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Abstract: This paper presented a two-dimensional, well-balanced hydrodynamic and sediment
transport model based on the solutions of variable-density shallow-water equations (VDSWEs) and
the Exner equation for bed change for simulating sediment transport in unsteady flows. Those
equations are solved in a coupled way by the first-order Godunov-type finite volume method. The
Harten–Lax–van Leer–Contact (HLLC) Riemann solver is extended to find the local Riemann fluxes
to maintain the exact balance between the momentum term and the bed slope term. A well-balanced
scheme is superior to an unbalanced scheme to minimize numerical dispersion as demonstrated
by the synthetic standing contact-discontinuity test case. Following this, the model is employed to
simulate two laboratory experiments and a field case, the 1996 Lake Ha! Ha! flood event in Canada.
The results of water surface elevations and bed surface profiles agree well with the measurements.
The accuracy and robustness of the numerical schemes make the model a good candidate for practical
engineering applications.

Keywords: dam-break flow; Godunov-type finite volume method; HLLC Riemann solver; nonequilibrium
sediment transport model; variable density shallow water equations; well-balanced property

1. Introduction

For unsteady open-channel flows over mobile beds, such as during a dam break,
decommissioning, or levee or barrier breaching in a flood or storm surge, the spatial
variation in flow densities due to sediment is considerable and may impose significant
impacts on flood flows. The consequences include erosion and sedimentation on bed and
banks, river platform evolution (e.g., avulsion, cut off), and failures of instream structures
(e.g., levees, dams, bridges) (e.g., [1,2]). Since flow densities are not constants but change
spatially, sediment transport and morphological changes should be modeled using variable-
density shallow-water equations (VDSWEs) [1,3–12]. As the name implies, VDSWEs are
an extension of shallow-water equations (SWEs) and are also based on the shallow-water
assumption [13]. Besides this, two simplifications are employed in the derivation of the
VDSWEs [1,14]: (1) the flow is dominated by suspended sediment load; (2) there are no
obvious lags between sediment particles and water flow.

To account for their hyperbolic nature, VDSWEs are often solved by the Godunov-
type finite volume method [6,15]. A thorough review of the application of the method to
the numerical solutions of SWEs is given by [16]. In contrast with SWEs, the density of
sediment-laden flow in the VDSWEs is an independent variable. To simplify the solution
of the VDSWEs, refs. [1,17] reformulated the VDSWEs by moving the density-related terms
to the right-hand side of the equations. After this reformulation, the left-hand side of the
equations has the same form as the SWEs, while the right-hand side has two more terms
than the SWEs. Ref. [1] pointed out that one additional term represents the effect of spatial
variation in flow densities and the other one described the momentum exchange between
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flow and mobile bed. Since the reformulated VDSWEs have the same left-hand side as the
SWEs, it is a common practice to apply the previously well-developed Godunov-type SWE
solvers to solve the VDSWEs and to discretize the additional terms by a central difference
scheme [1,5,7,9].

However, one of the two additional terms on the right-hand side involves the gradient
of density derived from the concentration of sediment. Mathematically, this term represents
a product of the Heaviside function by the Dirac function [18]. Across discontinuous fronts
of a density field, its mathematical meaning is not well-defined [19,20]. Numerically, this
term originates from the advection term of the VDSWEs and it should be discretized by an
upwind scheme. Ref. [21] argued that it is difficult to maintain the conservative property
(C-property) [22] of numerical models based on the reformulated VDSWEs. Ref. [21] also
suggested that the better way to create a well-balanced model is to solve the original
formulation of the VDSWEs. This will minimize the errors of finite difference schemes used
for discretization in the discontinuous contacts of two adjacent cells.

This paper presents the first two-dimensional model that solves the VDSWEs using a
novel well-balanced numerical scheme for simulating unsteady sediment-laden flows (e.g.,
a dam break) over a mobile bed. The model is based on the original formulation of the
VDSWEs. The terms derived from the gradient of sediment concentration are incorporated
into the advective terms in the momentum equations. In the model, the Godunov-type
finite volume method is applied to solve the system of governing equations simultaneously.

The rest of the paper is organized as follows: in Section 2, the governing equations, i.e.,
the two-dimensional variable-density shallow-water equations, and their two formulations,
are presented. In Section 2.2, a well-balanced numerical scheme is developed for the
VDSWEs. In Section 3, the proposed model is tested against four test cases and the results
are discussed and compared with the available observations. Finally, the main conclusions
are drawn in Section 4.

2. Governing Equations

In this study, the dam-break flows over mobile beds are described by the variable-
density shallow-water equations (VDSWEs). In the VDSWEs, the mixture of water and
sediment is treated as a continuum, and both phases are moving together at the same
velocity. The system of governing equations consists of volume-, mass-, and momentum-
conservation equations for flow and sediment. For a sediment-laden flow, the bulk volume-
conservation equation is written as:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= Sb (1)

where t is time; x and y are the spatial coordinates; h is flow depth; u and v are the depth-
averaged flow velocities in x and y directions, respectively; Sb is the sediment exchange
rate between flow and bed. Since the density of sediment-laden flow is a spatial function,
the mass conservation equation of the sediment–water mixture is expressed as:

∂(ρh)
∂t

+
∂(ρhu)

∂x
+

∂(ρhv)
∂y

= ρbSb (2)

where ρ is the density of sediment-laden flow; ρb = φρw + (1− φ)ρs is the density of the
saturated mobile bed; φ is the porosity of the mobile bed; ρw is the density of clear water; ρs
is the density of sediment. The concentration of sediment-laden flow can be calculated by
C = ρ−ρw

ρs−ρw
. The depth-averaged momentum-conservation equations in x and y directions

are given as:

∂(ρhu)
∂t

+
∂

∂x

(
ρhuu +

1
2

ρgh2
)
+

∂(ρhuv)
∂y

= ρghS0x − ρC f ‖u‖u (3)
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∂(ρhv)
∂t

+
∂(ρhvu)

∂x
+

∂

∂y

(
ρhvv +

1
2

ρgh2
)
= ρghS0y − ρC f ‖u‖v (4)

where g is the gravitational acceleration; S0x = − ∂(b0+b)
∂x and S0y = − ∂(b0+b)

∂y are the x and
y components of bed slope; b0 is the elevation of the immobile bed; b is the depth of the
mobile bed; C f = gn2h−

1
3 is the drag coefficient; n is Manning’s roughness coefficient;

‖u‖ =
√

u2 + v2 is the magnitude of the flow velocity; u =

(
u
v

)
is the velocity vector.

Although Manning’s equation was derived for steady flow, this model assumes the instan-
taneous bed shear stress can be estimated using Manning’s equation [16,21,23,24]. Because
flow depth and velocity are spatial and temporal variables, the bed shear stress in unsteady
flow is also a spatial and temporal variable, changing with flow depth and velocity.

The system of governing equations can also be written in a vectorial form as:

∂Q
∂t

+
∂Fx(Q)

∂x
+

∂Fy(Q)

∂y
= S0(U)− S f (U) + Sb(U) (5)

where U and Q are the vectors of primitive variables and conservative variables:

U =


h
ρ
u
v

, Q =


h

ρh
ρhu
ρhv

 (6)

Fx(Q) and Fy(Q) are the vectors of advective fluxes:

Fx(Q) =


hu

ρhu
ρhuu + 1

2 ρgh2

ρhuv

, Fy(Q) =


hv

ρhv
ρhvu

ρhvv + 1
2 ρgh2

 (7)

and S0(U), S f (U), and Sb(U) are the bed slope, bed friction, and bed material source terms:

S0(U) =


0
0

ρghS0x
ρghS0y

, S f (U) =


0
0

ρC f ‖u‖u
ρC f ‖u‖v

, Sb(U) =


Sb

ρbSb
0
0

 (8)

Equation (5) represents a system of time-dependent nonlinear hyperbolic partial
differential equations. This system may result in sharp and discontinuous solutions even if
starting from a continuous initial condition.

2.1. Nonequilibrium Sediment Transport Model

The evolution of mobile bed is described by the conservation equation of bed material:

∂b
∂t

= −Sb (9)

The mass exchange between sediment-laden flow and mobile bed is evaluated by the
nonequilibrium sediment transport equation [10,25]. It reads:

Sb =
1

1− φ

(
qb − q∗b

)
L

(10)

where L is the nonequilibrium adaption length of sediment transport; qb is the actual flux of
sediment transport; and q∗b is the sediment transport capacity or the equilibrium sediment
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transport rate. Based on the recommendations of [26,27], the sediment transport capacity is
calculated by the modified Meyer–Peter–Müller (MPM) formula:

q∗b = 12
√

sgd3
50

(
θ − θc)

1.5 (11)

where θ = u2
∗

sgd is the Shields number; u∗ = C
1
2
f ‖u‖ is the friction velocity; θc is the critical

Shields number.
The nonequilibrium adaptation length in Equation (10) denotes the spatial lag between

actual sediment transport rate and its saturation and equilibrium rate. It is calculated
by [23]:

L = max
(

Lb,
h‖u‖
α0ω0

)
(12)

where Lb is the adaption length of bedload; α0 is the adaption coefficient of suspended-
load; and ω0 is the settling velocity of a single sediment particle. Since there has been
no consensus on Lb and α0, both parameters are treated as calibration parameters in the
proposed model. The settling velocity of sediment particle is calculated by [28]:

ω0 =

√(
13.95ν

d50

)2
+ 1.09sgd50 −

13.95ν

d50
(13)

where ν is the kinematic viscosity of water; s = ρs
ρw
− 1 is the specific gravity of submerged

sediment particle; and d50 is the median diameter of sediment particle.

2.2. Numerical Methods
2.2.1. Godunov-Type Finite Volume Method

The integral form of the VDSWEs over a computational cell can be written as:

∂

∂t

∫
Ω

QdΩ +
∫

∂Ω
(Fn)d∂Ω =

∫
Ω

S0dΩ−
∫

Ω
S f dΩ +

∫
Ω

SbdΩ (14)

where Ω represents a computational cell; ∂Ω is the boundary of the cell; F =
(
Fx Fy

)
is the matrix of fluxes; n =

(
nx
ny

)
is the outward unit normal vector; nx and ny are the

components of the normal vector in x and y directions, respectively; and Fn = Fxnx + Fyny
are the fluxes normal to the cell boundary designated by n. In this study, the fully coupled
system of governing equations is solved by the first-order Godunov-type finite volume
method over a regular Cartesian mesh. For a rectangular cell, the fluxes across the cell
boundaries are calculated by:∫

∂Ω
(Fn)d∂Ω = ∑4

k=1 Fk(QL, QR)nklk (15)

where subscript k is the edge index; subscript L and R denote the left and right edges of a
cell boundary, respectively; Fk(QL, QR) is the Riemann fluxes at the edge k; QL and QR are
the vectors of conservative variables reconstructed at the left and right edges, respectively;
nk is the unit normal vector for the kth edge; lk is the length of the kth edge.

A first-order, two-step fractional scheme is employed in the numerical model to update
the solution at each time step:

Step one:

Q(∗) = Q(n) − ∆t
∆A

4

∑
k=1

Fk

(
Q(n)

L , Q(n)
R

)
nklk + ∆t

(
S(n)

0 − S(n)
f

)
(16)
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Step two: 
Q(n+1) = Q(∗) + ∆tS(∗)

b

b(n+1) = b(n) − ∆t S(∗)
b

1−φ

(17)

where superscript (n) denotes the solution at time step n; superscript (n + 1) denotes the
time step (n + 1); superscript (∗) denotes the intermediate solution between time step n
and n + 1.

Time steps are limited by two stability conditions. The first is the Courant–Friedrichs–
Lewy (CFL) condition that requires the maximum CFL number should not be greater than
0.5 at each time step [29]. The second is the bed change condition that limits the change in
mobile bed at each time step up to 10% of the local bed depth [9].

2.2.2. HLLC Approximated Riemann Solver

The HLLC (Harten–Lax–van Leer–Contact) approximate Riemann solver [15] is ex-
tended to calculate numerical fluxes across cell boundaries. The wave structure of a typical
HLLC solution is demonstrated in [21]. The solution is separated by three waves: the
speeds of the left wave ( SL), the middle wave (S∗), and the right wave (SR), which are
defined later using Equations (20) and (23). There are four constant states in the solution:
the left state (QL), the right state (QR), the left star state (Q∗L), and the right star state (Q∗R).
The corresponding HLLC numerical flux FHLLC(QL, QR) is defined as:

FHLLC(QL, QR) =


FL 0 ≤ SL
F∗L SL < 0 ≤ S∗
F∗R S∗ < 0 ≤ SR
FR SR < 0

(18)

where FL = F(QL) represents the supercritical flow from the left to the right; FR = F(QR)
represents the supercritical flow from the right to the left; F∗L and F∗R are the fluxes at the
star regions. By applying the Rankine–Hugoniot conditions across the waves, SL and SR,
the numerical fluxes at the star regions can be calculated by:{

F∗L = FL + SL(Q∗L −QL)
F∗R = FR + SR(Q∗R −QR)

(19)

The middle wave speed is estimated by [21]:

S∗ =
pL − pR + ρRhRUR(SR −UR) + ρLhLUL(UL − SL)

ρRhR(SR −UR) + ρLhL(UL − SL)
(20)

where pL = 1
2 ρLgh2

L and pR = 1
2 ρRgh2

R are the hydrostatic pressures at the left and right
edges, respectively; UL = uL · n and UR = uR · n are the normal velocities at the left and
right edges, respectively; ρL and ρR are the densities at the left and right, respectively. The
left and right states at the star regions can be determined by:

Q∗L = hL
UL − SL
S∗ − SL


1

ρL
ρL
(
S∗nx + uLny

)
ρL
(
vLnx + S∗ny

)
 (21)

Q∗R = hR
UR − SR
S∗ − SR


1

ρR
ρR
(
S∗nx + uRny

)
ρR
(
vRnx + S∗ny

)
 (22)
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The left and right wave speeds are estimated by:
SL = min(UL −

√
ghL, ũ−

√
gh̃)

SR = max(UR −
√

ghR, ũ +
√

gh̃)
(23)

where h̃ = hL+hR
2 and ũ = UR

√
hR+UL

√
hL√

hR+
√

hL
are the Roe-averaged flow depth and velocity.

2.2.3. Well-Balanced Scheme for the VDSWEs

To illustrate the method, this section used one-dimensional equations simplified from
SWEs. For a stationary flow (u = 0), the momentum equation of SWEs becomes:

∂

∂x

(
1
2

gh2
)
= ghS0x (24)

If a numerical scheme can maintain this stationary state, the scheme is called a well-
balanced scheme [30], and it is said to satisfy the conservation property (or C-property) [22].

As to the VDSWEs, the momentum equation including the variable-density term
changes into:

∂

∂x

(
1
2

ρgh2
)
= ρghS0x (25)

It is obvious that the definition of a well-balanced scheme or the conservative prop-
erty can be extended to the VDSWEs, if a numerical scheme can maintain Equation (25).
Rearranging Equation (25) into a similar form as Equation (24):

∂

∂x

(
1
2

gh2
)
= ghS0x −

gh2

2ρ

∂ρ

∂x
(26)

Since the density gradient term on the right-hand side comes from the advection
term of Equation (25), the term bears an upwind characteristic. It is difficult to maintain
the conservative property of a numerical scheme if this term is discretized using a finite
difference scheme (e.g., a central difference method) in [1].

To create a well-balanced scheme, the hydrostatic reconstruction approach [31] for the
SWEs is incorporated into the proposed model. According to this approach, bed elevations
at the cell interface (i + 1

2 , j) between the cell (i, j) and the cell (i + 1, j) are evaluated by:

Bi+ 1
2 ,j = max(Bi,j, Bi+1,j) (27)

where B = b + b0 is bed elevation; subscript i and j are the cell indices in x and y directions;
and subscript 1/2 represents the cell boundary. Following this, flow depths at the left and
right sides of a cell boundary are reconstructed as: hL = max(0, hi,j + Bi,j − Bi+ 1

2 ,j)

hR = max(0, hi+1,j + Bi+1,j − Bi+ 1
2 ,j)

(28)

The reconstructed conservative variables at the cell boundary for 2D VDSWEs are
equal to:

QL =


hL

ρi,jhL
ρi,jhLui,j
ρi,jhLvi,j

, QR =


hR

ρi+1,jhR
ρi+1,jhRui+1,j
ρi+1,jhRvi+1,j

 (29)
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Accordingly, the bed slope term at the cell center is discretized for 2D VDSWEs as:

S0 =


0
0

ρi,jg(h2
E,L−h2

W,R)
2∆x

ρi,jg(h2
N,L−h2

S,R)
2∆y

 (30)

where subscript E (i+1), W (i), N (j+1), and S (j) represent the east, west, north, and south
sides of a cell. For one-dimensional flow, the fourth component in Equations (29) and (30)
is neglected.

To prove the well-balanced property of the scheme, the numerical discretization to a
stationary flow is presented below. For a flow in hydrostatic equilibrium state, the wave
speeds are: 

SL = min(−
√

ghL,−
√

gh̃) < 0

SR = max( +
√

ghR,+
√

gh̃) > 0

S∗ = 0

(31)

For the cell i, the left-hand side (LHS) of Equation (25) is discretized as:

LHS =
Fi+ 1

2
− Fi− 1

2

∆x
=

ρi gh2
L

2 − ρi gh2
R

2
∆x

=
ρig
(
h2

L − h2
R
)

2∆x
(32)

while the right-hand side (RHS) of Equation (25) equals:

RHS =
ρig
(
h2

L − h2
R
)

2∆x
(33)

Since the left-hand side is exactly equal to the right-hand side, the proposed numer-
ical scheme is well-balanced. This contrasts to the unbalanced scheme that discretizes
Equation (26) using a central difference scheme for the density gradient. The left-hand side
of Equation (26) is discretized as:

LHS =
Fi+ 1

2
− Fi− 1

2

∆x
=

gh2
L

2 −
gh2

R
2

∆x
=

g
(
h2

L − h2
R
)

2∆x
(34)

and the right hand side is:

RHS =
g
(
h2

L − h2
R
)

2∆x
+

gh2
i

2ρi
(

ρi+ 1
2
− ρ

i− 1
2

∆x
) (35)

Apparently, Equations (34) and (35) are not equal, and the additional term is the
density gradient term. This unbalanced discretization can cause numerical dispersion at
the discontinuous locations.

3. Results

The numerical method was tested using four cases: one is a synthetic case of standing
contact discontinuity, two are laboratory experiments of dam-break flow over mobile bed
surface, and the last is a field case.

3.1. Case 1: Standing Contact-Discontinuity

This synthetic case aims to demonstrate the well-balanced property of the model.
The case is one-dimensional stationary fluid in a flume (L = 500 m) with a flat bed and
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both sides of the flume are solid walls proposed by [21]. The vectors in Equation (6) were
reduced to three components, U = (h, ρ, u)T . The initial conditions are given as:

U(x, 0) =

{
UL, x <= 250 m

UR, x > 250 m
(36)

with:

UL =

 4.0
1562.5

0.0

, UR =

 5.0
1000.0

0.0

 (37)

For the given initial conditions, the discontinuity at x0 = 250 m is a standing contact-
discontinuity. By enforcing the zero-velocity condition, the fluid will remain stationary
without dispersion. Therefore, the analytical solution is the fluid at the initial stationary
state, assuming no vertical flow, using the depth-averaged two-dimensional model.

The numerical simulation is carried out over a Cartesian mesh with ∆x = 1 m. For
the simulation, the time step is ∆t = 0.02 s and the simulation time is tmax = 10 s. The
simulation results, including surface profile, density profile, and velocity profile, are shown
in Figure 1. The profiles of the results are identical to the stationary solution of this test.
Therefore, the well-balanced property of the numerical model is confirmed by this test case.

Figure 1. Solution of test case 1: (a) surface profile; (b) density profile; and (c) velocity profile.
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Besides this, the results of an unbalanced scheme [1] are also plotted in Figure 1.
It is apparent that there are two oscillations that propagate toward the upstream and
downstream ends of the flume and the unbalanced scheme cannot keep the stationary state
solution. These comparisons demonstrate the advantage of a well-balanced scheme over an
unbalanced scheme: a well-balanced scheme can maintain the exact equilibrium between
the hydrostatic pressure term and the bed slope term and there are no oscillations in the
solution of a well-balanced scheme.

3.2. Case 2: One-Dimensional Dam-Break Flow over Mobile Bed

In this test case, the model is applied to a one-dimensional laboratory experiment [32].
The objective of this experiment is to investigate the erosional behavior of dam-break flow
over mobile beds. The setup of the experiment is shown in Figure 2. The flume is 6 m
long, 0.25 m wide, and 0.7 m high. The flume is equipped with a fast downward-moving
gate, which is used to simulate idealized dam-break events. The experiment uses a flat,
loose granular sediment bed with following parameters: the density of sediment particle,
ρs = 2683kg/m3; the median diameter of sand, d50 = 1.82 mm; the settling velocity,
ω0 = 0.16 m/s; and the porosity, φ = 0.47. Manning’s roughness coefficient was estimated
to be n = 0.0165 s/m

1
3 .

Figure 2. Experimental setup of test case 2.

Initially, the reservoir upstream is filled with water to a depth h = 0.35 m. The
downstream of the flume is dry bed. The mobile bed layer consists of fully saturated sands
with an initial thickness b = 0.1 m. The upstream boundary condition is a wall boundary.
The transmissive boundary condition, which assumes the velocity gradient is zero ( ∂u

∂x = 0),
is applied to the downstream bounadry. At time t = 0 s, the gate was suddenly removed
to create a dam-break flow. During the experiment, the dam-break flow was recorded by
several high-speed digital cameras. The total experimental time was tmax = 1.5 s.

The numerical simulation is carried out with the following parameters: ∆x = 0.06 m
and ∆t = 0.001 s. In Figure 3, the calculation results are compared with the measured
data at T= 0.25 s, 0.50 s, 0.75s, 1.00 s, 1.25 s, and 1.50 s. In addition, the calculated surface
and bed elevation in [21] at T = 0.50 s, 1.00 s, and 1.50 s are plotted to compare with the
simulated results in this study. The calculated results at T = 0.25 s, 0.75 s, and 1.25 s are
not available in [21]. Figure 3 shows reasonable agreement between the calculated results
from this study and the measurements. Not only is the propagation of the shock-front
accurately predicted, but also the temporal evolution of the free surface agrees well with
the interface-tracking results of the digital cameras. Although the bed changes are not
significant in the experiment, the magnitudes of the simulated bed changes are consistent
with the measurements. However, it is apparent that the results of water surface and bed
elevations from [21] deviate more from the measurements compared to the results from
this study. At T = 1.00 s and 1.50 s, the simulated water surface and bed elevation from this
study are very close to those observed, but the results in [21] over-predicted water surface
elevation and bed scour depth. Ref. [21] showed a remarkable dip in both water surface
and bed profiles at the gate (x = 0.0 m). This discontinuity of water and bed surfaces at the
gate, where both water surface and density are discontinuous at the initial state, is nearly
invisible but also seen in this study. This is the location of the maximum of numerical errors
regardless of numerical scheme. The results show the well-balanced scheme used in this
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study not only improves the simulated results but also minimizes the numerical instability
at the discontinuity interface.

Figure 3. Measured and calculated results of test case 2: (a) t = 0.25 s; (b) t = 0.50 s; (c) t = 0.75 s;
(d) t = 1.00 s (e) t = 1.25 s; and (f) t = 1.50 s [21].

To quantitatively evaluate the accuracy of the developed model, the root mean square
error (RMSE) and the mean relative error (MRE) of the simulated results are calculated
using Equation (38) and shown in Table 1.

RMSE =

√
∑n

i=1(Ci −Oi)
2

n
MRE =

|Ci −Oi|
|Oi|

(38)

where Ci and Oi are calculated and observed values, respectively; n is the total number
of observations; and the overbar is the mean value. As shown in Table 1, the RMSEs of
the simulated surface profiles are around 0.01 m, while the RMSEs of the simulated bed
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profiles are less than 0.005 m. However, the MREs of the simulated bed profiles are much
greater than the simulated surface profiles. This reveals that the simulated surface profiles
are more accurate than the simulated bed profiles.

Table 1. RMSE and MRE of 1D dam-break flow.

Time (s)
Water Level Bed Elevation

RMSE (cm) MRE (%) RMSE (cm) MRE (%)

0.25 1.13 3.35 0.45 23.20
0.50 0.57 1.80 0.38 25.09
0.75 0.78 2.79 0.39 26.47
1.00 0.84 3.37 0.33 22.24
1.25 0.82 3.58 0.35 23.75
1.50 0.87 4.83 0.32 27.35

Average 0.84 3.29 0.37 24.68

The simulated concentration profiles at different time instants are plotted in Figure 4.
The existence of high concentration at the shock front (about 20%) justifies the signifi-
cance of the variable-density effect. This is also a challenge to the numerical modeling of
sediment transport because the concentration profile is discontinuous at the shock wave
front. Figure 4 demonstrated that the proposed model can capture this concentration
discontinuity without introducing spurious oscillations.

Figure 4. Concentration profiles of 1D dam-break flow.

3.3. Case 3: Two-Dimensional Dam-Break Flow over Mobile Bed

This laboratory experiment was conducted at the Hydraulics Unit of the Mechanical
and Civil Engineering Laboratory, Universite catholique de Louvain, Belgium [33]. The
experiment aims to provide a benchmark test case to validate numerical models for the
simulation of dam-break flow over a mobile bed [7,9,34]. The experiment is a dam-break
flow from an upstream reservoir flowing into a flume over a mobile bed made of uniform
coarse particles. A schematic view of the flume is shown in Figure 5. The length of the
flume is 36 m; the width of the flume is 3.6 m. The breached dam is in a narrow reach
(1 m long and 1 m wide) between two impervious blocks. The upstream of the flume was
a reservoir, whereas the downstream is a flooded channel. The origin of the coordinates
is situated at the center of the dam. Manning’s coefficient for the sandy bed is given as
0.010 s/m

1
3 .
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Figure 5. Experimental setup of 2D dam-break flow.

The bottom of the flume was covered with a layer of saturated sand extending from
1 m upstream of the dam to 9 m downstream. The thickness of the mobile sand layer was
8.5 cm. The related properties of the sand layer are: the mean diameter of the particles
d50 = 1.61 mm; the porosity of bed material φ = 0.42; the density ρs = 2630 kg/m3; and
the critical Shields parameter θc = 0.047. Manning’s roughness coefficient for this sandy
channel was measured as n = 0.0165 s/m

1
3 .

The dam-break flow was triggered by rapidly lifting the gate separating the reservoir
and the channel. The initial water level in the reservoir was 0.47 m, while the down-
stream channel was initially dry (h = 0 m). The wall boundary condition was applied to
the upstream end of the reservoir, and similarly, the transmissive boundary condition is
imposed at the downstream outlet of the flume. The experiment lasted for 20 s. During
the experiment, eight sonic water level gauges were used to record water levels. The bed
profiles were measured after the experiment along three longitudinal lines: y = 0.2 m,
y = 0.7 m, and y = 1.45 m.

For the numerical simulation, the flume is discretized using a Cartesian mesh
(∆x = ∆y = 0.1 m), with a total of 10,602 rectangular cells. The time step is set to be
∆t = 0.01 s. The comparisons of simulated and measured water level hydrographs at
eight gauges are shown in Figure 6. The quantitative evaluation indices, i.e., the RMSEs
and the mean relative errors, are shown in Table 2. The comparisons showed that, at all
eight gauges, both the arrival times of the dam-break waves and the peak water levels are
accurately predicted. At the early stage of experiment, the water levels at the gauges, G2
and G3, are overpredicted, while the water levels are underpredicted at the gauges, G5 and
G8. At the late stage, the water levels are underpredicted at G1, G4, G6, G7, and G8. For the
symmetric gauge pairs (G1/G4, G2/G3, G5/G8, and G6/G7), the simulated hydrographs
are nearly symmetrical except for the results at G5 and G8 at the late stage. The RMSEs of
the predicted water level hydrographs are between 0.015 m and 0.02 m, while the relative
errors are between 12% and 22%. The results at the upstream gauges (G1, G2, G3, and G4)
are better than the downstream gauges (G5, G6, G7, and G8). A possible explanation is that,
as the dam-break flow propagates from upstream to downstream, three-dimensional flow
effects become more dominant.
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Figure 6. Measured and calculated water levels of 2D dam-break flow at: (a) Gauge 1; (b) Gauge 2;
(c) Gauge 3; (d) Gauge 4; (e) Gauge 5; (f) Gauge 6; (g) Gauge 7; and (h) Gauge 8.

Table 2. RMSE and MRE of water levels of 2D dam-break flow.

Gauge Number RMSE (cm) MRE (%)

1 1.71 15.11
2 2.07 12.66
3 2.17 12.72
4 1.59 13.81
5 1.39 18.90
6 1.49 20.73
7 1.58 21.91
8 1.98 21.50

Average 1.75 17.17
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The comparisons between the calculated and measured bed profiles along the lon-
gitudinal lines at the end of the experiment are shown in Figure 7. The RMSEs and the
mean relative errors are shown in Table 3. The magnitudes of RMSEs are between 0.009 m
and 0.017 m, while the relative errors are between 13% and 33%. The simulated mean bed
profiles matched the measurements at all three measured longitudinal lines. Although the
calculated and the measured bed profiles have the same trends, the calculated bed profiles
are smoother than the measured bed profiles. This implies that the developed model cannot
capture the local perturbations generated by 3D flow effects [34]. These perturbations are
caused by the flow in the vertical direction and cannot be captured by a 2D depth-averaged
model. On the other hand, the energy dissipations caused by these perturbations can be
calculated by a turbulence modeling method [24]. It thus follows that further research is
necessary for incorporating a turbulence model into the proposed model.

Figure 7. Measured and calculated bed profiles of 2D dam-break flow: (a) y = 0.20 m; (b) y = 0.70 m;
(c) y = 1.45 m.
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Table 3. RMSE and MRE of bed elevations of 2D dam-break flow.

Bed Profile (m) RMSE (cm) MRE (%)

0.20 1.24 13.03
0.70 1.67 32.65
1.45 0.91 17.20

Average 1.27 20.96

3.4. Case 4: 1996 Lake Ha! Ha! Catastrophic Flood Event

In this case, the performance of the proposed model is tested against a field event: the
1996 Lake Ha! Ha! catastrophic flood event, in the Saguenay region of Quebec, Canada
(Figure 8). A detailed description of this flood event and extensively documented data
are provided by [35,36]. Ref. [35] gave a detailed geomorphic description of the event.
Refs. [26,37,38] carried out a one-dimensional numerical simulation of this event.

Figure 8. DEM map of the Ha! Ha! River, Canada.

From 18 to 21 July 1996, an extreme precipitation event affected the Saguenay region
of Quebec, Canada. At the Ha! Ha! Lake, an earth-fill dike was being overtopped by up
to 0.26 m of water, and a new outlet channel formed. Overall, 59× 106 m3 of water was
estimated to have drained from the lake. The failure of the dike resulted in a peak discharge
of 8 times the 100-year flood. The Ha! Ha! River was severely damaged by the resulting
flood flow [35].

The numerical simulation started with the digital elevation model (DEM) of the Ha!
Ha! River, which was surveyed in May 1994 [36]. The spatial data are based on the
Modified Transverse Mercator (MTM) projection, zone 7 coordinates (NAD83). The spatial
ranges of the DEM data are: 5,318,000 m ≤ x ≤ 5,354,000 m on the east–west direction, and
275,000 m ≤ y ≤ 282,000 m in the north–south direction. In addition to the DEM data, the
geometry data of evenly spaced cross sections are also provided. These 363 cross sections
are spaced at 100 m intervals and oriented approximately normal to the central line of the
Ha! Ha! River. Each cross section is identified by its streamwise distance measured from
the failed dyke. Despite abundant data, it must be pointed out that the average error of the
preflood riverbed elevations is estimated to be about 2 m [26].

Based on the field observation and photo interpretation, superficial materials exposed
along the channel and floodplains are classified as non-cohesive sediment (sand and gravel),
cohesive sediment (glaciomarine or glaciodiamicton), or bedrock [36]. Due to the lack of
sufficient field data, the influence of cohesion on sediment transport was not considered in the
numerical model. According to [26], the median diameter of bed material for the whole Ha!
Ha! River is equal to 0.5 mm, the density of bed material is ρs = 2650 kg/m3 and the porosity
equals to 0.4. Besides this, the influence of bedrock on the channel profile was studied in [36],
the bedrock constraint was also imposed in this simulation for which the outcrops of bedrocks
or coarse glacial deposits are assumed to act as rigid, non-erodible beds.

Initially, the Ha! Ha! River is assumed to be dry everywhere. The discharge hydro-
graph shown in Figure 9 is used as the upstream inflow boundary condition, and the inflow
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is assumed to be clear water [26]. The downstream boundary at the Ha! Ha! Bay is set
to satisfy the transmissive boundary condition. The overtopping occurred at 14:00 on
19 July 1996. The lake is estimated to be emptied in 18 h. During the event, the water level
of the lake dropped from 381 m to 370 m. The total simulation time is set to be 24 h. For the
numerical simulation, the river is discretized by a Cartesian mesh with ∆x = ∆y = 20 m.
The time step size is ∆t = 0.5 s.

Figure 9. Inlet discharge hydrograph of 1996 Lake Ha! Ha! Flood event.

Comparisons of the selected cross sections along the river are shown in Figure 10. The
cross-sectional changes are reasonably well predicted by the model. The RMSEs and MREs
of bed elevation changes are calculated for all cross sections and are shown in Figure 11.
The average of RMSEs is 4.4 m, and the average of MREs is 49.53%. As shown in Figure 12,
among all the data, 50% of the RMSEs are less than 3.3 m, and 90% of the RMSEs are less
than 7.9 m. As to the MREs, about 50% of cross sections have MRE values less than 40%,
and 90% of the MREs are less than 70%.

Figure 10. Cont.
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Figure 10. Measured and calculated bed cross sections of Lake Ha! Ha! flood event: (a) cross section
#20; (b) cross section #70; (c) cross section #120; (d) cross section #170; (e) cross section #220; (f) cross
section #270; and (g) cross section #320.

Figure 11. Analysis of calculated bed cross sections of Lake Ha! Ha! flood event: (a) RMSEs;
(b) MREs.

Figure 12. Cumulative percentage distributions of Lake Ha! Ha! flood event: (a) RMSE; and (b) MRE.
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In the longitudinal direction, the measured and calculated thalwegs are plotted in
Figure 13. The RMSE of thalweg change is 5.3 m, and the MRE is 20.18%. It is obvious
that the model performed better in the longitudinal direction than in the cross-sectional
direction. Additionally, the simulated thalweg profile at the middle reach is overestimated,
especially at 23 km from the channel mouth. According to [26], the outcrops of bedrocks
control this part of the channel. During the 1996 flood event, a new reach formed at the
right floodplain and the bed was eroded up to 20 m there. The proposed model failed to
predict this geomorphic change.

Figure 13. Measured and calculated thalwegs of Lake Ha! Ha! flood event: (a) 0–12 km; (b) 12–24 km;
(c) 24–36 km.
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For this real-world flood event, although the RMSEs of bed elevation (in meter scale)
are two orders of magnitude greater than the laboratory cases (in centimeter scale), the
MREs of bed elevation (49.53% in horizontal direction and 20.18% in longitudinal direction)
are at the same order of magnitude as the laboratory cases (24.68% for 1D dam-break flow
case, 20.96% for 2D dam-break flow case). Since there is no consensus on which sediment
transport equation is most suitable for a specific river reach, an appropriate calibration
procedure using different bed load transport equations and varying Manning’s roughness
coefficients is needed to reach better matches of modeling results with observations. The
focus of this paper is the new well-balanced numerical scheme for solving the VDSWEs.
This calibration procedure was not performed for each testing case. Nevertheless, the
simulated results of bed-elevation changes satisfactorily match both the laboratory and
field observations. Therefore, the developed well-balanced numerical scheme for solving
VDSWEs is proven to be a robust and accurate method for simulating unsteady sediment-
laden flows over mobile beds.

4. Conclusions

A two-dimensional, well-balanced, nonequilibrium sediment transport model for the
simulation of unsteady sediment-laden flows over mobile beds is developed and tested.
In comparison with previously developed 2D models, the governing equations are based
on the original formulation of the VDSWEs, which preserves the conservative property
of sediment-laden flow. In the model, this system of governing equations is solved by a
fully coupled first-order Godunov-type finite volume method. The HLLC Riemann solver
is extended to the two-dimensional VDSWEs to calculate the Riemann fluxes across cells’
boundaries. The model adopts a well-balanced scheme that maintains the exact balance
between the momentum term and the bed slope term by incorporating the term derived
from sediment concentration into the advective terms in momentum equations.

The performance of the model is verified by four test cases. A synthetic case with an
analytic solution is used to verify the well-balanced property of the model. Two laboratory
experimental studies of 1D and 2D dam-break flows over mobile beds show the accuracy
of the model for reproducing not only bed profiles but also the flood propagation processes.
The last case is the 1996 Lake Ha! Ha! flood event. The model’s results in bed-cross and
thalweg sections reasonably match field observations. The accuracy and simplicity of the
proposed model, together with the robust implementation of a well-balanced numerical
scheme, make this model suitable for practical hydraulic engineering applications, such as
sedimentation due to dam decommissioning or levee or barrier breaches. However, the
model employs a total load transport equation that limits its applicability to sand-sized
dominant rivers. For mountain streams, where sediment load consists primarily of coarse
sand and gravels, the sediment transport equation needs to be broken into two equations:
one for suspended load, and the other for bed load, in the manner of the method in [11].
Additionally, a partial implicit scheme can be implemented to improve the computational
time. Nevertheless, the well-balanced numerical scheme used in this model has significantly
improved the robustness and stability of numerical solutions and the simulated results
match better than previous models.
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