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Abstract: The structural stability of the underwater shield tunnel during operations is affected by
temperature variations. The effect of different structure temperatures on the underwater shield
tunnel during the operation period was studied. By numerical simulation, the variation in the
underwater shield tunnel temperature circle was analyzed. The variation patterns of the top arch,
bottom arch, waist arch temperature, maximum principal stress, and settlement of the soil under
different temperatures were obtained. The results showed that: (1) The early excavation time of the
tunnel was short, and the temperature circle was small. The temperature circle expanded rapidly
after 50 days of operating. The diffusion range increased from 1.5 m to 5.35 m: an increase of 256.7%.
With the increase in time, the expansion rate of the temperature circle gradually slowed down. (2) The
higher the temperature of the soil, the more complex the temperature transfer between the soil and
the lining was while generating greater temperature stresses and reducing the safety of the tunnel.
(3) When the tunnel was just excavated, the compression settlement of the top arch and the waist
arch increased rapidly, reaching 5.43 mm and 0.24 mm, respectively. The bottom arch was squeezed
by the soil on both sides, resulting in an uplift and rapid increase, reaching 4.94 mm. The settlement
rate increased with the increase in the tunnel structure’s temperature. After the excavation, with the
decrease in temperature, the strength of the soil and lining increased. The settlement of the top arch,
bottom arch, and waist arch increased slowly with time, and the growth rate decreased gradually.

Keywords: underwater shield tunnel; numerical simulation; temperature circle; maximum principal
stress; tunnel subsidence

1. Introduction

With the continuous development of water conservancy in China over recent years, the
technology of underwater shield tunnels has been developed rapidly. Some safety accidents
in shield tunnels are caused by high temperatures in the tunnel’s structure [1–3]. The en-
vironmental control of the underwater shield tunnel operation represented by structure
temperature has become a problem that must be considered in the underwater shield tunnel
design [4,5]. This phenomenon could lead to safety hazards in the tunnel. The life safety of
workers could also be affected [6–8]. Therefore, problems relating to structure temperature
in underwater shield tunnels need to be studied in depth.

At present, there have been a large number of related studies to temperature [9–14]. The
influence of the temperature disturbance caused by underwater shield tunnel construction
on the temperature distribution of the soil and lining structure was studied, and a new finite
difference temperature prediction model was proposed [13]. Based on the k-ε turbulence
equation, a two-dimensional axisymmetric model coupling the convective-conduction heat
transfer was established, and the airflow temperature field in a high-temperature underwa-
ter shield tunnel was investigated [15]. Zhou et al. [16] used the finite difference method
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to study a transient heat transfer model during the tunnel operation and investigated the
effects of mechanical ventilation and the train piston wind on the tunnel’s temperature
field. The effect of high temperatures from fires on tunnel structures has also been studied
by many scholars [17–19]. The flow route of the fire-induced high-temperature airflow
through the tunnel was proposed [20,21]. However, numerical simulation studies on the
effects of high temperatures on underwater shield tunnel structures during operation are
scarce. The high temperature, stress, and settlement changes in the tunnel cannot be better
simulated by constructing a two-dimensional model. It is necessary to analyze the me-
chanical properties of tunnels under high-temperature conditions in the context of actual
working conditions.

In this paper, a 3D model of an underwater shield tunnel in a different temperature
environment was established. According to the temperature conditions of the underwater
shield tunnel, the corresponding model parameters were given. Different thermodynamic
parameters were set for the tunnel lining according to different temperatures, and tempera-
ture changes in the tunnel and lining were observed. The temperature, maximum principal
stresses, and settlement changes to the top arch, bottom arch, and waist arch of the tunnel
structure under different temperatures were analyzed. The results of this study provide a
reference for similar working conditions.

2. Model Working Conditions

Based on the geological conditions of a tunnel, ABAQUS was used to model the soil
and lining parameters, as shown in Tables 1 and 2. The 3D underwater shield tunnel
model was 33 m × 33 m in height and width, 50 m in longitudinal length, with a tunnel
diameter of 15.0 m and a lining thickness of 0.5 m. The initial temperatures of the soil and
lining were taken to be 100 ◦C and 20 ◦C, respectively. The forced convection heat transfer
coefficient between the soil and the air was 30 W/(m2·◦C). The forced convection heat
transfer coefficient between concrete and air was 45 W/(m2·◦C). The ambient temperature
of the soil and lining was 20 ◦C. The densities of the soil and lining were 2630 kg/m3 and
2400 kg/m3, respectively. Transient temperature-displacement coupled analysis steps were
used. The model had a hexahedral C3D8T unit. To ensure the accuracy and reliability of
the calculations, the tunnels and their surroundings were subdivided into meshes to make
the results more accurate.

Table 1. Soil layer parameters.

Elastic
Modulus

(GPa)
Poisson’s

Ratio
Angle of
Internal

Friction (◦)
Cohesion

(MPa)
Thermal

Conductivity
(W/m·◦C)

Coefficient of
Linear Expansion

(◦C−5)

Specific Heat
Capacity
(J/Kg·◦C)

Temperature
(◦C)

6.5 0.25 42 1.1 7.6 8.3 1285 100
6.7 0.25 42 1.1 8.0 7.6 1240 80
6.8 0.25 42 1.1 8.4 6.9 1195 65
6.9 0.25 42 1.1 8.9 6.2 1150 50
7.0 0.25 42 1.1 9.4 5.6 1105 35
7.1 0.25 42 1.1 10 5.0 1060 20

Table 2. Lining parameters.

Elastic
Modulus

(GPa)
Poisson’s

Ratio
Angle of
Internal

Friction (◦)
Cohesion

(MPa)
Thermal

Conductivity
(W/m·◦C)

Coefficient of
Linear Expansion

(◦C−5)

Specific Heat
Capacity
(J/Kg·◦C)

Temperature
(◦C)

30.0 0.17 54 2.42 1.69 1.00 913 20
29.6 0.17 54 2.42 1.68 1.01 916 35
29.1 0.17 54 2.42 1.67 1.02 919 50
28.9 0.17 54 2.42 1.66 1.03 923 65
28.7 0.17 54 2.42 1.65 1.04 926 80
28.4 0.17 54 2.42 1.64 1.05 929 100
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The underwater shield tunnel model was divided into two solid parts, the soil, and the
lining, as shown in Figure 1. Earth stresses were balanced in the soil prior to the excavation
of the tunnel. The stiffness migration method was used, i.e., by killing the soil during
excavation and activating the lining during assembly through the ABAQUS life and death
unit function to achieve a change in stiffness from low to high. The transfer in temperature
and stress in the tunnel was achieved by setting up a transient temperature-displacement
coupled analysis step. Displacements in the X and Y directions were constrained by
the horizontal X and Y axes, respectively, and these displacements at the bottom were
constrained by the Z direction. No constraints were added to the upper part.
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Figure 1. Tunnel model.

3. Analysis of Results
3.1. Analysis of the Temperature Field in Underwater Shield Tunnels

As can be seen from Figure 2, after the excavation of the diversion tunnel was com-
pleted and after 100 days of operating, the temperature of the part of the soil in contact
with the lining changed, and a temperature circle appeared and expanded. As can be seen
from Figure 2a, when the tunnel was freshly excavated, the soil was just in contact with the
lining, and there was no temperature transfer. From Figure 2a,b, after 2 days of excavation,
the temperature transfer between the soil and the liner occurred, and a temperature circle
appeared. Due to the short contact time, the temperature circle was small, with a radius of
4.5 m, excluding the lining radius, and the temperature circle spread was 1.5 m. Because of
the heat transfer between the liner and the air, the temperature on the inside of the liner
showed a slight increase to 20.02 ◦C. From Figure 2b,c, the temperature circle expanded
rapidly after 50 days of operation. The diffusion range increased from 1.5 m to 5.35 m at an
increase of 256.7%. The temperature on the inside of the liner showed an increase compared
to the completion of the excavation, reaching 21.16 ◦C. From Figure 2c,d, after 100 days of
operating, the growth rate of the temperature circle slowed down, and the diffusion range
increased from 5.35 m to 7.1 m: an increase of 32.7%.

Figure 3 shows the lining temperature variation diagram. As can be seen from Figure 3a,
after the excavation of the tunnel was complete, the temperature of the contact surface
between the outer side of the lining and the soil was 92 ◦C. The modulus of elasticity of the
liner decreased at high temperatures, and there was a difference of 71.98 ◦C from 20.02 ◦C
on the inside of the liner. Large temperature gradients tend to produce large temperature
stresses, and care should be taken during construction. Figure 3b shows that after 50 days
of operating, the temperature of the outer liner contact surface with the soil was 60.84 ◦C: a
significant reduction of 33.87% compared to when the excavation was completed. Figure 3c
shows that after 100 days of operating, the temperature at the contact surface between the
outer liner and the soil was 55.82 ◦C: a decrease of 8.25% compared to the temperature at
50 days of operating. This indicates that the temperature drop at the contact between the
liner and the soil was greater in the early stage when the temperature difference between
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the liner and the soil was larger and slowed down in the later stage when the temperature
difference decreased.
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3.2. Analysis of Temperature Transfer between Envelope and Lining

In order to analyze the temperature variation rule at the contact point between the
soil and the lining with high temperature, based on the numerical simulation results, the
temperature variation curves of the top arch, bottom arch, and waist arch of the tunnel
were selected for analysis. As can be seen from Figure 4, the temperature curves of the top
and bottom arches of the tunnel were the same over time. The change in temperature at
the waist arch was slower than that of the top and bottom arches in the early part of the
curve, and the same was true of the later part. The overall temperature of the three curves
showed a rapid decrease with time, followed by a slow decrease, which was consistent
with the numerical simulation results of Xu et al. [22], indicating the feasibility of the model
developed in this paper. At the completion of the tunnel excavation, the temperature
of the top, bottom, and waist arches was around 79 ◦C. After 50 days of operating, the
temperature dropped to 60 ◦C, which was 24% lower than when the excavation was
completed. After 100 days of operating, the temperature was 55 ◦C, which was 8.3%
lower than after 50 days of operating. In the early stages, the temperature dropped faster
because of the larger temperature difference between the soil and the lining and the large
heat transfer coefficient, while in the later stages, the temperature difference between the
soil and the lining decreased; as the heat transfer coefficient decreased the temperature
dropped slower.
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3.3. Analysis of the Maximum Principal Stress between the Soil and the Lining

In order to analyze the law of change in the stress field at the contact between the
high-temperature soil and lining, based on the numerical simulation results, the law of
change in maximum principal stresses at the top, bottom, and waist arches of soil with
time was selected for analysis. As shown in Figure 5, the positive values in the diagram
are tensile stresses. For the sake of analysis, this analysis was carried out uniformly with
positive tensile stresses. As can be seen from Figure 5, the top arch, bottom arch, and
waist arch changes were divided into three stages: the sudden stress change period, stress
fluctuation period, and stress stabilization period. The first stage was the sudden stress
change period. At this stage, the maximum principal stresses in the top, bottom, and waist
arches reached a minimum value of −3.12 MPa, −3.17 MPa, and −3.15 MPa, respectively,
due to the fresh excavation of the tunnel soil and the influence of the self-weight of the soil.
The soil was excavated and came into contact with air for heat exchange. The temperature
at the contact between the soil and the air decreased abruptly under a large temperature
difference, generating a large temperature stress and a rapid rise in the maximum principal
stress occurred. The maximum principal stress in the girdle arch rose to −1.67 MPa, while
the maximum principal stresses in the top and bottom arches rose to 0.70 MPa and 0.64 MPa,
respectively. With the assembly of the first ring lining, the top arch, bottom arch, and waist
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arch were extruded by the lining, and the maximum principal stresses on the top and
bottom arches decreased rapidly to 0.53 MPa and 0.52 MPa, respectively. The waist arch
was subject to a large drop in the maximum principal stress of −2.54 MPa due to the
combined extrusion of the upper and lower parts of the lining. The second stage was
the period of stress fluctuation. With the disturbance in the tunnel excavation and lining
assembly, the maximum principal stresses in the top, bottom, and waist arches fluctuated.
The maximum principal stress in the top and bottom arches first decreased to 0.47 MPa
and then gradually increased, while the maximum principal stress in the girdle arch first
decreased to −3.02 MPa and then gradually increased. The third stage was the stress
stabilization period. The maximum principal stresses in the top, bottom, and waist arches
increased slowly with time in the early stages and reached stable values of 0.79 MPa and
0.81 MPa in the later stages as the temperature difference became smaller. The maximum
principal stress in the waist arch decreased slowly with time, with a greater amount of
variation compared to that in the top and bottom arches, which also gradually stabilized at
a later stage, reaching a stable value of −1.40 MPa.
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3.4. Settlement Analysis between Enclosure and Lining

In order to analyze the variation rule of the settlement at the contact point between
the high-temperature soil and lining and based on the numerical simulation results, the
variation rule of the settlement of the soil vault, bottom arch, and waist arch over time was
selected for analysis. As can be seen from Figure 6, the top arch, bottom arch, and waist
arch could be divided into three stages: the abrupt settlement period, settlement fluctuation
period, and settlement creep period. The settlement change curve was consistent with the
experimental results of Wang et al. [23] and showed that the model established in this paper
had a certain degree of reasonableness. In the first settlement of the abrupt change period,
when the underwater shield tunnel was just excavated, under the influence of the dead
weight of the soil, the compression settlement of the top arch and the waist arch increased
rapidly, reaching 5.43 mm and 0.24 mm, respectively. The bottom arch was squeezed by
the soil on both sides, resulting in an uplift that rapidly increased, reaching 4.94 mm. In the
second stage of settlement fluctuation, with the assembly of the lining, the settlement of the
top arch and waist arch slowed down in the early stage of excavation, reaching a maximum
value of 7.98 mm and 1.48 mm, respectively, and the settlement decreased gradually in the
later stage. The settlement increased slowly with the application during the third stage of
settlement creep.

After the completion of the excavation, the settlement of the top arch and the waist arch
were 7.90 mm and 1.43 mm, respectively, and the uplift of the bottom arch was 4.97 mm.
After 50 days of operating, the settlement of the top arch and the waist arch was 9.55 mm
and 2.42 mm, which increased by 1.65 m and 0.99 mm, respectively. The uplift of the bottom
arch was 4.53 mm, which decreased by 0.44 mm. After 100 days of operating, the settlement
of the top arch and waist arch was 10.85 mm and 3.22 mm, respectively, which increased
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by 1.3 mm and 0.8 mm compared to standing for 50 days. The uplift of the bottom arch
was 4.14 mm, which decreased by 0.39 mm. After the excavation, with the decrease in
the temperature, the strength of the soil and lining increased, and the settlement of the
top arch, bottom arch, and waist arch increased slowly with time while the growth rate
decreased gradually.
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3.5. Temperature Transfer between Soil and Lining at Different High Structure Temperatures

The temperature change curves of the top and waist arches of the tunnel at 40 ◦C, 70 ◦C,
and 100 ◦C were extracted for further analysis of the temperature transfer between the soil
and the lining at different high temperatures. As can be seen from Figure 7, the top, bottom,
and waist arches followed the same trend at all three temperatures, with a rapid drop in
temperature in the early stages and a slow and gradual stabilization in the later stages.
At 40 ◦C of the soil temperature, the temperature of the top, bottom, and waist arches
was around 35 ◦C after 2 days of excavation completion in the early stages: a reduction of
5.0 ◦C. With the later operating period of 50 days, the top and waist arch temperature was
30.3 ◦C, which was 9.7 ◦C lower than the initial temperature. After 100 days of operation,
the temperature of the top and waist arches was 29.1 ◦C, which was 10.9 ◦C lower than the
initial temperature. At 70 ◦C of the soil temperature, the temperature of the top, bottom,
and waist arches was about 57 ◦C after 2 days of excavation completion in the early stages:
a reduction of 13 ◦C. With the later operating period of 50 days, the top and waist arch
temperatures were the same at 45.4 ◦C: a reduction of 14.6 ◦C from the initial temperature.
After 100 days of operating, the temperature of the top and waist arches was 42.5 ◦C: a
reduction of 27.5 ◦C from the initial temperature. At 100 ◦C of the soil temperature, the top,
bottom, and waist arch temperatures were at 79.0 ◦C after 2 days of excavation completion
in the early stages: a reduction of 21 ◦C. With the later operating period of 50 days, the top
and waist arch temperatures were the same at 60.1 ◦C: a decrease of 39.9 ◦C from the initial
temperature. After 100 days of operation, the top and waist arch temperature was 55.4 ◦C:
a reduction of 44.6 ◦C from the initial temperature.

As the temperature of the soil increased, the greater the temperature drop in the tunnel,
the greater the susceptibility to temperature stresses and the longer it took to reach stability.
The difference in temperature between the top, bottom, and waist arches of the previous
excavation increased as the temperature of the soil increased. Additional temperature
stresses could easily be generated between the two. This stress was detrimental to the
stability of the underwater shield tunnel.
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3.6. Analysis of the Maximum Principal Stress between the Soil and the Lining at Different
High Temperatures

The maximum principal stress variation curves for the top, bottom, and waist arches
of the tunnel at 40 ◦C, 70 ◦C, and 100 ◦C were extracted for further analysis of the stress
variation pattern at the contact between the tunnel envelope and the lining at different high
temperatures. As can be seen from Figure 8, the maximum principal stresses in the top,
bottom, and waist arches at 40 ◦C, 70 ◦C, and 100 ◦C followed the same trend, all showing
a surge, then a decrease, and finally a slow increase to a gradual stabilization. When the
underwater shield tunnel was first excavated, the initial maximum principal stresses at
40 ◦C, 70 ◦C, and 100 ◦C were the same, with −3.12 MPa, −3.17 MPa, and −3.15 MPa
for the top arch, bottom arch, and waist arch, respectively. As the soil was excavated and
came into contact with air, the maximum principal stresses in the top, bottom, and waist
arches all rose significantly. The maximum principal stresses in the top, bottom, and waist
arches at 40 ◦C were 0.2 MPa, 0.15 MPa, and −1.72 MPa, respectively. The maximum
principal stresses in the top, bottom, and waist arches at 70 ◦C were 0.20 MPa, 0.15 MPa,
and −1.68 MPa, respectively. The maximum principal stresses in the top, bottom, and
waist arches at 100 ◦C were 0.70 MPa, 0.64 MPa, and −1.67 MPa, respectively. As the
tunnel was excavated and the lining was assembled, the maximum principal stresses in
the top, bottom, and waist arches decreased first. The maximum principal stresses in
the top, bottom, and waist arches at 40 ◦C were 0.01 MPa, −0.05 MPa, and −3.06 MPa,
respectively. The maximum principal stresses in the top, bottom, and waist arches at 70 ◦C
were 0.35 MPa, 0.40 MPa, and −3.16 MPa, respectively. The maximum principal stresses
at 100 ◦C were 0.53 MPa, 0.52 MPa, and −2.54 MPa for the top, bottom, and waist arches,
respectively, which then gradually increased. After the tunnel excavation was complete, the
maximum principal stress increased slowly with time and finally stabilized. The maximum
principal stresses in the top, bottom, and waist arches at 40 ◦C were 0.46 MPa, 0.34 MPa,
and −2.94 MPa, respectively. The maximum principal stresses in the top, bottom, and waist
arches at 70 ◦C were 0.65 MPa, 0.67 MPa, and −1.95 MPa, respectively. The maximum
principal stresses in the top, bottom, and waist arches at 100 ◦C were 0.79 MPa, 0.81 MPa,
and −1.40 MPa, respectively. Under the action of the self-weight of the soil, lining support,
and temperature, the maximum principal stresses in the top, and bottom arches were
predominantly in tension, while the maximum principal stresses in the waist arch were
predominantly in compression. The higher the temperature of the soil surrounding the
underwater shield tunnel, the more complex the temperature transfer between the soil and
the lining, the higher the temperature stresses generated, and the greater the fluctuation of
maximum principal stresses, which reduced the safety of the tunnel.
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3.7. Settlement Analysis between Different High Structure Temperature Enclosures and Liners

The settlement curves for the top, bottom, and waist arches of the tunnel at 40 ◦C,
70 ◦C, and 100 ◦C were extracted to further analysis with the settlement pattern at the
contact between the tunnel envelope and the lining at different high temperatures. As
can be seen from Figure 9, the top, bottom, and waist arches followed the same trend at
40 ◦C, 70 ◦C, and 100 ◦C. The top arch and waist arch settlement, in general, showed a
trend that first surged before slowing down, then decreasing, and finally growing slowly
with time. The bottom arch rose on the same trend as the top and waist arches settled.
During excavation, the settlement of the top and waist arches first increased sharply and
then slowed down to a maximum value during excavation. In total, 7.71 mm and 1.38 mm
were recorded for the top and waist arches, respectively, at 40 ◦C, and 5.35 mm for the
waist arch bulge. The settlement of the top and waist arches at 70 ◦C was 7.80 mm and
1.42 mm, respectively, and the bulge value of the waist arch was 5.45 mm. The settlement
of the top and waist arches at 100 ◦C was 7.89 mm and 1.48 mm, respectively, and the
bulge value of the waist arch was 5.61 mm. At the completion of the tunnel excavation, the
settlement of the top and waist arches at 40 ◦C was 7.64 mm and 1.33 mm, respectively,
and the bulge value of the waist arch was 4.90 mm. The settlement of the top and waist
arches at 70 ◦C was 7.74 mm and 1.37 mm, respectively, and the bulge value of the waist
arch was 4.92 mm. The settlement of the top and waist arches at 100 ◦C was 7.90 mm and
1.43 mm, respectively, and the bulge value of the waist arch was 4.97 mm. After 100 days
of operating, the settlement of the top and waist arches at 40 ◦C was 8.10 mm and 1.65 mm,
respectively, and the bulge value of the waist arch was 4.72 mm. The settlement of the
top and waist arches at 70 ◦C was 9.28 mm and 2.39 mm, respectively, with a bulge value
of 4.34 mm for the waist arch. The settlement of the top and waist arches at 100 ◦C was
10.85 mm and 3.22 mm, respectively, with a bulge value of 4.14 mm for the waist arch. The
top and waist arch settlement values gradually increased with time, and the bottom arch
bulge value gradually decreased with time. The higher the temperature of the soil in the
underwater shield tunnel, the greater the settlement fluctuations caused during excavation;
the greater the variation in the settlement values of the top and waist arches, as well as the
rise in the bottom arch over the same operating time, the more detrimental this was to the
stability of the tunnel.
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4. Conclusions

Through the numerical simulation of high structure temperatures in an underwater
shield tunnel, the variation in the tunnel temperature circle was investigated. The variation
patterns of the top arch, bottom arch, and waist arch temperatures, maximum principal
stress, and settlement of the tunnel envelope were analyzed. The simulation results could
be used as a reference for the design and construction of different structure temperature
tunnels. The main conclusions of the summary of the laws of temperature, maximum prin-
cipal stress, and settlement changes in underwater shield tunnels at different temperatures
were as follows:

(1) The early excavation time of the underwater shield tunnel was short, and the tem-
perature circle was small. The temperature circle expanded rapidly after 50 days of
operation. The spread increased by 256.7%. The temperature change curves of the
top, bottom, and waist arches decreased with time. The higher the temperature of the
soil around the underwater shield tunnel, the greater the temperature drop.

(2) The process of the change in the maximum principal stress in the top, bottom, and
waist arches could be divided into three phases: the period of sudden stress change,
the period of stress fluctuation, and the period of stress stabilization. The higher the
temperature in the soil, the more complex the temperature transfer between the soil
and the lining was while generating greater temperature stresses and reducing the
safety of the tunnel. When in high-temperature conditions, the temperature between
the tunnel and the soil should be controlled to avoid creating additional temperature
stresses that could affect the stability of the tunnel.

(3) Settlement changes could be divided into three phases: the abrupt settlement period
and the settlement fluctuation period and settlement creep period. After the excava-
tion, with a decrease in the temperature, the strength of the soil and lining increased.
The settlement of the top arch, bottom arch, and waist arch increased slowly with
time, and the growth rate decreased gradually. The higher the temperature of the
tunnel structure, the greater the settlement and the more detrimental this was to the
stability of the tunnel.
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