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Abstract: This study investigates the impact of cross structures on flood occurrences in mountainous
rivers. The governing equations of open channel flow were formulated based on the Saint-Venant
equations. The open channel was segmented, and a node equation was established at each section’s
connection point. An overflow model of bridges and weir dams was also developed. The physical
model of the open channel was simplified and modeled using actual building data and model
calculation requirements. The study found that the primary impact of weirs and bridges on the
open channel was the backwater effect on the water level. The influence of these structures on
the water level in the Huang Stream urban section in the Yellow River Basin was assessed under
various working conditions. The results showed that deleting the #1 weir could reduce the maximum
backwater height by 1.14 m, and deleting the #2 weir could reduce it by 1.09 m. While reducing the
weir height significantly decreased the backwater range and height, it did not enhance the river’s
flood discharge capacity. The Huang Stream contains 17 bridges, 13 of which could potentially affect
flood discharge. The eight flat slab bridges in the submerged outflow state had a significant impact
on flood discharge, with a maximum water level change of 0.51 m. Conversely, the three single-hole
flat slab bridges in the free outflow state downstream had a negligible impact on flood discharge.
The study found that bridges had a greater influence on flood discharge capacity than weirs. This
research provides valuable insights for the reconstruction of cross structures in mountainous rivers
and for managing flood discharge capacity and flood control.

Keywords: open channel flow; weirs; bridges; backwater height; Saint-Venant equations

1. Introduction

Floods in mountain rivers are typically characterized by non-constant, open channel
flow. In 1871, Saint-Venant established a series of partial differential equations, supported
by experimental data, to describe the flow characteristics of unsteady flow in open channels.
These equations, known as the Saint-Venant equations, have been widely used for solving
fluid mechanics problems such as flood routing, sediment scouring and silting [1,2]. Since
the last century, a series of studies have been conducted to improve these equations so
as to solve more and more complicated problems. The Muskingum method has been
proposed based on water balance equations and channel storage equations to calculate
the characteristics of river flow, which contains a convection diffusion equation with a
second-order accuracy difference format and can be solved by dividing the river into
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sections [3]. Kalininh and Milyukov [4] proposed the specific river length method from a
study of unstable flow and unit flood routing, which could also be used to solve watershed
confluence routing problems. Montes et al. [5] combined the Muskingum model with a
simple conceptual model and an error correction scheme to forecast floods and validated the
model using the historical floods data from the central Pyrenees. Lee [6] proposed a more
convenient calculation method for the Muskingum model and demonstrated the accuracy of
this model using historical data. Taking into account the geometry and hydraulic roughness
of river sections, Li et al. [7] combined the Muskingum–Cunge–Todini variable parameter
method with nonlinear reservoir method to study river flood routing. They found that
the accuracy of the Muskingum–Cunge–Todini variable parameter method was higher
than that of the piece-wise Muskingum method. Fenton [8] verified a one-dimensional
flood routing model and several other methods and found that the Muskingum method
was prone to errors when calculating rate parameters for small-slope rivers. However, the
convective diffusion method was found to be more accurate for solving practical problems.

With the development of computer science in recent years, numerical simulation
methods for flood routing have been greatly developed. Saeed et al. [9] collected hydrom-
eteorological and topographic data from the Kabul River Basin in Pakistan and used an
artificial neural network (ANN) model to calculate the flood inundation range. The results
showed that the ANN model achieved higher accuracy than the traditional method and
could improve the accuracy and reliability of flood early warning systems. Tamiru et al. [10]
predicted flood depth and inundation range in the Baro Akobo River Basin in Ethiopia
by combining the ANN model with the Hydrologic Engineering Center’s River Analysis
System (HEC-RAS) models, obtaining high-accuracy results. Liu et al. [11] analyzed flood
risk in the Tieshan River Basin in China using the MIKE FLOOD coupled 1D hydrodynamic
model and simulated the flood inundation status of the basin over two periods. They
proposed a regulation scheme incorporating two new branches to introduce floods origi-
nating from the Shegong River reaches into the Tieshan River. Bulti et al. [12] simulated the
upstream watershed of a dam using the Soil and Water Assessment Tool (SWAT) model
and simulated the downstream watershed of the same dam using the HEC-RAS model.
They analyzed the impact of the dam on watershed hydrology, considering water level,
fluid velocity and flow field distribution. Wang et al. [13] used an unsteady flow method
based on the MIKE 21 FM hydrodynamics module to study the flow characteristics of
complex sections of urban rivers and summarized the general rules for the hydraulic ele-
ments of complex sections. Karymbaris et al. [14] determined the extent of flood disasters
in the Megalo Rema catchment area in Greece using multicriteria decision analysis and
geographic information system (GIS), verifying the accuracy of flood disaster maps using
historical flood data. Liu et al. [15] established a one-dimensional and two-dimensional
coupling model by calculating the river flow discharge, considering flow discharge as
boundary conditions for flood storage and detention areas. Liu et al. [16] conducted flood
risk assessments for 2030 and 2050 using a new watershed-scale framework, exploring
changes in future flood risks. He et al. [17] used machine learning methods to predict
floods in a certain region in 2020 with small errors.

Cross-channel structures, such as bridges, culverts, weirs and dams, are commonly
built at the intersection of channels, rivers and roads. These structures have the potential
to affect flood conveyance in both mountainous and flat areas. In mountainous areas,
weirs, dams and bridges constructed on rivers may affect the flood discharge capacity
of rivers. It is necessary to study the influence of cross structures on flood discharge
capacity in mountainous areas to provide a scientific reference for flood control. The effect
of these structures may be greater in mountainous areas due to factors such as bridge
submergence being more common than in flat valleys [18]. A numbers of studies have been
conducted to discover the influence of bridges, dams and gates on flood discharge capacity
of rivers. Malik et al. [19] conducted a series of physical model experiments to study the
influence of the number and spacing of piers on the backwater region of a bridge. Subedi
et al. [20] simulated bridge pier sizes and flows considering various river configurations,
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to study the effect of bridge pier closure on the upstream flood. Ren et al. [21] studied
six bridges on the Nandu River, China, using the MIKE 21 model to calculate incremental
backwater values at different discharges. They compared the results with those estimated
via the Henderson and D’Aubuisson formulas. The MIKE 21 model was more accurate in
simulating complicated terrain, while empirical formulas were less accurate. For bridges on
complex terrain or crucial for flood control, MIKE 21 should be used to estimate upstream
backwater depth for better accuracy. Vaheddoost et al. [22] used energy and momentum
equations to define the discharge process in a study of overflow calculation for gates
under submerged flow conditions. They employed the implicit optimization method to
determine contraction and flow coefficients. Mohamed et al. [23] studied the overflow
characteristics of gate types with orifices, finding that they attained a higher overflow
capacity than traditional gates. Zhang et al. [24] used numerical simulations to analyze the
flood diversion effect of the Huayuan Lake flood area in the Huai River Basin under once-
in-a-century flood conditions. The results demonstrated that late opening of the gate could
improve the flood discharge capacity of the flood area by effectively slowing down the
inundation process of the Huayuan Lake flooding area, which is conducive to improving
the capacity of the main stream of the Huaihe River to store floodwater. Baird et al. [25]
established a two-dimensional numerical model to simulate the flow process through a
physical model of rock vanes and bend weirs, obtaining the hydraulic performance of these
structures. Seyedjavad et al. [26] investigated the effect of piano key weirs on the river
flow velocity at different locations. Li et al. [27] used numerical simulations to study the
influence of inlet and outlet width ratios on the overflow process of piano key weirs. Atashi
et al. [28] studied the impact of W weirs on water flow via physical model experiments.
Skilodimou et al. [29] proposed a simple method to produce a flood hazard assessment map
in burned and urban areas, where primary data are scarce, and applied the method to a
case study in Nea Makri, Greece. Salehi et al. [30] investigated the discharge characteristics
of different types of gates using dimensional analysis and multiple regression techniques,
proposing empirical equations for the overflow process of different gate types. In summary,
one-dimensional numerical models can effectively reflect the influence of cross structures
on the river water level and flow discharge. Previous research has studied the influence
of bridges and weirs on the river flood discharge capacity. However, there is still a gap
in how different types of bridges, considering changes in weir height, affect river flood
discharge capacity.

This article investigates the impact of cross structures, such as weirs and bridges, on
the flood-carrying capacity of rivers, using a combined method of physical experiments
and numerical simulations. The aim of this study is to calculate and analyze the impact
of different dam heights and bridge types on the flood-carrying capacity of mountainous
rivers in the urban section of Huang Stream in the Yellow River Basin under 5% flood
frequency conditions. Specifically, this study formulates the governing equations of open
channel flow based on the Saint-Venant equations, segments the open channel, establishes
a node equation at each section’s connection point and develops an overflow model of
bridges and weir dams. The physical model of the open channel is simplified and modeled
using actual building data and model calculation requirements. The study assesses the
influence of these structures on the water level in the Huang Stream urban section in the
Yellow River Basin under various working conditions and provides valuable insights for the
reconstruction of cross structures in mountainous rivers and for managing flood discharge
capacity and flood control.

2. Methodology
2.1. Mathematical Model

River hydraulic simulation analysis was established based on the Saint-Venant equa-
tions for flow in open channels. The principle governing equations are described below.

The first group of governing equations is the Saint-Venant equations, which are a set
of partial differential equations that describe the flow of water in an open channel. The
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basic equations for 1D non-constant flow in an open channel, including continuity and
dynamic equations, can be written as:

BT
∂Z
∂t

+
∂Q
∂x

= q (1)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂Z
∂x

+ gA
|Q|Q

K2 = 0 (2)

where q is the lateral inflow of the river, m3/s; BT is the river width, m; A is the area of
water passing section, m2; Z is the section water level, m; Q is the flow rate of section,
m3/s; K is the flow modulus, m3/s.

The second control equation is the nodal equation. River sections are connected via
nodes. Each node should meet the following two articulation conditions: flow and power
articulation conditions. Regarding flow connection conditions, the flow at each node must
meet the water balance principle, i.e., the flow into the node at each moment is equal to the
change in node water storage, as follows:

n

∑
j=1

Qj
i =

dωi
dt

(3)

where Qj
i is the flow of the river j into node i, m3/s; ωi is the storage capacity of node i, m3;

and n is the number of channels discharging into node i.
The node provides storage and regulation functions, and the flow continuity at a given

node can be expressed as:
∂H
∂t

=
∑ Qt

St
(4)

where St is the water area at the node at time t, m2; H is the node level, m; and ∑ Qt is the
node flow sum at time t, m3/s.

The difference form of the above nodal equation is:

Ht+∆t = Ht +
∑ Qt∆t

St
(5)

Considering nodes without storage capacity, the following applies:

∑ Qt = 0 (6)

Under dynamic connection conditions at a certain node, the water level and flow of
each connecting river section and the average water level at the node must meet the actual
dynamic connection conditions, which should satisfy the Bernoulli equation.

If the node provides no regulation and storage functions, the power connection condi-
tions can be simplified as follows:

Hi = Hn (7)

where Hi is the water level of the cross-section of the river connected to the node, m; and
Hn is the node water level, m.

If a gate or weir occurs at the node or the water-passing area greatly varies, the power
connection conditions can be expressed as:

aHi + bQi + cHj + dQj = e (8)

In the above equation, when the node is a gate or weir, e does not equal 0; when the
node exhibits a highly variable water-passing area, e is 0.

The entire river is a combination of several river sections and nodes. The governing
equation is a differential equation system obtained by combining the governing equations
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of each channel with the connection conditions of each node and the initial and boundary
conditions. By numerically solving the differential equations of the river water volume,
hydraulic variables such as the water level and flow rate at the designated section of each
river channel and at each node can be obtained.

The third control equation is the inner boundary processing equation. The boundary
conditions in the model include three types: concentrated side inflow, sudden change in
the water cross-section and overflow of the weir and sluice.

1. Concentrated side inflow. Under concentrated side inflow conditions, a virtual
reach can be set to satisfy the basic continuity equation, as follows:{

Zj = Zj+1
Qj + Q f = Qj+1

(9)

where Zj and Zj+1 denote the water levels in sections j and j+ 1, respectively, m; Qj and Qj+1

denote the flow levels in sections j and j + 1, respectively, m3/s; and Q f is the side
concentrate inflow, m3/s.

2. Sudden change in the water-passing section. After the boundary has been general-
ized into a number of one-dimensional river sections connected end to end, the area of each
section may not change continuously, and a sudden change in the water-passing section
may occur. The compatible conditions are as follows: Qj = Qj+1

Zj +
u2

j
2g = Zj+1 +

u2
j+1
2g + ζ

(uj−uj+1)
2

2g

(10)

where uj and uj+1 denote the flow rates in sections j and j + 1, respectively, m3/s; ζ is the
local drag coefficient; and g is the acceleration of gravity, m2/s.

3. Overflow of weirs and gates. In actual projects, gates are often set up in rivers
to control the water volume or water level. The following 3 types of inflow and outflow
conditions exist:

When closing the gate, the following applies:

Q = 0 (11)

When opening the gate for diversion purposes (Zd > Zu), if (Zu − Z0) ≤ 2
3 (Zd − Z0),

free flow occurs, which can be determined as follows:

Q = u1φB
√

2g(Zd − Z0)
3
2 (12)

If (Zu − Z0) >
2
3 (Zd − Z0), the submerged outflow can be determined as:

Q = u2φB
√

2g(Zd − Z0)
√

Zd − Zu (13)

When opening the gate for drainage purposes (Zd < Zu ), if (Zd − Z0) ≤ 2
3 (Zu − Z0),

free flow occurs, which can be obtained as:

Q = u1φB
√

2g(Zu − Z0)
3
2 (14)

If (Zd − Z0) >
2
3 (Zu − Z0), at this point the gate is flooded. The submerged outflow

can be obtained as:
Q = u2φB

√
2g(Zu − Z0)

√
Zu − Zd (15)

where u1 is the discharge coefficient of free flow; u2 is the discharge coefficient of submerged
outflow; φ is the relative opening height of the gate; B is the width of the gate opening, m;
Q is the drainage flow rate, m3/s; Zu is the upstream water level of the gate, m; Zd is the
downstream water level of the gate, m; and Z0 is the gate bottom elevation, m.
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The fourth control equation is the bridge backwater height calculation equation.
Bridges can be divided into two types: flat slab bridges and arch bridges. The arch
bridge overcurrent can be calculated as follows:

Q = 0.7083K
√

2gY
3
2

u b

[
1− 0.1294

(
Yul
r

)2
− 0.0177

(
Yul
r

)4
]

(16)

where K is the flow coefficient; Yu is average water depth upstream of the bridge; b is
the bridge opening width; r is radius of the curvature; and Yul is the limit value of the
average water depth upstream of the bridge (for Yu

r < 1.49555, Yul = Yu; for Yu
r > 1.49555,

Yul = 1.49555r).
A flat slab bridge is a common kind of bridge structure which consists of several

beams and plates. The overcurrent of piers of flat slab bridges can be obtained as:

Q = Kb
√

2g

(
Y− θ

V2
dS

2g

)(
hu − hd + β

V2
us

2g

) 1
2

(17)

where Y is the downstream depth of the bridge, m; θ is an adjustment coefficient (the default
value is 0.3); Vd and Vu are the flow velocities upstream and downstream, respectively,
of the bridge, m3/s; hu and hd are the water levels in the upstream and downstream
sections, respectively, of the bridge, m; and β is an adjustment factor, which varies with the
bridge opening.

2.2. Model Solution

The basic principle of the model solution is to break the river down into a series of sin-
gle channels, from tributaries to the main stream and from upstream to downstream, which
can be solved via the calculation method of a single channel. To facilitate the calculation and
maintain data continuity, the river channel should be generalized to establish a numerical
model and determine the solution. The basic principle of river generalization is that the
storage capacity, water transfer capacity and water surface ratio of the generalized river are
similar to those of the actual river. The Saint-Venant equations can mainly be solved via
the characteristic line and finite difference methods. This study chose the Abbott–Ionescu
six-point implicit finite difference scheme in the solution process. This scheme does not
calculate the water level and discharge at each grid point at the same time, but alternately
calculates the water level or discharge in a sequential manner, referred to as points H and
Q, as shown in Figures 1 and 2, respectively. This format is unconditionally stable and
provide stronger stability with a lower error rate. It is also faster.
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3. Case Analysis and Results
3.1. Overview of the Research Area

The Huang Stream is a first-class tributary of the Dawen River, which is part of the
Yellow River Basin, as shown in Figure 3. The downstream reach includes the central
urban area of Yiyuan County. This area is located in the middle of Zibo City in Shandong
Province, China, which has a land area of 1636 km2. There are many high mountains,
valleys, pits and streams upstream of the Huang Stream, with torrents and surging waves
during the rainy season. During the dry season, the river dries up, and the flow rate greatly
changes. After inflow into Yiyuan County, the flow velocity declines, which facilitates
sediment deposition, and the riverbed is relatively flat. The vegetation upstream of the
Huang Stream is abundant. The terrain on both banks of the middle and lower reaches
is low. In cases of high floods, the main river channel overflows into the low-lying areas
on both banks, driving sediment into the river. Bridges and weirs have been built in the
Huang Stream for flood and sand control purposes. The study area is located downstream
from the Huang Strean reach where it joins the Dawen River and is depicted in yellow
in Figure 3.
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3.2. River Simplification

The analysis of the impact of cross structures on the flood discharge capacity of moun-
tain rivers primarily focused on the urban section of the Huang Stream. The study area
begins near the power building upstream of the Huang Stream and extends to the conflu-
ence of the Huang Stream and Dawen River, covering a total length of 1877.65 m. Within
this study area, two types of cross structures are present: weirs and bridges. There are a
total of fifteen flat slab bridges, two arch bridges and two weirs. The river simplification
process takes into account the Huang Stream, Meijiayuan Stream and the confluence of
rivers. Following the fundamental principle of river simplification, fifty-four sections of
the Huang Stream and three sections of the Meijiayuan Stream were considered as repre-
sentative sections. Additionally, seventeen bridges and two weirs were constructed along
the river, resulting in a total number of seventy-six sections, as depicted in Figure 4.

Based on the site reconnaissance of each river section’s riverbed and bank, the
roughness values were preliminarily determined within the range of 0.025 to 0.04. Rate-
constant roughness data using measured flood data, obtained from measured flood data on
22 June 2014, were adopted. The final roughness values were assigned as follows: 0.035 for
mortar and masonry revetment, 0.03 for concrete revetment, 0.035 for stone bank revetment,
0.04 for river sections with lush vegetation and 0.03 for newly built dry stone revetment.
The calculation time step was set at 4 s.
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3.3. Hydraulic Calculation Boundary Conditions

The study area begins upstream of bridge #1 in the Huang Stream, with the Meijiayuan
Stream joining the Huang Stream between bridges 16# and 17# and eventually flowing into
the Dawen River downstream from bridge 17#. In accordance with the Standards for Flood
Control in China [11], a 5% flood frequency was selected as the primary control boundary
for this study. The peak flow was applied as the inlet boundary condition, with the Huang
Stream having a peak flow of 140 m3/s and the Meijiayuan Stream having a peak flow of
35.8 m3/s. The water level at the confluence of the Huang Stream and Dawen River was
set as the outlet boundary at 128.20 m.

3.4. Flood Discharge Capacity under Current Conditions

Based on the calculation results of the river’s flood discharge capacity under 5%
flood frequency conditions, it was observed that the left bank overflow area ranged from
255.84 to 636.54 m in length, accounting for 20.28% of the total river length. The maximum
water level exceeding the dam was 1.22 m at 380.70 m. Similarly, the right bank overflow
area ranged from 188.00 to 891.53 m in length, representing 37.47% of the total river length.
The maximum water level exceeding the dam reached 1.05 m at 436.24 m. Thus, under
5% flood frequency conditions, 79.7% and 62.5% of the river sections on the left and right
banks, respectively, met the flood control standard. The current water level is illustrated in
Figure 5. It is evident that multiple overflow areas prone to flood discharge still exist, but
the specific impact of each cross structure remains unknown. To facilitate the reconstruction
of cross structures and enhance the river’s flood discharge capacity, it is crucial to calculate
the degree of impact of each weir and bridge on flood discharge.
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3.5. Analysis of the Influence of Weirs on the Flood Discharge Capacity

The main impact of weirs can be represented by the backwater height, which could be
analyzed via the backwater range and the maximum water level at weirs. There are two
weirs in the Huang Stream analysis reach, which are located at 1283.76 m (denoted as the
#1 weir) and 962.43 m (denoted as the #2 weir). At present, the heights of these weirs are
0.75 and 2.0 m, respectively, denoted as condition 1. Condition 2 refers to the removal of
#1 weir, condition 3 refers to the removal of #2 weir, and condition 4 refers to the removal
of both weirs.

According to Huang Stream flood control standards, comparative analysis was per-
formed considering different weir heights, and four conditions were established in the
calculation. The results are listed in Table 1 and shown in Figures 6–9. In Table 1, the last
column, “Impact” refers to the effect of lowering the weir height on the overflow section.

Table 1. Main calculation conditions for the analysis of the weir height influence (m).

Condition #1 Weir Height #2 Weir Height Backwater Range Maximum Backwater Height Impact

1 2.00 0.75 [928.09, 1283.00] 1.33 No
2 0.00 0.75 [1255.14, 1283.00] 0.19 No
3 2.00 0.00 [891.53, 962.43] 0.24 No
4 0.00 0.00 0.00 0.00 No
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Based on the calculation results, the following key conclusions can be drawn: the 
backwater range resulting from the presence of the #1 and #2 weirs is primarily observed 
downstream from the river reach where the water level exceeds the established standard. 
Furthermore, the backwater height caused by the existing weirs does not surpass the flood 
control standard. Upon removing the #1 weir, the backwater range can be reduced by 
327.05 m, accompanied by a decrease in the maximum backwater height from 1.33 to 0.19 
m. Similarly, eliminating the #2 weir results in a reduction of the backwater range by 
320.01 m, with the maximum backwater height decreasing from 1.33 to 0.24 m. The influ-
ence range of the #1 weir is 391.47 m, while that of the #2 weir is 34.9 m. Notably, the weir 
height, maximum backwater height and backwater range are all smaller in these scenarios. 
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Based on the calculation results, the following key conclusions can be drawn: the
backwater range resulting from the presence of the #1 and #2 weirs is primarily observed
downstream from the river reach where the water level exceeds the established standard.
Furthermore, the backwater height caused by the existing weirs does not surpass the flood
control standard. Upon removing the #1 weir, the backwater range can be reduced by
327.05 m, accompanied by a decrease in the maximum backwater height from 1.33 to 0.19 m.
Similarly, eliminating the #2 weir results in a reduction of the backwater range by 320.01 m,
with the maximum backwater height decreasing from 1.33 to 0.24 m. The influence range
of the #1 weir is 391.47 m, while that of the #2 weir is 34.9 m. Notably, the weir height,
maximum backwater height and backwater range are all smaller in these scenarios.

3.6. Analysis of the Influence of Bridges on the Flood Discharge Capacity

Similar to weirs, bridges also have an impact on the flood discharge capacity of the
river, which is characterized by changes in the backwater height. The analysis of bridge
influence focused on the assessment of backwater height. In the analysis reach of the Huang
Stream, there are a total of seventeen bridges, categorized into three types: single-hole flat
slab bridges, three-hole flat slab bridges and arch bridges. Arch and three-hole flat slab
bridges are depicted in Figures 10 and 11, respectively.
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Cases without and with bridges at the same locations were compared, analyzed and
recorded as “without bridge” and “with bridge” cases, respectively. The number of bridge
holes was recorded as N. The beam elevation was recorded as H0, while the water level
upstream of the bridge was recorded as H1. ∆H represents the change in water level before
and after removing the bridge, and ∆Z represents the distance between the upstream water
level and beam elevation. The findings are summarized in Table 2. A total of seventeen
bridges were analyzed to assess their impact on flood discharge capacity. This analysis
included flat-slab and arch bridges under different conditions, considering the presence or
absence of bridges, as well as the number of bridge openings (one, two or three holes). The
calculation results for each working condition are presented in Figures 12–28.

Table 2. Statistics of the influence of bridges on the water level in the Huang Stream (m).

Bridge Number Location Type N H0

H1
∆ZWithout

Bridge
With

Bridge ∆H

1# 25.37 Flat slab 1 138.80 138.14 138.14 0.00 −0.66
2# 195.82 Flat slab 2 137.42 137.53 137.64 0.11 0.22
3# 261.84 Flat slab 2 136.41 137.2 137.50 0.30 1.09
4# 392.89 Flat slab 3 135.63 136.7 137.21 0.51 1.58
5# 471.74 Flat slab 2 135.42 136.02 136.39 0.37 0.97
6# 550.25 Flat slab 1 134.62 135.65 135.79 0.14 1.17
7# 652.04 Flat slab 1 134.83 134.95 135.12 0.17 0.29
8# 790.29 Flat slab 1 133.38 133.88 134.09 0.21 0.71
9# 912.53 Flat slab 2 132.98 133.11 133.3 0.19 0.32

10# 955.64 Flat slab 3 132.90 132.7 132.92 0.22 0.02
11# 979.22 Flat slab 2 133.06 132.56 132.75 0.19 −0.31
12# 1032.00 Arch 1 132.19 132.5 132.67 0.17 0.48
13# 1076.39 Arch 1 133.16 132.38 132.51 0.13 −0.65
14# 1155.53 Flat slab 2 131.85 132.05 132.15 0.10 0.30
15# 1401.87 Flat slab 1 131.31 129.94 129.94 0.00 −1.37
16# 1572.66 Flat slab 1 131.03 128.86 128.86 0.00 −2.17
17# 1719.09 Flat slab 1 130.50 128.28 128.28 0.00 −2.22
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Figure 15. Floodwater level distribution along the route (bridge 4# is removed). 

 
Figure 16. Floodwater level distribution along the route (bridge 5# is removed). 
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Figure 19. Floodwater level distribution along the route (bridge 8# is removed). 
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Figure 19. Floodwater level distribution along the route (bridge 8# is removed).
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4. Discussion

Based on the computational outcomes of 5% flood frequency conditions, the following
fundamental conclusions can be inferred: the backwater range of the #1 and #2 weirs is
situated downstream from the river reach, where the water level surpasses the standard.
The backwater height attributed to the existing weirs does not breach the flood control
standard. Upon the removal of the #1 weir, the backwater range can be diminished by
327.05 m, and the peak backwater height decreases from 1.33 to 0.19 m. When weir #2 is
eliminated, the backwater range can be lessened by 284.01 m, and the maximum backwater
height reduces from 1.33 to 0.24 m. The sphere of influence of the #1 weir is 391.47 m,
and that of the #2 weir is 70.9 m. It can be discerned that the presence of the current dam
does not contribute to the water level’s exceeding the standard in certain sections of the
Huang Stream under the 5% flood frequency condition. Lowering the heights of weirs #1
and #2 based on the current scenario can reduce the height and extent of the backwater.
However, as the impact range of backwater on the weir is generally located downstream
from the river section where the water level surpasses the standard, reducing the height
of the existing weir does not significant enhance the flood-carrying capacity of the Huang
Stream with a frequency of 5%.

The following key conclusions can be drawn from the results: the water level on the
upstream side of bridges 2 #, 3 #, 5 #, 4 #, 6 #, 7 #, 8 #, 9 #, 10 #, 12 # and 14 # is higher than
the elevation of the beam bottom and is in a submerged outflow state. After the bridge is
removed, the water level drops by 0.11 m, 0.30 m, 0.51 m, 0.37 m, 0.14 m, 0.17 m, 0.21 m,
0.19 m, 0.22 m, 0.17 m and 0.10 m, respectively. The submerged outflow situation has a
significant impact on the flood-carrying capacity of Huang Stream. Bridge 4 #, a three-hole
beam slab bridge, has the greatest impact on flood-carrying capacity. The high water level
on the upstream side is caused by the obstruction of water by bridge piers, beams and
slabs. Bridges 1 #, 11 #, 13 #, 15 #, 16 # and 17 # have water levels below the elevation
of the beam bottom, indicating a free flow state. After the removal of each bridge, the
water level drops by 0 m, 0.19 m, 0.13 m, 0 m, 0 m and 0 m, respectively. Among them,
Bridge 11 #, a two-hole beam and slab bridge, significantly impacts on the flood-carrying
capacity of Huang Stream. Bridges 1 #, 15 #, 16 # and 17 # have no impact on the river’s
flood-carrying capacity as their removal does not alter the water level, which remains in a
free-flowing state.

In summary, a single-span beam slab bridge has no impact on the flood discharge
of Huang Stream in the free flow state. However, when arch bridges are submerged and
experience outflow, they significantly affect the flood discharge of the Huang Stream.
During free outflow, their section shrinkage and water-blocking effect are prominent,
resulting in a high water level on the upstream side and impacting the river’s flood
discharge. The number of holes in the beam slab bridge, the thickness of the pier and the
water blocking effect are directly proportional.
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5. Conclusions

The existing weirs in some sections of the Huang Stream do not cause the water level
to exceed the standard under 5% flood frequency conditions. Reducing the height of the #1
and #2 weirs from the current height could potentially decrease the backwater height and
backwater range. However, it should be noted that the backwater effect of weirs is primarily
observed downstream from the river reach with excessive water levels. Therefore, reducing
the height of the existing weirs does not noticeably improve the flood discharge capacity.

Among the selected bridges, 13 of them have an impact on the river’s flood control
capacity under 5% flood frequency conditions. Bridges 2 #, 3 #, 4 #, 5 #, 6 #, 7 #, 8 #, 9 #,
10 #, 12 # and 14 # are submerged and contribute to the flood discharged. Bridges 12 # and
13 # are arch bridges, while bridges 6 #, 7 # and 8 # are single-span beam and slab bridges.
Bridges 2 #, 3 #, 5 #, 9 #, 11 # and 14 # are double span beam and slab bridges, and bridges
4 # and 10 # are 3-span beam and slab bridges. Bridges 4 # has the most significant impact
on the flood control capacity. It is important to note that single-span beam slab bridges
have no impact on the river’s flood when free flow conditions are present.

In conclusion, increasing the height of cross structures (weirs) in mountainous rivers
can expand the backwater range and improve water levels, but this measure has a minor
impact on the flood discharge capacity of the river without exceeding the flood control
standard. The impact of bridges, on the other hand, is more substantial. The submerged
discharge condition of bridges, including porous flat slab and arch bridges, determined the
backwater height on the upstream side of bridges, with flat slab bridges having a greater
impact than arch bridges. Number of bridge openings and pier thickness both directly
correlate to the water-blocking effect, thereby influencing flood discharge capacity.
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