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Abstract: Riverside landslides present a significant geohazard globally, posing threats to infrastruc-
ture and human lives. In line with the United Nations’ Sustainable Development Goals (SDGs), which
aim to address global challenges, professionals in the field have developed diverse methodologies
to analyze, assess, and predict the occurrence of landslides, including quantitative, qualitative, and
semi-quantitative approaches. With the advent of computer programs, quantitative techniques have
gained prominence, with computational intelligence and knowledge-based methods like artificial
neural networks (ANNs) achieving remarkable success in landslide susceptibility assessments. This
article offers a comprehensive review of the literature concerning the utilization of ANNs for land-
slide susceptibility assessment, focusing specifically on riverside areas, in alignment with the SDGs.
Through a systematic search and analysis of various references, it has become evident that ANNs
have emerged as the preferred method for these assessments, surpassing traditional approaches. The
application of ANNs aligns with the SDGs, particularly Goal 11: Sustainable Cities and Communities,
which emphasizes the importance of inclusive, safe, resilient, and sustainable urban environments. By
effectively assessing riverside landslide susceptibility using ANNs, communities can better manage
risks and enhance the resilience of cities and communities to geohazards. While the number of
ANN-based studies in landslide susceptibility modeling has grown in recent years, the overarching
objective remains consistent: researchers strive to develop more accurate and detailed procedures. By
leveraging the power of ANNs and incorporating relevant SDGs, this survey focuses on the most
commonly employed neural network methods for riverside landslide susceptibility mapping, con-
tributing to the overall SDG agenda of promoting sustainable development, resilience, and disaster
risk reduction. Through the integration of ANNs in riverside landslide susceptibility assessments, in
line with the SDGs, this review aims to advance our knowledge and understanding of this field. By
providing insights into the effectiveness of ANNs and their alignment with the SDGs, this research
contributes to the development of improved risk management strategies, sustainable urban planning,
and resilient communities in the face of riverside landslides.

Keywords: riverside landslides; United Nations’ Sustainable Development Goals; geo-hazards;
artificial neural networks

1. Introduction

Landslides refer to the non-dense to dense movement of sedimentary layers on a slope
that have become unstable (due to different reasons, such as earthquakes, rains, climatic
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changes, weathering, hydrological changes, subsidence, lack of vegetation, glacial and
human activities, etc.) leading to massive movements downstream of the slopes, especially
in mountain regions [1,2]. This downward movement in a landslide may occur very slowly,
but can occur quickly and leave disastrous effects [3]. The term ‘landslide’ encompasses five
different types of slope instabilities in large scales concluded falls, slides, topples, lateral
spreads, and flows. These are further subdivided according to the type of geologic material
(rock, debris, snow, ice, or complex). Debris flows (commonly referred to as mudflows
or mudslides) and rock falls are examples of common landslide types in mountain areas.
Landslides can even occur on seabeds underwater, which creates tidal waves that cause
destruction in coastal areas [4]. Schuster [5] stated that landslides are expected to continue
in the future due to the increase in urbanization and unplanned development, which leads
landslide-prone areas. Landslides cause many human and financial losses to countries
every year, which has led to their recognition as the second-most noteworthy type of
geological disaster as identified by the United Nations Development Program. So, landslide
susceptibility studies are necessary for safer strategic planning of future development
activities in landslide-prone areas. Due to the fact that it is very difficult to predict the time
of landslide occurrence, it is very important to identify areas sensitive to landslides and to
zone these areas based on potential risk. Thus, landslide-prone areas should be identified
in order to reduce the damage caused by landslides [6,7]. The main purpose of landslide
susceptibility analysis is to identify high-risk areas and, as a result, reduce the damage
caused by landslides through appropriate measures. This involves the development of
caution frameworks (alarm systems) and land-use management regulations to minimize
the loss of damages [8].

In landslide occurrences, there are several factors that provide suitable conditions
for landslides to be triggered due to failures. These factors are known as ‘triggering’ or
‘conditioning’ factors and are responsible for ground movements of different scales, which
can be classified into internal and external factors [9]. Internal factors of landslide formation
are related to soil and rock materials, including soft and weak rock properties or rock strata
with multiple joints or shear fracture zones, as well as geological structure, topography,
vegetation, microelectronics, etc. External factors include weathering; increased pore
water pressure; increased loading; flourish vegetation; the reduced supporting forces of
toe; erosion; snowmelt; changes in water level; the collapse of underlying strata; lateral
pressure; the freezing process; earthquakes; volcanic activity; disturbance due to human
activities; unplanned construction; land-use change; and vibrations and torrential rains [10].
Highland and Bobrowsky [11] categorized the factors triggering landslides into seven
main classes, which are used by researchers in susceptibility assessments. These factors
are climatologic, geomorphologic, geologic, geostructural, seismic, geohazard-triggered,
landslide-prone areas, and men’s work. Some of these factors may be dominant in some
areas, and some may be weak. But in a proper sensitivity analysis, paying attention to all
aspects of the evaluation can provide a more appropriate and accurate view.

Landslide susceptibility and monitoring analyzes the probability of landslide occur-
rence at different local, regional, and national levels using certain conditional factors [12,13].
Each level of analysis requires a specific range of data, software and hardware availability,
user experiences, and strong interpretations [14]. As is known, landslides cause drastic
changes to landscape morphology and reduce land production [15]. Most of these events
occur on cut-slopes or in embankments along roads and highways in mountainous areas,
while some major failures occur in residential areas near ground modifications or where
there is improper land-use change [16,17]. Landslides are the result of spatiotemporal pro-
cesses and are actually influenced by main and momentary variables. The main variables
include bedrock geology, soil conditions (soil type and depth), morphology, topography (an-
gle, aspect, curvature, topology), land-use/land-cover, drainage networks, vegetation, etc.
Momentary variables include also heavy rains, earthquakes, and volcanic activity [18–21].
It is expected that this trend will continue in the coming decades due to the increase in
urbanization and development, the continuation of deforestation, and the increase in re-
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gional rainfall in areas prone to landslides due to the change in climatic patterns [22–24].
Thus, identifying landslide-prone areas is essential for safer strategic planning of future
development activities in various regions [25–27]. Over the decades, landslide sensitivity
and risk assessment have been increasing [28]. Landslide susceptibility modeling is gener-
ally divided into two main groups: qualitative and quantitative approaches. In general,
a qualitative approach is based on the subjective judgment of an expert or a group of
experts, while a quantitative approach is based on a mathematically rigorous objective
methodology [29]. In recent decades, the use of landslide vulnerability and risk maps for
land use planning has increased significantly. These maps rank different parts of the land
surface according to the actual or potential risk of landslides. Therefore, planners are able
to choose the best places for urban and rural development [30,31]. Figure 1 provides a risk
variation flowchart regarding landslide susceptibility assessment which was developed
based on various levels of analysis.
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Figure 1. The landslide risk assessment framework (adapted from Ref. [32]).

Various triggering factors, such as geological conditions, hydrological and hydrogeo-
logical anomalies, topographical and morphological status, climate, weathering effects, seis-
micity, and human activity, impact the stability of a slope and can cause landslides [33–38].
Although the amount of damage caused by landslides is higher in developed countries, ac-
cording to the studies conducted by the Center for Natural Disasters of the United Nations,
for many developing countries, these damages are one and two percent of production,
which is their national gross value [39]. From one perspective, the causes of landslides
can be divided into the following two groups: (i) natural triggering factors, including
geological factors and morphological factors, which can be caused by sensitive or poorly
weathered materials; the presence of cut, seamed, or cracked materials; discontinuity with
the opposite direction (layering, schistosity, fault, contact surface, etc.); differences in the
permeability or hardness of materials; morphological factors caused by technological or
volcanic activities; removal of pressure caused by melting glaciers, river erosion, waves,
or frost at the foot of the slope or its side margins; underground erosion (dissolution of
boiling); sediment loading on the slope or above it; removal of vegetation (due to fire or
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drought); melting of snow; weathering caused by freezing or melting; and weathering due
to contraction and expansion. The second category (ii) comprises human triggering factors
such as digging on the slope or loading on the slope or above it; drops in the underground
water level; cutting of forest trees; irrigation; mining; artificial seismic fluctuations, and
water subsidence from facilities [40]. However, these elements are only a few examples
of the factors that can contribute to landslides. There are numerous other causes that can
trigger landslides. Therefore, it is essential to conduct mapping exercises to accurately zone
areas prone to landslides [31]. The determining factors involved in landslide occurrence
include the following [33–38].

Geological: The geology of any region has a substantial effect on the mass movement
that occurs there. The region’s physical constitution and elements are among the geological
considerations. Numerous social networking sites offer geology maps for various countries
that can be digitized in order to map the geology of any study area.

Topographical: In reference to the elevation, topographical elements include slope, slope
aspect (direction of slope), plan curvature, and profile curvature. GIS can be used to map
topographical features using the digital elevation model (DEM) derived from Cartosat-1,
Sentinel-1, and Sentinel-2 satellite images received through USGS EarthExplorer.

Hydrological: Rainfall is one of the most factors influencing landslides in hilly locations;
therefore, its examination is required for landslide zonation mapping. For rainfall mapping,
at least the ten-year average must be considered. The Climatic Research Unit (CRU)
provides rainfall information for all regions. Other elements, such as drainage density,
flow direction, and watersheds, also contribute to the occurrence of landslides. These
characteristics are mapped using the DEM provided for the studied region.

Land coverage: Land-use and land-cover (LULC) are used to provide an understanding
of the existing landscape. Due to increased land usage in hilly regions, the surfaces of
hills are becoming disturbed, resulting in a rise in landslides. Thus, mapping of LULC
is essential for analyzing the annual data from national databases, which enable us to
monitor the temporal dynamics of agriculture, forest conservation, surface water bodies,
etc., on an annual basis. Landsat images for a specific region can be obtained through USGS
EarthExplorer using Landsat TM. Supervised classification can then be used in GIS to map
and validate every feature using Google Earth Pro or a base map for that region.

Geotechnical: The predominant failure mode of soil is shear, making the soil type a
crucial factor in landslides. A critical element of landslide research is estimating the slope’s
stability and offering appropriate alternatives. Most of these studies are carried out by
conducting a complete geotechnical investigation of the landslide, collecting soil samples
from the landslide location, analyzing its specific physical features, and estimating its
stability factor. These results are then utilized to develop a 2D model of the slope stability
of the region.

Susceptibility assessments use various quantitative, qualitative, and semi-quantitative
procedures to analyze and extract the areas suitable for landslides and to predict where
landslides may occur. These are implemented either directly or indirectly [14]. Qualitative
approaches are subjective, determining sensitivity heuristically and assessing sensitivity
levels using descriptive and qualitative terminology. Quantitative methods produce nu-
merical estimates, or, in other words, the probability of occurrence of landslide phenomena
in each susceptibility zone [41]. The other classification categorizes the susceptibility as-
sessments using various approaches, such as deterministic, statistic, heuristic, inventory,
geostatistic, and knowledge-based methods [42,43]. Regardless of the type of susceptibility
method, all refined methods have been developed based on the principle that the present
and the past are the keys to the future, thus enabling fewer subjective analyses to be con-
ducted where landslide susceptibility is assessed by statistical relationships between past
landslide events and domain instability factors.

Although the deterministic methods produce definitive results for landslide suscepti-
bility, they are not feasible for large-scale landslide analysis or conditional-based evalua-
tions. Therefore, these methods’ application may be performed for medium- to large-scale
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assessment, along with errors [44]. Statistical procedures use exploration–exploitation of
data collected from different triggering factors, which allows for these data to be expanded
on various scales via the GIS environment [45], but this expansion is associated with uncer-
tainties and errors [46]. Heuristic and likelihood ratio methods use expert judgments to
achieve qualitative assortment of landslides, which involves human error based on user
experiences in analysis; this, in some high-impact assessments, is inappropriate [47].

In recent years, landslide susceptibility assessment has undergone significant advance-
ments, incorporating more sophisticated procedures to analyze and predict the likelihood
of landslide occurrence in different regions while taking into account various triggering
factors. Computer-based programming allows for susceptibility evaluations, reduced er-
rors, and minimized uncertainties, and has received the attention of many professionals
worldwide. Computer-based methods are known as knowledge-based approaches, which
represent the application of computational intelligence to solve complex problems and
detect hazardous areas in terms of landslide occurrences with high accuracy. Knowledge-
based approaches like fuzzy logic, machine learning, and artificial neural networks (ANNs),
as well as metaheuristic, data-driven, stochastic, data-mining, and adaptive neuro-fuzzy
inference system (ANFIS) methods, provide appropriate results for classification and
prediction of risk potential for landslide occurrences, and this leads to the development
of extraordinary zonation maps with high accuracy in different regions. Thus, recently,
utilization of these procedures has been expanding and developing.

The presented article highlights the application of artificial neural networks (ANNs)
in landslide susceptibility assessments, showcasing their prominent role as highly recom-
mended and widely used procedures for analyzing susceptibility and mapping hazard risks
associated with landslides in riverside areas. The adoption of ANNs in this context stems
from their capacity to effectively handle complex and heterogeneous geospatial datasets,
enabling the automatic extraction of critical features from remote sensing imagery, LiDAR
data, and topographic information. Their ability to discern intricate spatial relationships
and patterns contributes to the development of accurate landslide susceptibility models,
facilitating proactive hazard management and informed decision making for riverside
communities. To provide a comprehensive understanding of this rapidly evolving field,
this article undertakes a rigorous review of the relevant literature encompassing recent
developments and advancements in landslide susceptibility assessment methodologies. By
synthesizing existing research, the authors aim to shed light on the theoretical foundations,
methodological approaches, and practical applications of ANNs in riverside landslide sus-
ceptibility assessment. The review encompasses studies that have explored the integration
of multi-sensor remote sensing data, the fusion of hydrological and geotechnical modeling,
and the implementation of advanced deep learning algorithms to enhance the accuracy
and efficiency of landslide susceptibility mapping in riverside regions.

Through a comprehensive examination of the literature, this article seeks to unveil
the potential of ANNs to revolutionize the field of landslide susceptibility assessment,
contributing to the formulation of proactive and effective risk mitigation strategies and
supporting the sustainable development of riverside areas. The insights gleaned from
this thorough review pave the way for further research endeavors and provide valuable
guidance to researchers, practitioners, and policymakers striving to mitigate the adverse
impacts of landslides in vulnerable regions. As the body of knowledge in this domain
continues to expand, this article will serve as a foundational resource, fostering a deeper
appreciation of the pivotal role that ANNs play in advancing our understanding of landslide
susceptibility in riverside environments.

2. Early Works on Landslide Susceptibility

Since the mid-1970s, a substantial body of literature has been published on landslide
susceptibility, which was often referred to in the early literature as a ‘hazard’ concept for
landslides. These studies examined the functional relationships between the geographic
distribution of landslides and geoenvironmental factors that trigger landslides to occur.
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They used different deterministic–statistic approaches implemented at different genetic
scales and adopted a variety of mapping units. Neuland [48] was likely the first to use a
statistical approach to explain the relationships between morphometric, geomechanical,
lithological, and structural characteristics in order to construct a specific stability–instability
prediction model for a landslide. A few years later, Carrara [49] summarized the results of a
long-term effort aimed at understanding the geological and morphological factors control-
ling landslides in Calabria, southern Italy. He used multivariate analysis (discriminant and
multiple regression analysis) methods to predict landslide susceptibility based on a large
set of landslide-related, geological, and geomorphological data. Carrara and colleagues
developed specially designed software for automated mapping of distributed slippage and
genetic environmental information; these were early versions of the original geographic
information systems (GIS) based on neural networks [50]. Yin and Yan [51] analyzed 21 dif-
ferent triggering factors based on data collected from field surveys and remote-sensing for
landslide mapping. Rib and Liang [52], Varnes [53], Hutchinson [54], and Dikau et al. [55]
conducted various studies on landslides with distinct geomorphological features using
field surveys and remote sensing image interpretations. These works provide the principles
of landslide susceptibility assessments that have been mentioned in the last decade. Aleotti
et al. [56] classified the triggering factors based on data availability and the scale of the
studied region to improve landslide susceptibility mapping. Aleotti and Chowdhury [57]
provided susceptibility maps based on identifying the causative factors and categorizing
the historical data related to landslide occurrences, as well as the number of obstacles that
may be faced while producing landslide hazard maps.

3. Riverside Landslides

Riverside landslides refer to the occurrence of landslides in areas adjacent to rivers
or other bodies of water. These types of landslides can occur along riverbanks, slopes
near river channels, or even within river valleys. Riverside landslides can be triggered
by various factors, including natural causes such as heavy rainfall, rapid erosion of river-
banks, or changes in river water levels. Human activities such as construction, deforesta-
tion, and improper land management can also contribute to the occurrence of riverside
landslides [12,13,20,25]. The presence of water in riverside areas plays a significant role
in influencing slope stability. Water can infiltrate the soil, increasing its pore pressure
and reducing the frictional strength of the soil particles, making the slopes more prone to
failure. Additionally, river currents can erode the bases of slopes, further compromising
their stability [27,28].

Riverside landslides pose significant risks to infrastructure, communities, and ecosys-
tems. They can result in the destruction of buildings, roads, and bridges, leading to
economic losses and potential loss of life. Furthermore, landslides in riverside areas can
block river channels, causing floods and altering the course of rivers [34–37].

Riverside landslide susceptibility refers to the likelihood of landslides occurring in
areas adjacent to rivers or bodies of water. Several factors contribute to the susceptibility
of riverside landslides. Steep slopes, geological composition, and weak soil types are key
factors that increase vulnerability. Hydrological factors such as heavy rainfall, high ground-
water levels, and fluctuating river water levels also play a significant role. Human activities
like construction, deforestation, and improper land management can further exacerbate
susceptibility. Assessing riverside landslide susceptibility involves field investigations,
geological surveys, and slope stability analysis. Advanced techniques such as remote
sensing, GIS, and machine learning algorithms like ANNs offer new opportunities for more
accurate and comprehensive landslide susceptibility mapping [25–29].

Understanding riverside landslide susceptibility is essential for effective risk man-
agement and land-use planning [13]. Integrating various data sources, such as geological,
topographical, hydrological, and vegetation information, allows for the identification of pat-
terns and relationships that contribute to landslide occurrences [47]. By analyzing complex
datasets using machine learning algorithms, professionals can develop predictive models
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and susceptibility maps that help to identify areas at higher risk [30–32]. This knowledge
enables the implementation of appropriate measures to mitigate the potential impact of
landslides on riverside communities, infrastructure, and ecosystems. Improved under-
standing of riverside landslide susceptibility can inform early-warning systems and guide
decision-making processes related to development and land-use practices in vulnerable
areas, ultimately reducing the potential risks associated with landslides [42,43].

Table 1 provides a comprehensive overview of factors contributing to high-risk river-
side landslide susceptibility. These factors encompass various geological, hydrological,
and human-related aspects that significantly influence the stability of slopes adjacent to
rivers. Understanding these factors is vital for assessing and mitigating landslide haz-
ards in riverside areas [25]. Steep slopes pose a substantial risk, as higher slope angles
increase the potential for slope failure. Weak geological compositions, such as weathered
or fractured rock layers, contribute to instability and compromise slope strength. Similarly,
the presence of unstable soil types, including loose sands, silts, and clays, increases the
vulnerability to landslides [3,6,12–16]. Hydrological factors play a crucial role, with heavy
rainfall being a primary trigger for riverside landslides. Intense or prolonged precipitation
saturates the soil, leading to increased pore water pressure and reduced soil strength. High
groundwater levels and fluctuating river water levels also influence slope stability and
contribute to increased susceptibility [40–43]. Deforestation removes the stabilizing effect
of vegetation, weakening the slopes and promoting erosion. Improper land management,
such as inadequate drainage systems or modifications to natural drainage patterns, further
compromises slope stability. Additionally, construction activities, especially without proper
slope stabilization measures, can trigger landslides [38].

Table 1. Factors contributing to high-risk riverside landslide susceptibility.

Triggering Factors Description

Steep slopes High slope angles increase the potential for slope failure.

Weak geological composition The presence of weak or weathered rock layers increases instability.

Unstable soil types Loose sands, silts, and clays are prone to landslides.

Heavy rainfall Intense or prolonged precipitation saturates the soil, leading to increased pore water pressure and
reduced soil strength.

High groundwater levels Elevated groundwater levels increase the likelihood of landslides.

Fluctuating river water levels Variations in river water levels can impact slope stability.

Deforestation Removal of vegetation weakens slopes and increases erosion.

Improper land management Inadequate drainage systems or modifications of natural drainage patterns can contribute
to instability.

Construction activities Excavation and modification of slopes without proper stabilization measures can
trigger landslides.

Seismic activity Earthquakes can induce landslides in riverside areas.

Riverbank erosion Rapid erosion of riverbanks weakens slopes and increases the likelihood of landslides.

Climate change effects Changing rainfall patterns and increased weather extremes can affect landslide susceptibility.

Human settlement density High population density in riverside areas increases exposure and vulnerability to landslides.

Land-use changes Alterations in land use, such as urbanization or agriculture, can impact slope stability.

Geomorphic features Presence of natural depressions, river meanders, or concave slopes can contribute to instability.

Underground water flow Subsurface water flow patterns can affect slope stability in riverside areas.

Slope disturbances Excavations, cut slopes, or fillings can alter the natural equilibrium of slopes.

Geological faults and fractures Active faults or fractures can enhance the susceptibility of riverside slopes to landslides.
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Understanding these high-risk factors is essential for effective landslide hazard as-
sessment and developing appropriate mitigation strategies. By considering these factors,
professionals can implement targeted measures to reduce the potential impact of landslides
on riverside communities, infrastructure, and ecosystems. To assess and mitigate the risks
associated with riverside landslides, researchers and professionals employ various tech-
niques, including geotechnical investigations, remote sensing, and numerical modeling.
The ANNs and machine learning (ML) algorithms have gained prominence in recent years
for landslide susceptibility assessment, offering the ability to analyze complex datasets
and identify patterns that can help to predict landslide-prone areas alongside riverbanks.
Understanding the factors that contribute to riverside landslides and developing accurate
susceptibility mapping techniques are crucial for effective risk management, land-use
planning, and the implementation of appropriate mitigation measures in these vulnerable
areas [49,50].

In recent years, several innovative techniques have emerged in riverside landslide
susceptibility assessment. Integrating multi-sensor remote sensing data, such as optical
imagery, synthetic aperture radar (SAR), and LiDAR, allows for a comprehensive under-
standing of terrain features and land cover changes, leading to more accurate identification
of landslide-prone areas over time [6,9]. Machine learning and artificial intelligence meth-
ods, such as convolutional neural networks (CNNs) [54], have proven to be effective at
automatically extracting relevant features from geospatial data, resulting in improved
landslide susceptibility mapping in riverside regions [30]. Moreover, the incorporation
of hydrological and geotechnical modeling provides valuable insights into the impact
of water movement and soil properties on slope stability, aiding in the formulation of
effective mitigation strategies. Additionally, InSAR (Interferometric Synthetic Aperture
Radar) technology has demonstrated high precision in terms of monitoring ground surface
displacements, allowing for real-time monitoring of dynamic slope behavior in riverside ar-
eas, which is essential for early-warning systems and risk assessment. These advancements
have collectively enhanced the accuracy and efficiency of riverside landslide susceptibility
assessment, and are paving the way for informed decision-making and sustainable land
use planning in high-risk zones [35–41].

Assessing riverside landslide susceptibility offers several advantages for effective risk
management and decision making. Firstly, it enables targeted risk management strategies
to be developed. By identifying areas with higher susceptibility to landslides, authorities
can implement measures such as early-warning systems, land-use planning regulations,
and slope stabilization techniques to mitigate the potential impact on communities, in-
frastructure, and ecosystems. Secondly, it enhances hazard assessment by providing a
systematic and scientific approach. By considering factors such as slope characteristics,
geological composition, hydrological conditions, and human activities, professionals can
gain a comprehensive understanding of landslide risks and prioritize areas for further
investigation and mitigation [40–48].

This improves the allocation of resources and efforts towards areas most susceptible to
landslides. Lastly, assessment contributes to improved planning and decision making. The
knowledge gained from landslide susceptibility assessments can inform land-use planning
processes, ensuring that areas less suitable for certain types of development are identified
and that appropriate engineering measures are implemented to minimize landslide risks. It
also allows for the integration of environmental conservation and sustainable development
practices into decision-making processes [50–63].

While assessing riverside landslide susceptibility offers significant benefits, there are
also limitations and challenges to consider. One primary challenge is the uncertainty and
limitations associated with predicting landslides. The exact timing, magnitude, and location
of landslides are difficult to determine due to the complexity of slope processes, variability
in environmental conditions, and limitations of data availability and accuracy. Additionally,
conducting comprehensive susceptibility assessments requires substantial amounts of data,
including geological, topographical, hydrological, and vegetation information. Gathering,
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organizing, and analyzing such data can be time-consuming and resource-intensive, partic-
ularly in large-scale assessments [6,9]. Furthermore, the dynamic nature of susceptibility
poses a challenge. Riverside landslide susceptibility is not static and can change over time
due to natural and human-induced factors. Changes in climate, land use, or hydrological
patterns can alter the susceptibility levels of certain areas, necessitating regular updates
and reassessment of landslide susceptibility mapping [64–70].

Despite these challenges, the advantages of assessing riverside landslide susceptibility
outweigh the disadvantages. The approach enables the proactive and targeted manage-
ment of landslide risks, facilitates informed decision-making processes, and contributes
to the overall safety and resilience of riverside communities and infrastructure. Continu-
ous advancements in data collection techniques, modeling approaches, and monitoring
systems will further enhance the effectiveness and reliability of landslide susceptibility
assessments [32].

4. Artificial Neural Nets in Geohazards
4.1. The ANNs Concepts

According to many scientists, the human brain is the most complex system ever ob-
served and studied in the entire universe. But this complex system has neither gigantic
dimensions nor the same number of components as the processors of today’s supercomput-
ers. The mysterious complexity of this unique system comes from the many connections
between its components. This is what distinguishes the human brain from all other systems.
The conscious and unconscious processes that occur within the geographical limits of the
human body are all under the management of the brain. Some of these processes are so
complex that no computer or supercomputer in the world can process them. The very high
processing speed and power of the human brain are due to the massive connections that
exist among the cells that make up the brain, and basically, without these communication
links, the human brain would be reduced to an ordinary system and would definitely not
have its current capabilities.

Apart from this, the brain’s excellent performance in solving all kinds of problems
and its high efficiency have caused simulating the brain and its capabilities to become the
most important aspiration of hardware and software architects. In the past few decades,
during which computers have made it possible to implement computational algorithms in
order to simulate the computational behavior of the human brain, many research works
have been undertaken by computer science experts, engineers, and mathematicians, the
results of which are in the branch of artificial intelligence science. They are classified in
a sub-branch of computational intelligence under the title of ‘Artificial Neural Networks
(ANN)’ [58]. ANNs are computing systems inspired by the biological neural networks that
constitute the brain. They which were developed to understand learning using computers
operated with a collection of nodes (connected units), called artificial neurons. Each node
receives signals and processes them, then sends them to another node for the progressive
process [59]. Figure 2 presents a classification of the ANNs that are commonly employed
in diverse tasks within the field of geo-engineering. Additionally, Table 2 showcases the
successful implementation of various ANN techniques in relevant research studies.
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Typically, neurons are aggregated into layers. Different layers may perform different
transformations on their inputs [68]. Signals travel from the first layer (the input layer)
to the last layer (the output layer), possibly after traversing the layers multiple times [69].
Neural networks learn (or are trained) by processing examples, each of which contains a
known “input” and “result”, and form probability-weighted associations between the two,
which are stored within the data structure of the net itself. The training of a neural network
from a given example is usually conducted by determining the difference between the
processed output of the network (often a prediction) and the target output. The network
then adjusts its weighted associations according to a learning rule and uses this error value.
Successive adjustments cause the neural network to produce outputs that are increasingly
similar to the target output. After a sufficient number of these adjustments, the training can
be terminated based on certain criteria [70]. The learning process consists of a collection
of simulated neurons. Each neuron is a node that is connected to other nodes via links
that correspond to biological axon–synapse–dendrite connections. Each link has a weight
that determines the strength of one node’s influence on another, which is measured by the
learning rate of the ANNs. Learning is the adaptation of the network to better handle a
task by considering sample observations. Learning involves adjusting the weights (and
optional thresholds) of the network to improve the accuracy of the result. This is conducted
by minimizing the observed errors. Learning is complete when examining additional
observations does not usefully reduce the error rate. Even after learning, the error rate
typically does not reach 0. If, after learning, the error rate is too high, the network typically
must be redesigned. Practically, this is accomplished by defining a cost function that
is evaluated periodically during learning. As long as its output continues to decline,
learning continues. The cost is frequently defined as a statistic whose value can only be
approximated [71]. The learning rate defines the size of the corrective steps that the model
takes to adjust for errors in each observation [69]. A high learning rate shortens the training
time, but achieves lower ultimate accuracy, while a lower learning rate takes longer, but has
the potential for greater accuracy. Optimizations such as Quickprop are primarily aimed
at speeding up error minimization, while other improvements mainly attempt to increase
reliability [70].
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Table 2. A summary for recent developments on ANN application in the geo-engineering field.

ANN Method Advantages Limitations References

MLP
Nonlinear modeling, ability to handle large
data sets, flexibility, fast computation,
generalization to unseen data, adaptability

Limited ability to handle sequential data, limited
interpretability, overfitting, limited data
efficiency, limited model complexity

[60]

CNNs
Spatial analysis, feature extraction,
generalization to new data sets, adaptability,
image processing tasks, efficient computation

Limited ability to handle non-image data,
difficulty in handling varying input sizes,
limited interpretability, limited data efficiency,
limited ability to handle extreme events

[61]

RNNs

Time-series analysis, sequential analysis,
memory component to remember past
events, generalize well to new data sets,
adaptability, efficiency

Difficulty in handling long sequences, limited
ability to handle non-sequential data, limited
interpretability, difficulty in handling
variable-length input data, limited
data efficiency

[62]

DNNs

Nonlinear modeling, achieves high accuracy
in prediction tasks, automatically extracts
features from data sets, generalizes well to
new data sets, adaptability,
efficiency, flexibility

Limited ability to handle rare events, limited
interpretability, difficulty in handling
imbalanced data

[63]

GNNs Graph analysis, topological analysis, feature
extraction, efficient computation

Difficulty in handling large graphs, limited
interpretability, limited ability to handle variable
graph sizes, limited data efficiency, limited
ability to handle graph heterogeneity

[64]

LSTM

Time-series analysis, nonlinear modeling,
memory component to remember past
events, generalizes well to new data sets,
adaptability, efficiency

Difficulty in handling long sequences, limited
interpretability, limited ability to handle variable
sequence lengths, limited data efficiency, limited
ability to handle non-stationary data

[65]

FFNN

Nonlinear modeling, high accuracy in
prediction tasks, interpolation and
extrapolation, generalize well to new data
sets, adaptability

Limited ability to handle sequential or graph
data, limited interpretability, limited ability to
handle missing or noisy data, limited ability to
handle high-dimensional data, limited ability to
handle imbalanced data

[66]

Autoencoders Data compression, feature extraction,
anomaly detection, data denoising, efficiency

Limited interpretability, limited ability to handle
sequential or graph data, limited ability to
handle high-dimensional data, limited
data efficiency

[67]

Machine learning is commonly separated into three main learning paradigms: super-
vised learning, unsupervised learning, and reinforcement learning. Each type corresponds
to a particular task. ANNs are divided into several types and procedures which are able to
provide different accuracy levels, classified as shallow and deep learning [72]. The simplest
types have one or more static components, including the number of units, number of layers,
unit weights, and topology. In complex ANNs, the number of layers and units and the
topology become more complicated and extensive. Generally, ANNs are classified into
modular neural nets, feed-forward neural nets (e.g., multilayer perceptron, MLP), Kohonen
self-organizing neural nets, radial basis function nets, and deep nets. Convolution neu-
ral networks (CNNs), recurrent neural networks (RNNs), deep neural networks (DNNs),
long short-term memory (LSTM), deep belief nets (DFNs), autoencoders (AEs), generative
adversarial nets (DAN), and graph neural nets (GNN) are the most common deep nets
utilized by researchers [73]. Figure 3 demonstrates the simple architecture of shallow and
deep learning procedures.
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Shallow learning in ANN refers to the use of neural networks with only a few hidden
layers. Typically, a shallow neural network consists of one or two hidden layers, as opposed
to deep neural networks, which can have dozens or even hundreds of hidden layers.
This learning can be useful for solving simpler and less complex problems where a lower
number of parameters and computations is required [38]. However, for more complex
tasks, deep learning models are often required. This is because deep learning models can
handle a large number of parameters and computations, allowing them to learn complex
patterns and relationships within data [72]. Regardless of the layers and extended structure
of neural networks, ANN can be classified into four learning groups, which are presented
in Figure 4. On the other hand, using deep learning helps to solve complicated problems.
Deep learning can be categorized into various groups, which are illustrated in Figure 5.
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4.2. ANN Capability in Geohazard Assessment

Geohazards are natural disasters or events that result from the earth’s geological
processes, and they can cause significant damage or harm to humans and the environment.
There are several types of geohazards, which are illustrated in Figure 6 [74]. Volcanic
eruptions, earthquakes, landslides, tsunamis, sinkholes, etc., are several well-known geo-
hazards [75]. Geohazards can have significant impacts on human societies and the envi-
ronment, and it is important to take measures to minimize their risks and to be prepared
for their occurrence. This can include building infrastructure that is designed to withstand
earthquakes or landslides, monitoring volcanoes and other geohazard-prone areas, and
developing emergency response plans for tsunamis and other natural disasters [76].
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Artificial neural nets are capable of providing classification and prediction information
based on primary databases that are prepared using different types of recordings. The
performance of ANNs is directly related to the extension of the primary datasets, which
leads to a proper learning rate and prediction with more appropriate accuracy. If the
learning rate increases, the model is able to test (predict) with high precision, which leads
to more accurate results. The records in geohazards assessments that can be used to
prepare the main database are categorized into remote-sensing data, DEM data, unmanned
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aerial vehicle (UAV) images, geological information, ground surveys, aerial photography,
historical events, and other relative data [77].

Remote-sensing data: Satellite images and radar data are used for geohazard suscepti-
bility assessments, which provide their main data from the ground surface before other
information is included with these data. Typically, the satellites which collect remote-
sensing data include Landsat, Sentinel-1, RapidEye, ALOS, GeoEye, and QuickBird [78].
Each of these satellites provides images with certain specifications. Remote-sensing data are
used for the purpose of detecting different types of geohazards of different scales, which is
very useful for the identification, detection, classification, and mapping of geohazards [79].
In terms of landslide susceptibility assessment, remote-sensing data form the basis of the
assessment, and entire data layers are added this layer.

DEM data: Individually, the DEM just includes information about the elevation varia-
tion in different areas, but using these data helps researchers to identify the morphology of
the earth’s surface and extract morphometric features using the differentiation of moun-
tainous areas and plains, identification of contour concentration (slopes), differentiation
between valleys and foothills, slope curvatures, slope gradients, topographic changes, etc.
These features provide useful information about the types, scale, nature, and development
of geohazards [80].

UAV images: UAVs were rapidly developed to characterize the different geohazard
conditions on site by taking overlap images from the specific events and analyzing the
failure conditions. UAVs provide real-time, rapid, ground-based surveys and detailed
scale analyses of large damaged areas in different locations. The application of UAVs in
landslide susceptibility assessment has extensively grown, and has become one of the most
important tasks in site investigations [81].

Geological data: Geological maps are an unavoidable part of geohazard susceptibility
analysis studies. Investigating the geological, tectonic, and seismic circumstances; the
conditions of drainage patterns; the watershed status; and the location of the earthquakes,
faults, etc., via efficient analysis is a priority in terms of evaluating and identifying disaster-
prone and high-risk areas [3].

Ground surveys: The purpose of field investigations and ground surveys is to collect
data (as much as possible) about the geohazard event. Visualization of different aspects
and characteristics of the event is conducted, and the information about each influencing
factor is then marked and digitized [8]. This survey utilized quite detailed information
about landslides, which required an analysis of the evolution of disasters at different time
stages, as well as of local sliding, the scale of the event, triggering factors, etc. [9].

Aerial images: Aerial photographs are the most common method for identifying and
mapping the Earth’s surface from low- to mid-distances; they are used to provide geological,
topological, morphological, and tectonic maps [47]. Aerial images are useful for providing
1:5000 to 1:70,000 scale mapping, which is directly related to the geohazard scale and device
specifications [79].

Historical events: Background checks of geohazards help to classify the different sus-
ceptible regions during a ground survey, which allows for the remote-sensing assessments
to be completed. This completion provides a strong tool with which to distinguish high-
risk from low-risk regions, especially in landslide events. In general, the occurrence of a
landslide is a sign of future events due to the suitability of the area for slide occurrence [82].

This information is gathered for different types of geohazards, especially landslides,
and categorized in a comprehensive database that represents historical events, as well as
triggering factors and areas prone to sliding occurrences. The more complete the main
database is in ANN-based analysis, the more precise its learning rate becomes, and the
error rate is reduced significantly [83]. ANNs use the main database to generate training
and testing datasets, which leads to learning and utilizing the predictive models. In the
training set, the model learns to analyze, and in the testing set, the model is tested. The
testing-to-training rate represents the capability of the model for learning, which is assessed
according to the confusion matrix and evaluation criteria [73].
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5. Landslide Susceptibility with ANNs

The utilization of ANNs in landslide susceptibility assessments is becoming popular
due to their flexibility and capability to solve complicated problems with non-linear behav-
iors, as well as their measurable learning rates with specific errors [38]. Regarding the type,
complexity, and expansion of the ANN models, predictive models provide high accuracy
for prediction series with low errors.

Hecht-Nielsen [84], Aldrich et al. [85], and Kaastra and Boyd [86] found out that
during the development of the ANN models in their studies, the ability to solve problems
was directly related to the architecture of the ANNs (such as the number of neurons in the
hidden layer), and this may not always be a simple process. Although several heuristic-
based methods have been proposed to estimate the optimal number of neurons in the
hidden layer, none of them have been recommended as universal guidelines. Fausett [87],
in relation to the basics of the neural network, states that when the relationships between
geohazard-triggering factors are complex or unknown, they will be useful in predicting the
outcome. Additionally, ANNs have the ability to generalize in noisy environments, making
ANN solutions more robust in the presence of incomplete or imprecise data [88]. Paola
and Schowengerdt [89], in their research, attempted to use MLP-based back-propagation
neural nets for the classification of multispectral remote sensing images. In this work,
the authors provided the area sensitive to the reflectance of the satellite images in geo-
hazard detection. Aleotti and Chowdhury [57] conducted a review study on landslide
susceptibility assessment via different techniques before 1999, which revealed that the appli-
cation of ANNs was able to consider more triggering factors during susceptibility analysis.
Blonda et al. [90] used a regular MLP neural net, a two-stage hybrid (TSH) learning system,
and an SAR intensity coherence image to detect erosion-exposed areas and landslide-prone
regions. The results showed that the ANN models provided accurate results in terms of
the detection of landslide-prone areas in the Sele and Ofanto river valleys, located in the
Southern Apennines of Italy. Lee et al. [91], to analyze landslide susceptibility in two study
areas of Yongin and Janghung, Korea, used new ANN-based predictive models which
operated based on an extensive spatial database; they concluded that 14 different triggering
factors were present. The results of the analysis were verified using the landslide location
data. The validation results showed satisfactory agreement between the susceptibility map
and the landslide location data. Elias and Bandis [92] proposed a fuzzy neural approach
for landslide susceptibility mapping. Fuzzy linguistic rules were used to assign fuzzy
membership values to different categories of thematic data layers, and the membership
values were used to provide input neuron data for the ANN model. A single-output neuron
with a value from 0 to 1 was considered to represent the degree of landslide susceptibility,
which was confirmed based on real historical landslide data. A perceptron-type neural
network was used for training, and a susceptibility map was prepared for the region. It was
observed that the predictions of the ANNs were close to reality, indicating the satisfactory
performance of the neural network model.

Lee et al. [93], in their study, used shallow learning procedures for susceptibility as-
sessment of landslide occurrence. The results of the landslide susceptibility maps were
compared and verified using known landslide locations in another area, Yongin, of Korea.
According to the research contribution, it turned out that ANNs were an effective tool
for analyzing landslide susceptibility. The same scholar and his colleagues focused on
the main database and provided more information to complete the input data in other
studies. The results can be used to reduce hazards associated with landslides and to plan
land use and construction [94]. Lee et al. [95] used weighted ANNs to analyze landslide
susceptibility as a useful tool for spatial data management and manipulation. A probability
method was used to calculate the learning rate of each factor triggering landslide occur-
rence. The results of the study were used to develop an ANN-based landslide susceptibility
index. Ermini et al. [96] applied MLP and the probabilistic neural network (PNN), from
the shallow learning family, to landslide susceptibility in the Riomaggiore catchment, a
subwatershed of the Reno River basin located in the Northern Apennines (Italy). The
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models were operated using 3342 records from 19 different input data sets. The results indi-
cated that the ANNs provided appropriate landslide susceptibility mapping for the studied
region. Gomez and Kavzoglu [97] and Ercanoglu [98], in different studies conducted
in Venezuela and Turkey, applied MLP to landslide susceptibility analysis with various
triggering factors, which led to suitable results. These studies found promising results for
future studies in landslide susceptibility zonation. Lee and Evangelista [99] emphasized the
significance of seismicity as a triggering factor for landslide occurrences, while Wang and
Sassa [100] highlighted the influence of rainfall on landslides. In their respective studies,
these authors utilized multilayer perceptron (MLP) models to map landslide susceptibility
induced by earthquakes and rainfall in specific regions of interest. Nefeslioglu et al. [101],
Melchiorre et al. [102], Yilmaz [103], and Kawabata and Bandibas [104] implemented com-
parative assessments by using different types of statistical, deterministic, and probabilistic
ANNs methods to investigate the capability and performance of those methods regarding
landslide susceptibility analysis. The results of these studies indicated that ANNs provided
more reliable information for hazard mapping. Choi et al. [105], Chauhan et al. [106],
Pradhan and Lee [107], and Yilmaz [108] conducted studies on cases from different coun-
tries based on the application of ANNs, which was verified by ground and benchmark
algorithms. The results of these studies revealed that ANNs are capable of providing high
accuracy in their results with a low rate of errors, which makes landslide susceptibility
mapping and hazard risk predictions more reliable.

Kanungo et al. [109], Oh and Pardhan [110], Lee and Oh [111], Quan and Lee [112],
Li et al. [113], Park et al. [114], and Nourani et al. [115] applied comparative assessments to
predict the probability of landslide occurrence in mountainous regions, such as tropical
areas, based on integrated benchmark classifiers and ANN techniques. The mutual concept
of these scientific studies was related to completing the main database for training and
testing sets, as well as increasing the types of benchmark learning, including the frequency
ratio, logistic regression, adaptive neuro-fuzzy inference system (ANFIS), analytic hierar-
chy process, etc. Liu and Linzhi [116], Vasu and Lee [117], and Xiao et al. [118] attempted
to use more complicated learning approaches for landslide susceptibility mapping, the
results of which indicated significant improvements compared with regular benchmark
classifiers (known as conventional machine learning (CML)) as well as shallow learning
methods. Chen et al. [119] stated that the purpose of deep learning, which is considered
one of the most important ANN techniques for predicting and classifying risk-prone ar-
eas, is to achieve more detailed results with considerable accuracy and the lowest error
rates. Ortiz and Martínez-Graña [120], Wanf et al. [121], Ghorbanzadeh et al. [122], and
Hajimoradlou [123] used CNNs for landslide susceptibility assessments, which led to the
development of accurate susceptibility maps for landslides. The researchers indicated
that the application of CNNs has a good impact on satellite images, and outputs can be
converted into the GIS environment perfectly. Mutlu et al. [124] used RNNs for susceptibil-
ity assessments and the prediction of landslide-prone regions. The application of RNNs,
in comparison with CNNs, is somewhat different in terms of accuracy and performance,
but CNNs are adapted better. In several studies, Feng et al. [125], Yi et al. [126], and
Pham et al. [127] employed CNNs to generate highly accurate susceptibility maps. The
outcomes of these investigations demonstrated the effectiveness and potential of CNNs
in landslide risk mapping. Azarafza et al. [63] proposed a highly accurate deep learning-
based coupled CNN-DNN predictive model, which was verified by different benchmark
learning algorithms. The researchers reached the highest rate of accuracy in their landslide
susceptibility assessments. Ngo et al. [128] used DNN for national scale susceptibility
assessments and predicted the areas prone to landslides. The results showed that the DNN,
specifically, and the ANNs, generally, achieved excellent performances during susceptibility
mappings of landslides. Nikoobakht et al. [12] mentioned using deep neural nets capable
of solving complex conditions to study various triggering factors and uncertain variables
in the database. Table 3 provides a brief description of several works conducted recently
using ANN applications for landslide susceptibility assessment.
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Table 3. A summary of recent developments in ANN application in the geo-engineering field.

No. Author(s)/Year Model Triggering Factors Accuracy (%) Reference

1 Wang et al. (2023) CNN Human activities, geology, and material resources 86.4 [129]

2 Lui et al. (2023) CML Disaster prevention, disaster reduction and land
use, resource management 89.1 [130]

3 Ikram et al. (2023)
COA,

SailFish
optimizer, MLP

DEM, aspect, slope angle, NDVI, distance to fault,
plan curvature, profile curvature, rainfall, distance
from river, distance to road, SPI, STI, TRI, TWI,
land-use, and geology

79.7 [131]

4 Aslam et al. (2023) CNN,
ResNet

Seismicity, rainfall, slope angle, and unfavorable
geological conditions 20.0 [132]

5 Wang et al. (2023) CML Lithology, DEM, curvature, slope angle,
aspect, NDVI 95.3 [133]

6 Zhou et al. (2023) AHP

Slope angle, slope aspect, curvature, relative relief,
NDVI, distance from road, distance from river,
distance from fault, lithology, landslide density
points, land use

84.5 [134]

7 Dai et al. (2023)
Geographical
random forest

(GRF)
Spatial changes 86.0 [135]

8 Ma et al. (2023) CF, DNN, CML DEM, slope angle, aspect, undulation, curvature,
watershed, distance from fault, distance from road - [136]

9 Tekin and Çan (2022) MLP Geology, DEM, slope angle, TWI, RI, profile
curvatures, distance from faults and rivers 87.3–91.1 [137]

10 Zeng et al. (2022) GNN net Complex and heterogeneous geoenvironment - [138]

11 Selamat et al. (2022) MLP DEM, slope angle, aspect, curvature, TWI, distance
to road, distance to river, lithology, rainfall 94.0 [139]

12 Renza et al. (2022) CNN Geology geomorphology, land use, rain,
aspect, NDVI 88.0 [140]

13 Lucchese et al. (2021) MLP
Lithology, slope angle, distance to stream, distance
to road, SPI, DEM, curvature, slope angel,
slope aspect

94.1 [141]

14 Al-Najjar et al. (2021) GAN

DEM, slope angle, aspect, plan curvature, profile
curvature, total curvature, lithology, land use,
LULC, distance to road, distance to river, SPI, STI,
TRI, TWI, NDVI

94.0 [142]

15 Tang et al. (2020) MLP
Lithology, slope angle, distance to stream, distance
to road, SPI, DEM, curvature, slope angle,
slope aspect

- [143]

16 Chen et al. (2020) CML
DEM, slope angle, slope aspect, plan curvature,
profile curvature, TWI, SPI, distance to faults,
distance to river, lithology, hydrology

96.9 [144]

17 Bragagnolo et al.
(2020) MLP DEM, aspect, slope, topographic moisture index,

profile curvature, lithology, land-use - [145]

18 Moayedi et al. (2019) MLP

DEM, slope aspect, land-use, plan curvature,
profile curvature, soil type, distance to river,
distance to road, distance to fault, rainfall, slope
angle, SPI, TWI, lithology

76.7 [146]

19 Mandal et al. (2019) MLP

DEM, slope aspect, slope angle, slope curvature,
geology, soil, lineament density, distance to
lineament, drainage density, distance to drainage,
SPI, TWI, rainfall

81.5 [147]
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The utilization of ANN methods for landslide susceptibility mapping offers several
advantages, which can be categorized as follows:

# Accounting for non-linear relationships: ANN methods are capable of capturing
and modeling the complex, non-linear relationships between landslides and their
causative factors. This enables a more comprehensive understanding of landslide
susceptibility.

# Accurate and adaptable output: ANN models provide accurate results that can be
tailored to specific needs and requirements. They can be trained and fine-tuned to
produce highly precise susceptibility maps.

# Minimization of human error: By automating the computation process, ANN models
minimize the possibility of human error. This enhances the reliability and consistency
of the obtained results.

# Reliable prediction accuracy: ANN methods have demonstrated the potential to
achieve reliable prediction accuracies, contributing to more effective decision-making
in landslide risk management.

However, it is important to acknowledge the limitations associated with ANN models,
including:

• Algorithm selection challenges: With a wide range of algorithms available, selecting
the most effective one for a specific application can be challenging. Careful considera-
tion and evaluation are necessary in order to choose the most appropriate algorithm.

• High computational cost: Compared to other modeling approaches, ANN models can
have high computational requirements. The training and processing of large datasets
can be computationally demanding and time-consuming.

• Data intensity: ANN models heavily rely on the availability of comprehensive and
quality datasets. The success of the model is contingent on the availability and suit-
ability of the input data, which can pose challenges in data collection and preparation.

6. Challenges and Opportunities

According to the literature, neural network methods have been widely recognized for
their ability to analyze, classify, and predict landslide susceptibility with low error rates
and high accuracy, surpassing traditional methods in this regard. The precise susceptibility
analysis facilitated by neural networks has significant implications on various aspects of
research, including:

• Re-evaluation of development programs: Accurate landslide susceptibility analysis
prompts a re-evaluation of existing development programs. This allows for informed
decision-making and strategic planning to minimize the potential risks associated
with landslides.

• Saving lives and property: By identifying areas prone to landslides through neural
network-based susceptibility analysis, lives and property can be protected. This
knowledge enables appropriate measures to be taken, such as evacuation plans or the
implementation of protective structures.

• Damage reduction: The accurate identification of landslide-prone areas empowers
authorities and stakeholders to implement preventive measures and engineering
solutions that can significantly reduce the potential damage caused by landslides.

• Promoting appropriate urban development: Neural network-based analysis facili-
tates informed urban development by highlighting areas that are less susceptible to
landslides. This knowledge aids in designing sustainable urban environments that
prioritize safety and minimize the risk of landslides.

• Successful Infrastructure Design: Understanding landslide susceptibility allows for
the incorporation of appropriate measures in infrastructure design, ensuring that
structures can withstand potential landslide hazards. By avoiding sensitive regions or
modifying facilities accordingly, the risk to infrastructure can be mitigated.
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The use of neural network methods in landslide susceptibility analysis has proven
to be instrumental in advancing these objectives, leading to improved safety, reduced
damages, and more effective planning and development practices [148–151].

One of the important challenges regarding the reliability and the level of confidence of
these neural networks is to what extent we can be sure of the landslide assessment results
using this method. Now, the question is how we can obtain reliable results using this
method. Increasing the ability to interpret data is a primary solution, while improving
the data and reproducibility of these models is also needed in order to increase the output
efficiency of the ANN nervous system. In addition to these, the generalization of data
related to land hazards and the causes of landslides is one of the noteworthy points. Also,
several hidden layers can be superimposed to create a shallow or deep neural network.

Other important challenges of ANN application are related to the input data and
main database. All ANN systems need input data to operate, and the better, more quality,
and more effective these data are, the more likely it becomes that the system will run
correctly and we will see outputs with higher efficiency. However, the existence of a
quality database is disrupted due to reasons such as the high cost and time-consuming
nature of data collection, which prevents the proper functioning of the ANN system, and
these disturbances will be eliminated by improving learning models from shallow to deep.
Therefore, in order to achieve a more efficient and accurate performance of the system,
firstly, a more suitable database should be used, and secondly, a significant portion of the
data need to be cleaned, purified, and entered into the main database under supervision. Of
course, this can be accomplished by combining the accessible data with relevant information
to enrich the input database. Together, these methods will lead to the development of an
outstanding and efficient database able to improve the learning rates of different ANNs.
Nevertheless, there are still problems regarding landslide occurrence prevention and the
lack of strategies to reduce these disaster impacts, which must be considered in urban
development and planning.

Regardless of the challenges faced with landslide susceptibility analysis using ANNs,
there are huge opportunities that come with the procedures. ANNs provide predictive
models with measurable accuracy, helping to understand the learning rate and conditions.
ANNs are capable of modifying coupled data changes based on the modeling aim, the
sensitivity of the analysis, and the scale of the data. The analysis capability of big data and
large databases provides ANNs with strong superiority compared to other knowledge-
based methods. Also, ANNs, especially deep learning models, can operate with appropriate
accuracy and low error rates when solving complicated problems.

Deep learning has emerged as a potent tool in the domain of riverside landslide
susceptibility assessment, offering significant advancements in the analysis of geospatial
data to identify and predict potential landslide-prone regions. Within the realm of machine
learning, deep learning constitutes a subset characterized by the utilization of artificial
neural networks to autonomously learn and extract intricate patterns and features from
diverse and intricate datasets, encompassing remote sensing imagery, LiDAR data, and
topographic information [59,63]. The paramount advantage of employing deep learning in
landslide susceptibility assessment lies in its capacity to handle vast and heterogeneous
datasets with remarkable efficacy. Conspicuously, CNNs excel at discerning and capturing
spatial features from high-resolution remote sensing data, enabling the identification of
subtle terrain variations and land cover nuances that serve as critical indicators of landslide-
prone zones in riverside areas [69–71].

The application of deep learning in riverside landslide susceptibility assessment typi-
cally entails a series of interrelated steps. Commencing with data preprocessing, geospatial
information is subjected to normalization, image cropping, and data augmentation to
homogenize and optimize the input for neural networks. Subsequently, model training
involves the deployment of a deep neural network, often in the form of a CNN, which is
trained using labeled datasets comprising landslide occurrences and non-landslide areas.
During this process, the network autonomously learns to extract salient features, forming
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representations that capture the relationships between the geospatial features and the
likelihood of landslides. Once trained, the deep neural network is then applied to new,
unlabeled data, facilitating predictions of landslide susceptibility and yielding landslide
susceptibility maps [116–122]. These maps offer valuable insight for decision-makers,
planners, and stakeholders in riverside communities, empowering them to prioritize risk
mitigation strategies, implement timely and proactive early warning systems, and inform
land use planning in regions deemed vulnerable to landslide hazards [6,9]. By virtue of its
automated feature extraction capabilities and enhanced predictive accuracy, deep learn-
ing holds immense potential to revolutionize and elevate the field of riverside landslide
susceptibility assessment, furthering our understanding of natural hazard dynamics and
fostering resilient and sustainable development practices in high-risk regions.

According to the aforementioned points about the data and inputs to the system, the
existence of landslide susceptibility assessments, and the incompleteness of information
regarding predicting and measuring the probability of landslide occurrences and preventing
financial and human losses, there is an increasing need to employ accurate methods with
precise results. ANNs are reliable for avoiding errors and providing highly accurate
susceptibility maps, making them one of the best ways to study landslides due to the
advantages, capabilities, and diversity of neural networks.

7. United Nations Goals Exclusively Dedicated to Landslides

The United Nations (UN) has set a framework of 17 interconnected Sustainable Devel-
opment Goals (SDGs) that address the most pressing global challenges. These goals, agreed
upon by UN member states, aim to eradicate poverty; protect the planet; and ensure peace,
prosperity, and well-being for all. The SDGs cover a wide range of issues, including poverty,
hunger, health, education, gender equality, clean water and sanitation, affordable and clean
energy, responsible consumption and production, climate action, and sustainable cities and
communities, among others. The SDGs provide a blueprint for countries, organizations,
and individuals to work together towards a more sustainable and equitable world. They
recognize the interconnectedness of various social, economic, and environmental dimen-
sions, understanding that progress in one area is dependent on progress in others. The
goals emphasize the need for integrated approaches, partnerships, and collective action to
address complex global challenges. The UN goals are designed to be transformative, seek-
ing to leave no one behind and ensure that the benefits of development reach all segments
of society, including the most vulnerable populations. They encourage countries to set
their own national targets aligned with the SDGs, develop strategies for implementation,
and monitor progress through indicators and reporting mechanisms. Figure 7 provides an
overview of the UN SDGs [152].

While there are no specific SDGs exclusively dedicated to landslides, several goals
indirectly address the issue. One such goal is Goal 1: No Poverty. Poverty reduction plays
a crucial role in increasing the resilience of communities to natural hazards, including
landslides. By addressing poverty, communities can gain improved access to resources,
infrastructure, and services, which can contribute to better land-use planning, the develop-
ment of safer housing, and the implementation of early-warning systems in landslide-prone
areas. Goal 11: Sustainable Cities and Communities is also relevant. This goal emphasizes
the importance of inclusive, safe, resilient, and sustainable cities. By enhancing urban plan-
ning, infrastructure development, and disaster risk reduction measures in landslide-prone
areas, communities can reduce their vulnerability to landslides and ensure the safety and
well-being of their residents.
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Goal 13: Climate Action is another SDG that indirectly relates to landslide risk reduc-
tion. Climate change can significantly impact landslide occurrences through changes in
rainfall patterns, increased weather extremes, and other environmental factors. By address-
ing climate change and implementing mitigation and adaptation measures, communities
can reduce the susceptibility to and impacts of landslides. Efforts to promote sustainable
land management practices, preserve natural landscapes, and conserve forests also align
with Goal 15: Life on Land. These actions help to mitigate landslide risks by maintaining
the stability of slopes, reducing erosion, and protecting biodiversity. By focusing on sus-
tainable land use practices and ecosystem preservation, communities can enhance their
resilience to landslides and promote the long-term health of terrestrial ecosystems.

It is important to note that the SDGs provide a broad framework for global develop-
ment, and while landslides may not be explicitly mentioned, the goals indirectly support
efforts to address landslide risk reduction through sustainable development practices,
climate action, and disaster risk reduction strategies. These goals recognize the intercon-
nectedness between environmental sustainability, poverty reduction, urban planning, and
climate change mitigation and adaptation. They encourage countries, organizations, and
communities to work towards inclusive and sustainable development, considering the
potential impacts of natural hazards such as landslides. While there may have been updates
or developments in UN initiatives related to landslides beyond our knowledge cutoff, the
SDGs provide a foundation for promoting actions that contribute to reducing landslide
risks and enhancing overall resilience to natural disasters.

8. Conclusions

In conclusion, this paper provides a comprehensive overview of the application of
artificial neural networks (ANNs) in landslide susceptibility assessments, considering the
goals set forth by the United Nations. The study explores the hazards and triggering
factors associated with landslides, such as slope steepness, soil characteristics, precipitation
patterns, and land cover changes. Understanding these factors is crucial for accurate
assessment of landslide susceptibility and mitigating the risks which landslides pose to
human lives and infrastructure.

The paper discusses various susceptibility assessment classifications, including qual-
itative, quantitative, and semi-quantitative approaches. While these methods have their
merits, they also have limitations in terms of accurately capturing the complexity of land-
slide susceptibility. This motivates the exploration of ANNs as an alternative approach.
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ANNs are intelligent computational methods inspired by the functioning of the human
brain, and are capable of learning and recognizing patterns in large datasets. They can
integrate multiple conditioning factors and capture nonlinear relationships, making them
well-suited for landslide susceptibility analysis. The study highlights the different types
of ANNs commonly employed in landslide susceptibility assessments, including shallow
learning models like multilayer perceptrons (MLPs) and more advanced deep learning mod-
els like deep neural networks (DNNs) and convolutional neural networks (CNNs). Deep
learning models, in particular, have shown superior performance in capturing complex pat-
terns and identifying critical factors contributing to landslide susceptibility. By leveraging
the power of ANNs, researchers and practitioners can enhance the accuracy and precision
of landslide susceptibility maps and models, enabling more effective decision-making and
risk reduction strategies.

Aligned with the goals of the United Nations, employing ANNs in landslide suscepti-
bility analyses promotes sustainable development, resilience, and disaster risk reduction.
By accurately assessing landslide susceptibility, decision makers can develop appropriate
land-use planning, infrastructure design, and early-warning systems to protect vulnerable
communities. The application of ANNs also contributes to Goal 11: Sustainable Cities and
Communities, as it helps in creating safe, inclusive, and resilient urban environments. More-
over, advancements in ANN-based methods should continue to address challenges such
as data availability, model interpretability, and uncertainty quantification while exploring
new opportunities to enhance the effectiveness of landslide susceptibility assessments. In
conclusion, the integration of ANNs in landslide susceptibility assessments offers promis-
ing avenues for improving our understanding of landslide dynamics and enhancing risk
management strategies. By considering the goals of the United Nations, this research
contributes to the broader agenda of sustainable development, resilience-building, and
ensuring the safety and well-being of communities in landslide-prone areas. Continued
research and innovation in this field will further advance our capability to accurately
predict and mitigate the impacts of riverside landslides.
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