend to rise first and then drop as the
temperature falls. On the other hand, when the density is high, the hardness shows a trend
to decline first and then increase as the temperature decreases.

Nevertheless, according to Figure 8, the change of the hardness brought about by
temperature is significantly less than that by density. The relationship between compacted
snow density and hardness is quite substantial. This result is similar to that reported by
orthogonal experiment. In terms of overall trend, except for individual special cases, there
is a significant positive correlation between the hardness and density of compacted snow.
Both the conventional and this investigation illustrate similar performance [32]. A notable
exception is that when the density of compacted snow is low, there is no significant positive
correlation between snow density and hardness at specific temperatures and punch head
speeds. It is suspected that this may be due to the influence of other factors on snow
hardness. Under conditions which the compacted snow density is higher than 400 kg/m3,
the density is the most dominant factor that affects compacted snow hardness. Furthermore,
it is necessary to guarantee that the snow density is sufficiently high, otherwise it is difficult
to obtain compacted snow structures that meet the hardness requirements.

It is worth noting that if the penetration speed is high and the temperature is near the
melting point, the hardness of the snow sample is very low, even if its density is high. This
study suggests that compacted snow structures should avoid loading, particularly rapid
loading, as much as possible when approaching the snow’s melting point.

5. Conclusions

In order to investigate which one among density, temperature and punch head velocity
is more sensitive and significant for compacted snow hardness measured by the IMSP, this
study employs orthogonal experiments. The PSO-SVR algorithm was adopted to obtain
further in-depth between the IMSP Value and these three factors, especially to explore
the special case of a sharp decrease of snow hardness. For compacted snow structures
represented by ski slopes, this investigation can provide some useful information for
construction and usage, especially for structural safety. Specifically, the following are
drawn as conclusions:

1. This study uses the orthogonal experiment method, and orthogonal experiments
are conducted on 64 different samples of compacted snow. The results of the range
analysis indicate that the density of compacted snow samples has the most sensitive
impact on hardness. Temperature and penetration velocity have far less sensitive
effect on hardness than density.

2. According to the variance analysis of the orthogonal experiment, the effect of density
on hardness within the range of this experiment is the most significant. Comparatively,
the effects of temperature and penetration velocity are limited to the inspection level
of 0.05, which cannot be ignored completely. The significance of density is clearly
supported by the current findings.

3. Employing PSO-SVR analysis, we obtain the continuous function relationship be-
tween the IMSP Value and the three factors (i.e., density, temperature, penetration
velocity), within the experimental range. This study not only confirms the positive
correlation between density and hardness [32], but also discovers the relationship
between temperature and hardness. By carefully examining the model, it is found
that if the density of compacted snow is low, the hardness of the snow also tends to
remain low. In this case, there is no significant positive relationship between snow
density and hardness at specific temperatures and punch head speeds. Therefore,
when constructing compacted snow roads, it is necessary to avoid the occurrence of
weak areas of low-density snow. One of the more significant findings to emerge from
this study is that when the temperature approaches the melting point of snow, even
with high density, the hardness remains low, which is especially apparent at high
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penetration velocities. This indicates that the hardness of snow suffers a fundamental
decrease at high temperatures. In actual compacted snow road projects, when the
temperature approaches 0 ◦C, even if the density of the compacted snow road is
high, maintenance of the piste is still required. In this case, skiing is never permitted
because of this sharp decrease in hardness, which could cause serious safety issues.

4. The IMSP employs an electric motor to precisely control the penetration speed,
and utilizes the sensors to precisely measure the end snow resistance. This device
can be used as a penetrating instrument on pistes and lays the groundwork for
future research.
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Appendix A

Table A1. Coefficient terms and normalized support vectors.

Number Coefficient Term
Super Vector

Number Coefficient Term
Super Vector

V ρ T V ρ T

1 −2.773 −1.000 0.714 1.000 30 −8.594 −0.141 0.429 −0.143
2 0.615 −1.000 1.000 0.714 31 8.594 0.141 0.714 −0.143
3 −3.694 −1.000 −1.000 0.429 32 −5.231 0.141 1.000 −0.429
4 8.594 −1.000 −0.714 0.143 33 0.681 0.141 −1.000 −0.714
5 −0.921 −1.000 −0.429 −0.143 34 8.594 0.141 −0.714 −1.000
6 −4.251 −1.000 −0.143 −0.429 35 −8.594 0.141 −0.429 1.000
7 −8.594 −1.000 0.143 −0.714 36 −0.577 0.141 −0.143 0.714
8 0.134 −1.000 0.429 −1.000 37 −8.594 0.141 0.143 0.429
9 −8.594 −0.714 0.714 0.714 38 −8.594 0.141 0.429 0.143

10 5.390 −0.714 1.000 1.000 39 8.594 0.428 0.714 −0.429
11 −8.594 −0.714 −0.714 0.429 40 −8.165 0.428 1.000 −0.143
12 −7.315 −0.714 −0.429 −0.429 41 −8.147 0.428 −1.000 −1.000
13 8.594 −0.714 −0.143 −0.143 42 8.594 0.428 −0.714 −0.714
14 8.594 −0.714 0.143 −1.000 43 −8.594 0.428 −0.429 0.714
15 8.594 −0.714 0.429 −0.714 44 8.594 0.428 −0.143 1.000
16 8.594 −0.428 0.714 0.429 45 8.594 0.428 0.143 0.143
17 4.388 −0.428 1.000 0.143 46 8.594 0.428 0.429 0.429
18 −4.978 −0.428 −1.000 1.000 47 −5.572 0.763 0.714 −0.714
19 8.594 −0.428 −0.714 0.714 48 6.969 0.763 1.000 −1.000
20 8.594 −0.428 −0.429 −0.714 49 −3.816 0.763 −1.000 −0.143
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Table A1. Cont.

Number Coefficient Term
Super Vector

Number Coefficient Term
Super Vector

V ρ T V ρ T

21 −2.825 −0.428 −0.143 −1.000 50 −4.590 0.763 −0.714 −0.429
22 8.594 −0.428 0.143 −0.143 51 8.594 0.763 −0.429 0.429
23 −8.594 −0.428 0.429 −0.429 52 1.699 0.763 −0.143 0.143
24 −8.594 −0.141 0.714 0.143 53 −1.500 0.763 0.143 1.000
25 3.708 −0.141 1.000 0.429 54 −5.748 0.763 0.429 0.714
26 8.594 −0.141 −0.714 1.000 55 −6.869 1.000 0.714 −1.000
27 −8.594 −0.141 −0.429 −1.000 56 6.076 1.000 1.000 −0.714
28 −8.594 −0.141 −0.143 −0.714 57 8.594 1.000 −1.000 −0.429
29 4.343 −0.141 0.143 −0.429 58 −8.594 1.000 −0.714 −0.143
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