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Abstract: Geothermal resources, as a representative of clean energy, has been paid significant attention
in the world. Due to active neotectonics and widespread magmatic rocks, the abundant geothermal
waters in the Kangding area have been investigated. Hydrochemistry and D–O–T isotopy studies
were carried out to clarify the genetic mechanism of geothermal waters. The hydrochemical types of
geothermal waters are mainly Ca2+–Na+–HCO3

− type, Na+–Cl−–HCO3
− type, and Na+–HCO3

−

type. Silicate dissolution and the cation exchange process are the water–rock interactions determining
hydrochemical compositions. The recharge elevation of geothermal water was calculated to be
3034–3845 m, with an average of 3416 m. The reservoir temperatures of shallow and deep geothermal
reservoirs vary from 50 to 115 ◦C and from 114 to 219 ◦C, respectively, and the mixing ratio of cold
water is 0.56–0.89. These findings help to reveal the genetic mechanism of geothermal waters in the
Kangding area.

Keywords: geothermal water; water–rock interaction; geothermal reservoir; recharge source;
Kangding area

1. Introduction

The global geothermal resources are mainly distributed in tectonically active plate
margins, which are manifested in four major high-temperature geothermal belts: the Pacific
Rim, the Mediterranean–Himalayan, the Mid-Atlantic Ridge, and the Red Sea–Gulf of
Aden–East African Rift Tropics [1]. In China, the Mediterranean–Himalayan geothermal
belt consists of the Tibetan, the western Yunnan, and the western Sichuan geothermal
belts [2]. In the context of the “double carbon” goal, the development and utilization of
geothermal resources, as clean, green, and stable energy resources, has become a popular re-
search topic globally [3–5]. The study of the geothermal genesis mechanism is an important
prerequisite for geothermal resource development and utilization. The Earth is releasing
energy outward all the time, but high-quality and high-temperature geothermal resources
are often distributed in specific areas, which are closely related to the geological structure.
Tectonically active volcanic–seismic–orogenic zones tend to form high-temperature geother-
mal resources, while tectonically gentle cratons tend to form low-to-moderate-temperature
geothermal resources or even display no surface heat.

Geothermal fluids constitute a complete circulation of the recharge–runoff–discharge
process in the geothermal system, so it is necessary to trace the flow process of geothermal
water in the study area by hydrogeochemical signatures. Geothermal water lixiviates
minerals during runoff. By analyzing hydrochemical compositions of geothermal waters, it
is possible to assess the water–rock reactions experienced by geothermal water with the
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corresponding hydrogeochemical diagrams [6,7] in the study area. Principal component
analysis, a reduced-dimension algorithm, allows the integration of indicators in the spring
to discern the main sources of ions [8,9]. The geothermal reservoir temperature is one of
the important indicators used to determine the development and utilization of geother-
mal energy, and the calculation of the geothermal reservoir temperature of geothermal
systems is mainly based on empirical formulas, such as SiO2 geothermometer and cation
geothermometer [10–15]. In addition, geothermal water is often mixed with cold water
at the surface during the rising process, and the cold-water mixing ratio can be estimated
using methods such as the SiO2 equation.

The northern section of the Sanjiang orogenic belt is located in the southeastern part of
the Tibetan Plateau, and is a transitional area between the high-temperature hydrothermal
zone in southern Tibet and the high-temperature hydrothermal zone in western Sichuan.
Its geothermal water chemistry types include the Na+–HCO3

− type, Na+–Cl− type, Ca2+

(Mg2+)–SO4
2− type, and Ca2+ (Mg2+)–HCO3

− type [16]. Researchers have investigated the
deep thermal structure and crust–mantle heat flow ratio of the Batang–Litang–Kangding
high-temperature hydrothermal region using a combination of gravity, magnetism, seism,
and helium isotopes, and found that a low-velocity layer exists at a certain depth in
the region, which provides the main heat source for the geothermal system [17]. The
Xianshuihe Fault is a deep-seated fault. As a regional compression-torsional fracture in the
deep crust, the Xianshuihe Fault plays a vital role in determining the hydrothermal activity
of the Kangding geothermal area, which not only conducts the deep heat source [18],
but also provides a channel for groundwater infiltration. Finally, for the geothermal
reservoir temperature of the Kangding geothermal zone, previous studies have evaluated
its development potential using the SiO2 geothermometer, cation geothermometer, and
chemical-thermodynamic geothermometer [19]. In summary, fruitful research results have
been achieved in the Kangding geothermal area. However, due to the complexity of
geothermal evolution in the Kangding geothermal area, the water–rock reactions need to
be studied in depth and the genetic model has yet to be summarized [19–22].

Based on field work, hydrochemistry, and D-O-T isotopy, this study aimed to (1) ex-
plore the hydrogeochemical evolution; (2) identify the geothermal reservoir characteristics;
(3) trace the recharge source and residential time; and (4) build the genetic model of the
geothermal waters in the Kangding area. These achievements would provide a significant
reference for geothermal exploitation and utilization.

2. Geothermal Geological Background

The study area belongs to the Ganzi Tibetan Autonomous Prefecture of Sichuan
Province and is situated at the eastern margin of Tibetan Plateau (Figure 1). The climate
is the sub-temperature plateau humid type with annual temperature of −14 to 29 ◦C and
average annual rainfall of 664.4 to 974.8 mm. The terrain is typical of the alpine valley type
with an elevation of 1390 to 7556 m. The elevation of the snow line in the area is 4800 m
above sea level.

The exposed strata in the study area are mainly the Sinian, Silurian, Devonian, Permian,
and Triassic carbonate and sandstone (Figure 2). The magmatic rocks exposed in the study
area are mainly Neoproterozoic mafic rocks and Yanshanian to Himalayan granite, which
indicates that two phases of magmatic intrusions developed in the study area. The zircon
U-Pb dating results indicate that the latest phase of the Gonggarshan granite is a plagioclase
formed at 15-4 Ma, which is a product of the recent rapid uplift of the Tibetan Plateau [23,24].
The Yanshanian to Himalayan granite is much younger than the Neoproterozoic Kangding
mélange, and the heat generated by the decay of its radioactive elements provides a source
of heat for the geothermal system in the region [25–28]. Due to active neotectonic activity,
a number of faults and fractures have developed in the study area. At a regional scale,
the Xianshuihe, Longmenshan, and Anninghe faults formed a giant “Y”-shaped tectonic
system. The Xianshuihe fault is a strike slip fault, and the Kangding section controls the
hydrothermal activity in the study area. The Xianshuihe fault provides a heat-conducting
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channel for geothermal waters and acts as a water-blocking boundary. The secondary
fractures play a role as a water-conducting channel for geothermal water. Geothermal
springs are distributed along the faults and secondary fractures. The exposed temperature
and flow are 30 to 88 ◦C and 0.3 to 10.0 L/s, respectively.
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Figure 2. (a) Geological map of the study area, (b) Geological section A–B.

3. Sample Collection and Analytical Testing

Eight geothermal water samples and one river water sample were collected in the
study area. The temperature and pH values were measured in situ by a portable device
(WTW-MultiLine Multi 3310 IDS, Xylem Dewatering Solutions, Inc, Washington, DC, USA).
The HCO3

− concentration was determined by HNO3 according to the standard titration
in the field. All water samples were collected by polyethylene bottles after rinsing at least
three times. Afterwards, water samples were sent to the laboratory for hydrochemical
and isotopic analyses in the Tianjin Kehui Experimental Co., Ltd., Tianjin, China. The
concentrations of the cations (Na+, K+, Ca2+, Mg2+, and H2SiO3) were determined by ICP-
OES (ICAP6000, Thermo Fisher Scientific, Waltham, MA, USA). The anion concentrations
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were analyzed by IC (Dionex ICS600, Thermo Fisher Scientific, Waltham, MA, USA). The
detection limit for cations and anions was 1 mg/L, with precision better than 5%. The
charge balance between major anions and cations was from −0.61% to +3.87%, within the
permission range of ±5%. δD and δ18O were measured using a laser absorption water
isotope spectrometer analyzer. The results of δD and δ18O were indicated following the
VSMOW standard, with the precisions of 0.1‰ and 0.5‰, respectively. Tritium (3H) were
analyzed by the electrolytic enrichment method and presented as tritium units (TU).

4. Results and Discussion
4.1. Hydrochemical Characteristics

The concentration of cations and anions of geothermal waters followed the order of
Na+ (112.50–566.10 mg/L) > Ca2+ (3.21–296.59 mg/L) > K+ (20.10–63.40 mg/L) > Mg2+

(0.49–34.05 mg/L), and HCO3
− (317.30–1440.07 mg/L) > Cl− (12.05–322.60 mg/L) > SO4

2−

(1.92–69.16 mg/L), respectively (Figure 3a). Hence, the major cations and anions of geother-
mal waters in the study area were Na+ and HCO3

−, respectively (Table 1). The hydro-
chemical types of geothermal water in the study area can be classified into three types:
Ca2+–Na+–HCO3

− (D1), Na+–Cl−–HCO3
− (D2, D3, D6, D8), and Na+–HCO3

− (D3, D5.
D7) (Figure 3b). The river sample was the hydrochemical type of Ca2+–Mg2+–HCO3

− (D9).
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4.2. Ion Source Analysis
4.2.1. Principal Component Analysis

Principal component analysis aims to transform multiple indicators into a few com-
posite indicators (i.e., principal components) using the idea of dimensionality reduction,
and each principal component is used to analyze and interpret the information contained
in the original data indicators [8,9,29,30]. In order to identify the sources of major elements
in geothermal fluids, the eight indicators of Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−,

and H2SiO3 of eight geothermal water samples were subjected to principal component
analysis in this study. The Kaiser–Meyer–Olkin (KMO) index of 0.72 indicated the ro-
bustness of the PCA analysis. Two integrated indicators, PC1 and PC2, were obtained by
scree plot (Figure 4a). PC1 included the hydrochemical components of Cl−, K+, Na+, and
H2SiO3, indicating the similar source from deep fluids. PC2 consisted of the hydrochemical
components of Ca2+, Mg2+, SO4

2−, and HCO3
−, suggesting that they are determined by

water–rock interactions in Equations (1)–(4) (Figure 4b).
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Table 1. Hydrochemical and D-O-3H isotopic results of geothermal water and river water samples.

Sample ID Sample Type Elevation
(m)

Flow
(L/s)

Discharge T
(◦C) pH TDS

(mg/L)

Charge
Balance

(%)
Hydrochemical Type Na+

(mg/L)
K+

(mg/L)

D1

Geothermal
water

2600 10.0 42 6.2 1262 0.63 Ca2+·Na+–HCO3
− 153.50 20.10

D2 2970 2.0 88 7.1 1091 0.65 Na+–Cl−·HCO3
− 325.70 63.40

D3 2780 0.2 30 6.5 396 0.84 Na+–HCO3
− 112.50 20.20

D4 2920 1.0 65 6.4 788 3.87 Na+–Cl−·HCO3
− 246.50 27.50

D5 2912 1.0 72 7.1 1654 2.10 Na+–HCO3
− 566.10 51.20

D6 2860 2.0 85 7.2 1420 −0.61 Na+–Cl−·HCO3
− 512.10 47.40

D7 3296 1.0 54 7.6 366 1.14 Na+–HCO3
− 136.50 23.30

D8 2978 0.3 74 6.8 1332 2.07 Na+–Cl−·HCO3
− 459.60 45.50

D9 River water 2968 - 10 7.5 109 0.15 Ca2+·Mg2+–HCO3
− 10.30 2.70

Sample ID Ca2+ Mg2+ Cl− SO4
2− HCO3

− H2SiO3 δD δ18O 3H Recharge elevation

mg/L mg/L mg/L mg/L mg/L mg/L ‰VSMOW ‰VSMOW TU m

D1 296.59 27.24 54.59 69.16 1281.42 58.50 −113.2 −15.30 6.89 3034
D2 48.10 17.02 232.55 38.42 732.24 138.90 −118.0 −15.51 4.01 3076
D3 23.25 8.76 61.68 11.53 317.30 40.70 −112.1 −15.43 - 3261
D4 61.72 10.21 165.20 5.76 576.03 109.90 −118.9 −15.62 5.15 3296
D5 52.10 34.05 226.88 3.84 1440.07 114.80 −128.2 −16.03 3.14 3541
D6 13.63 7.30 266.58 3.84 1066.63 117.80 −127.5 −16.14 3.15 3626
D7 3.21 0.49 12.05 1.92 378.32 40.90 −133.2 −18.20 1.73 3652
D8 45.69 14.11 322.60 5.76 878.69 139.10 −125.3 −16.15 - 3845
D9 20.04 7.30 4.25 9.61 109.84 12.00 −110.4 −15.26 5.63 -
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4.2.2. Cl− Correlation Analysis

Cl− is a conservative element in the hydrochemical process and is used to analyze the
ion source [31–33]. In Figure 5, Cl− is significantly positively correlated with Na+, K+, and
H2SiO3, and the R2 values are all above 0.65; it was assumed that they were derived from
deep fluids. The linear correlation between Cl− and HCO3

− was slightly higher than that
between Cl− and Ca2+, Mg2+, and SO4

2−, which may be due to the influence of mantle
degassing and mixing of deep CO2 [34,35]. The positive correlation between Cl− and TDS
also indicates that geothermal water was mixed with deep fluids. In contrast, the linear
correlation between Cl− and Ca2+, Mg2+, and SO4

2− in the geothermal waters was very
low, indicating that they had different sources, such as water–rock interaction.
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4.2.3. Ion Ratio Analysis

The molar ratio of (Na+ + K+)/Cl− is equal to 1 if halite dissolution exists [36]. In this
study, the excess Na+ and K+ concentrations indicated they were possibly derived from
silicate mineral dissolution (Figure 6a).
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(Ca2+ + Mg2+)–(HCO3
− + SO4

2−), (g) CAI-I vs. CAI-II, (h) lg(SiO2) vs. lg(Na+/H+), (i) lg(SiO2)
vs. lg(K+/H+).

When dissolution of carbonate minerals (calcite and dolomite) and gypsum occurs,
the equivalence ratio of (Ca2+ + Mg2+ )/(HCO3

− + SO4
2− ) is 1:1 [37]. As shown in Fig-

ure 6b, the river water sample was located near the 1:1 line, while all geothermal water
samples were distributed above the 1:1 line, which indicates that (Ca2+ + Mg2+) was
less than (HCO3

− + SO4
2−). This reveals that the dissolved Ca2+ and Mg2+ concentra-

tions decreased during transport. The dissolution of calcite and dolomite is shown in
Equations (1) and (2), respectively:

CO2 + H2O + CaCO3 → Ca2+ + 2HCO3
− (1)

CaMg(CO2)3 + 2CO2 + 2H2O→ Ca2+ + Mg2+ + 4HCO3
− (2)

The molar ratio of Ca2+ and HCO3
− is 1:2 after calcite is dissolved, and the molar

ratio of Mg2+ and HCO3
− is 1:4 after dolomite is dissolved. As shown in Figure 6c,d, the

river water sample is plotted near the calcite dissolution line and dolomite dissolution
line, while the geothermal water samples are situated above the calcite dissolution line
and dolomite dissolution line. The plots further prove that the dissolved Ca2+ and Mg2+

concentrations in calcite and dolomite are diluted during the transport. If geothermal water
leaches gypsum (or hard gypsum), the molar ratio of Ca2+ to SO4

2− is 1:1 (Equation (3)).

CaSO4 − nH2O→ Ca2+ + SO4
2− + nH2O (3)

As shown in Figure 6e, all samples are located above the gypsum (or hard gypsum)
dissolution line, which indicates that gypsum (or hard gypsum) was not dissolved in
geothermal water. If evaporated sulfate minerals are dissolved in geothermal water, the
following reaction would occur in solution according to the co-ion effect (Equation (4)):

2HCO3
− + CaSO4 − nH2O→ CaCO3 ↓ + CO2 ↑ + SO4

2− + (1 + n)H2O (4)

HCO3
− and SO4

2− would be negatively correlated. HCO3
− and SO4

2− did not
show a significant negative correlation, which further indicates that the sulfate mineral
gypsum (or hard gypsum) was not dissolved. The Na+ concentration was higher than
the Cl− concentration, which may be due to the dissolution of sodium feldspar and other
sodium-containing minerals. In addition, the influence of cation exchange and adsorption
would cause the Na+ and K+ concentrations of rocks to be replaced by Ca2+ and Mg2+ of
groundwater (Figure 6f). As shown in Figure 6g, the CAI-I and CAI-II values of geothermal
water samples are below zero, which proves that the geothermal water underwent cation
exchange reaction [38,39]. Hence, the geothermal waters were subject to cation exchange
and adsorption, which caused changes in the chemical composition in geothermal water. As
shown in Figure 6h, some geothermal water points are located near the 100 ◦C equilibrium
line (black) of kaolinite and sodium feldspar, and some of the geothermal water points
are located near the 200 ◦C equilibrium line (red) of kaolinite and sodium mica, which
indicates that hydrothermal alteration was a source of Na+ concentration in geothermal
water. Figure 6i also illustrates that the K+ concentration of geothermal water was derived
from the dissolution of muscovite and kaolinite.

4.3. Recharge Source and Residential Time by D-O-T Isotopes
4.3.1. Recharge Source

Hydrogen and oxygen isotopes can be used to calculate the geothermal water recharge
elevation, determine the source of geothermal water recharge, and estimate the intensity
of geothermal water–rock interaction [19,40]. As shown in Figure 7, the geothermal water
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samples and river water sample basically follow the global atmospheric precipitation line or
the local atmospheric precipitation line. Compared with the river water sample, geothermal
water samples deviate in a rightward direction (oxygen isotope drift). Since oxygen isotope
exchange occurred between geothermal water and aquifer rock, the deuterium isotope was
more suitable for estimating the recharge elevation of geothermal water in this study, and
the calculation formula is shown in Equation (5):

H = R−R′
ρ × 100 + h (5)

where H is the recharge elevation (m), R is the δD isotopic value of geothermal water (‰), R’
is the δD isotopic value of atmospheric precipitation (‰), h is the elevation of atmospheric
precipitation (m), and ρ is the δD isotope gradient value of atmospheric precipitation in
the study area, which is taken as −2.6‰/100 m [41]. The recharge elevation of geothermal
waters varied from 3034 m to 3845 m, with an average of 3416 m (Table 1). The results
demonstrated the geothermal waters were recharged by atmospheric precipitation and
snow melt water in the study area.
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4.3.2. Residential Time

In this study, the age range or average retention time of groundwater was estimated
qualitatively by tritium; tritium content less than 1 TU in geothermal fluid is considered to
be mainly due to recharge of sub-modern water before 1952 [44]. As shown in Figure 8a,
the tritium contents of geothermal waters were greater than 1 TU, which indicates that
geothermal water runoff was fast and easily renewed. Due to active local neotectonic
activities, faults and fractures developed in the study area. In addition, the geomorphology
of the study area was of the alpine canyon type, with a large terrain drop and strong
hydrodynamic conditions. As the tritium isotope content increases in geothermal water, the
δ18O values increase in solution, the TDS content decreases, and the recharge elevation also
tends to decrease (Figure 8b). On the one hand, the lower tritium content in geothermal
water indicates that the longer the residential time of geothermal water and the stronger
the water–rock interaction, the greater the solution TDS content. On the other hand, it was
speculated that when geothermal water leached minerals, the lighter oxygen isotopes in
minerals were easily carried to the aqueous solution, which made the solution δ18O values
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lower [45]. Finally, the geothermal water with higher recharge elevation has a larger water
table, making it infiltrate to a deep level and increasing its circulation time (Figure 8c).

1 
 

 
Figure 8. (a) The content of tritium and (b) δ18O vs. tritium. Arrows indicate the increasing effects
of altitude, depth of circulation, and residence time. (c) TDS vs. tritium diagram. Local circulation
system indicates shallow circulation, short residence time, and rapid response to precipitation. Deep
groundwater system indicates longer residence time and different depths.

4.4. Geothermal Reservoir
4.4.1. Water–Rock Equilibrium State

In the Na-K-Mg triangle diagram, the geothermal water samples are all located in the
“immature water” area [46] (Figure 9). This indicates that the intensity of the geothermal
water–rock interaction was not high in the study area, so this study was not suitable for
calculating the geothermal reservoir temperature using the cation geothermometer.
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The mineral saturation index (SI) of the geothermal waters was calculated using
Phreeqc software with the database of phreeqc.dat, and the calculation results are shown
in Table 2. The mineral saturation index was lower than zero, indicating the unsaturated
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condition. Hard gypsum and gypsum were in unsaturated state, which may be due to the
fact that there is no widely distributed paste salt layer in the study area, and the geothermal
water did not fully dissolve and filter hard gypsum and gypsum in the runoff process.
Calcite and dolomite were basically saturated, which was due to the extensive existence
of carbonate rocks in the study area and the full dissolution and filtration of carbonate
minerals by geothermal water in the runoff process. Quartz and chalcedony were basically
in equilibrium, which provides a theoretical basis and data support for the calculation of
the geothermal reservoir temperature by a SiO2 geothermometer.

Table 2. Calculation results of mineral saturation index in the study area.

Anhydrite Calcite Chalcedony Dolomite Gypsum Quartz

D1 −1.62 0.39 −0.09 0.25 −1.49 0.29
D2 −1.98 0.85 −0.13 1.58 −2.29 0.13
D3 −3.23 −0.95 −0.12 −1.93 −2.98 0.3
D4 −2.87 −0.03 −0.04 −0.33 −2.97 0.28
D5 −3.28 0.91 −0.08 2.13 −3.45 0.22
D6 −3.6 0.49 −0.18 1.08 −3.88 0.09
D7 −4.57 −0.34 −0.37 −0.97 −4.56 −0.03
D8 −3.01 0.45 −0.01 0.85 −3.19 0.28

4.4.2. Geothermal Geothermometer

(1) SiO2 geothermometer

The SiO2 geothermometer is often used to calculate the temperature of geothermal
reservoirs [47]. This study used quartz and chalcedony geothermometers for calculations
and, after analysis, a suitable geothermometer was selected to represent the temperature of
the shallow geothermal reservoir in the Kangding area. The equation for calculating the
quartz geothermometer is shown as follows:

No steam loss:
T = 1309/(5.19 − lgSiO2) − 273.15 (6)

Boiling flash steam:

T = 1522/(5.75 − lgSiO2) − 273.15 (7)

The formula for calculating the chalcedony geothermometer is shown below:

T = 1032/(4.69 − lgSiO2) − 273.15 (8)

The calculation results are shown in Table 3.

Table 3. Calculated results of quartz and chalcedony geothermal geothermometer in Kangding
geothermal area (◦C).

Field Survey Silica Geothermometer Silicon Enthalpy Equation

Sample ID Discharge T
Quartz

(No Vapor
Loss)

Quartz
(Maximum
Vapor Loss)

Chalcedony
Cold Water

Mixing
Ratio

Reservoir
Temperature

- ◦C ◦C ◦C ◦C % ◦C
D1 42 97 98 67 82 181
D2 88 141 136 115 58 194
D3 30 81 85 50 89 180
D4 65 128 125 100 73 205
D5 72 130 127 103 67 196
D6 85 132 128 104 56 178
D7 54 81 85 50 58 114
D8 74 141 136 115 70 219
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The geothermal reservoir temperature range calculated by the quartz geothermometer
without steam loss was 81–141 ◦C, and the average value was 116 ◦C; the geothermal
reservoir temperature range calculated by the quartz boiling flash geothermometer was
85–136 ◦C, and the average value was 115 ◦C; the geothermal reservoir temperature range
calculated by the chalcedony geothermometer was 50–115 ◦C, and the average value was
88 ◦C. The quartz geothermometer is suitable for high-temperature geothermal systems
with geothermal reservoir temperature higher than 150 ◦C, and the geothermal reservoir
temperature calculated by the quartz geothermometer was lower than 150 ◦C, so the
chalcedony geothermometer was used to calculate the shallow geothermal reservoir tem-
perature of the area. Hence, the shallow geothermal reservoir temperature of Kangding
geothermal area was 50–115 ◦C.

In order to accurately calculate the initial temperature of geothermal water (deep
geothermal reservoir temperature), as well as the cold water mixing ratio, this study used
the silicon enthalpy equation method to analyze the geothermal water samples [48]. The
silicon enthalpy equation method utilizes the following equations:

Hc X + Hh (1 − X) = Hs (9)

Sic X + Sih (1 − X) = Sis (10)

where Hc, Hh, and Hs are the enthalpy of surface cold water, enthalpy of deep geothermal
water, and enthalpy of hot spring water, respectively; Sic, Sih, and Sis are the SiO2 content of
surface cold water, SiO2 content of deep geothermal water, and SiO2 content of hot spring
water, respectively; X is the cold-water mixing ratio.

In this study, the river water in the Kangding geothermal area was used as the cold
end of the surface, and the silicon enthalpy mixing curve of the study area was drawn as
shown in Figure 10. As a result, the deep heat storage temperature range was 114–219 ◦C,
and the shallow cold water mixing ratio was 0.56–0.89.

(2) Geochemical thermodynamic geothermometer

The geochemical thermodynamic geothermometer, i.e., the multi-mineral equilibrium
graphical method, is a method used to calculate the geothermal reservoir temperature of
the geothermal system based on the mineral saturation index (SI) [49]. It is based on the
principle that the dissolved state of multiple minerals in water is considered a function of
temperature; if a group of minerals approaches equilibrium at a specific temperature at
the same time, the geothermal water can be judged to have reached equilibrium with this
group of minerals, and the temperature at this time is the geothermal reservoir temperature.
The calculation of the mineral saturation index is shown in Equation (11):

SI = logQ/K = logQ − logK (11)

where Q is the mineral activity product and K is the mineral equilibrium constant.
In this study, the point D2 with the highest surface outcrop temperatures was selected

for geochemical thermodynamic geothermometer calculation, and the result is shown
in Figure 11. The mineral saturation index of hot spring site D2 showed convergence
around 200 ◦C, which further indicates that the deep geothermal reservoir temperature
calculated in this study was reasonable, i.e., the deep geothermal reservoir in the Kangding
geothermal area was about 200 ◦C.
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4.5. Genetic Model of Geothermal Waters in the Study Area

Comprehensive analysis of the above conceptual model of the geothermal system in
the study area, as derived in this study, is shown in Figure 12. The study area is located
in a region where a low-velocity, high-conductivity layer existed within the crust, which
was considered to be a local melt. Ice melt water and atmospheric precipitation infiltrated
along the tectonic fissures under great head pressure, and after heating by radioactive
element decay in granite and heating by a deep local melt body, magma water was mixed
in the deep thermal reservoir. Then, the geothermal fluid rose along the secondary water-
conducting fractures of Xianshuihe fault and mixed with the infiltrated cold water in the
shallow fissure thermal reservoir, and the cold-water mixing ratio was about 73%. After
mixing, the geothermal water continued to rise along the dominant fractures and finally
emerged as springs at the surface.
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5. Conclusions

By analyzing the geological and hydrogeochemical conditions of the study area,
this study identified the water–rock interaction, determined the geothermal reservoir
temperature of the geothermal system, and finally explored the genesis mode of the
geothermal system in the Kangding geothermal area.

(1) The hydrochemical types of Kangding geothermal water were mainly Ca2+–Na+–
HCO3

− type, Na+–−–HCO3
− type, and Na+–HCO3

− type. The hydrochemical char-
acteristics of geothermal water were mainly influenced by deep fluid mixing and
water–rock interactions in the Kangding geothermal area.
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(2) The temperature of the deep geothermal reservoir was 114–219 ◦C, the temperature of
the shallow geothermal reservoir was 50–115 ◦C, and the mixing ratio of cold water
was 0.56–0.89.

(3) The geothermal water was affected by water–rock interactions in the study area, and
there was a certain degree of the “oxygen isotope drift” phenomenon. In this study,
the recharge elevation of geothermal water was calculated to be 3034–3845 m, with an
average of 3416 m.

(4) The source of geothermal waters was atmospheric precipitation and high mountain
ice and snow melt water in Kangding geothermal area. It was heated by a radioactive
element decay in the granite and local melt body in the deep part, and mixed with
magma water in the deep geothermal reservoir. Then, the geothermal fluid rose
along the secondary fractures of Xianshui River, mixed with cold water in the shallow
geothermal reservoir, and was exposed at the surface, thereby becoming springs.
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