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Abstract: The contamination of water with organic pollutants, such as dyes, has become a serious
threat to the environment. Therefore, the development of a cost-effective, eco-friendly, proficient,
and visible-light-driven catalyst for the treatment of organic dye-contaminated wastewater has been
a burning issue recently. Photocatalysis is suggested as a potential treatment technique for the
eradication of organic pollutants. The 1D tunnel-structured manganese oxide octahedral molecu-
lar sieve (OMS) is a suitable substance to be tested as a visible-light-driven photocatalyst for the
degradation of organic contaminants. However, the fast recombination of photoinduced charges
(h+/e−) limits its photocatalytic application. The development of heterojunctions between OMS and
other metals, such as Ag, is a suitable technique for improving the photocatalytic performance of
OMS. In this study, Ag-OMS with plasmon-enhanced photocatalytic activity is reported for the pho-
todegradation of crystal violet dye. Manganese oxide OMS was prepared by an acidic precipitation
method using potassium permanganate, manganese acetate, and nitric acid as precursor materials.
Ag nanoparticles were deposited on OMS using leaf extracts of Calotropis gigantea. The deposition
of Ag enhanced the photocatalytic performance of OMS from 68 to 95%. The effects of Ag contents,
catalyst dosage, and concentration of crystal violet dye on catalytic performance were explored as
well. Approximately 100, 95, and 75% photodegradation of 50, 100, and 150 mg/L crystal violet
dye was observed in 90, 120, and 120 min in the presence of 10% Ag-OMS, respectively. Excellent
photocatalytic performance, low dose utilization, and reusability proved that Ag-OMS might have
practical environmental applications.

Keywords: octahedral molecular sieves (OMS); photodegradation; crystal violet dye; heterojunction;
reaction kinetics; wastewater treatment

1. Introduction

Water is an obligatory part of everyday life and is used broadly for agriculture, energy,
public hygiene, industrial purposes, and drinking. The rapid industrial development and
increase in population caused a brutal escalation in environmental pollution by generating
industrial effluents and waste materials [1–9]. The discharge of effluents from industries,
such as textile, leather, paint, pulp, pharmaceuticals, food, cosmetics, etc. releases organic
dyes and other pollutants into the environment, which causes a significant increase in
the rate of contamination [10–12]. These orgasmic dyes badly affect living organisms due
to their carcinogenic and chemically resistant nature. Therefore, it is crucial to develop
methods and techniques for the elimination of these dyes from the environment [13–18].
Previously, the removal of these dyes was accomplished by various conventional methods.
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These conventional methods include reverse osmosis, coagulation, flocculation, and the
most commonly used adsorption method. Although these conventional methods were
effective for the separation of pollutants from water, they were expensive and tedious.
Furthermore, these methods were ineffective in completing the mineralization of the pollu-
tants [19–21]. These important issues were overcome by the application of photocatalysis.
Photocatalysis using transition metal oxides as catalysts is a facile and green technique
for the treatment of dye-contaminated wastewater [22–24]. Photocatalysis emerged as a
popular research area due to its effectiveness, low cost, and eco-friendly nature. Further-
more, this method removes organic pollutants by reducing toxic molecules to simple and
harmless components [25–30]. Recently, manganese oxides and their composites have been
extensively used as catalysts and adsorbents for the removal of organic pollutants from the
aqueous system [31–37]. Manganese oxides exist in various crystal forms. The crystalline
forms of manganese oxides have been classified into 1D tunnel structures, 2D layered
structures, and 3D spinel structures. The crystalline phase of manganese oxides in all three
structures consists of [MnO6] octahedral units. The 1D tunnel structure of manganese oxide,
called manganese oxide octahedral molecular sieve, has received extensive attention due to
its superior catalytic performance [38–41]. There are three tunnel structures of manganese
oxides called todorokite, cryptomelane, and pyrolusite (Figure 1). These structures are
denoted as MnO (3 × 3), MnO (2 × 2), and MnO (1 × 1), respectively.
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The [MnO6] octahedron forms single, double, or triple chains through edge and/or
angle sharing, and then the chains form a square hollow tunnel in an approximately
orthogonal manner [42–44]. The Mnn+ ions exist in the skeleton of octahedral molecular
sieves with various oxidation states, and the K1+ ions exist in the center of the channel
surrounded by [MnO6] octahedra to maintain the overall charge balance. Manganese
oxide octahedral molecular sieves have special strictures; therefore, these materials can be
modified by structure construction, facet engineering, morphology control, and element
doping. The manganese oxide octahedral molecular sieves have gotten considerable interest
in catalytic applications for environmental remediation [45,46]. However, manganese
oxide is a narrow band gap semiconductor, therefore it is not successful in photocatalytic
applications under visible light irradiation due to the quick recombination of photoinduced
positive holes and electrons. The photocatalytic performance of manganese oxide under
visible light irradiation can be improved by increasing the lifetime of positive holes and
electrons [47]. Therefore, in this study, we deposited Ag nanoparticles on the surface of
manganese oxide to get a visible light-responsive photocatalyst for the crystal violet dye
degradation. The charge transfer and synergetic effect expected by the deposition of Ag
nanoparticles on the surface of manganese oxide result in an increase in the photocatalytic
performance of Ag-MnO2 in the photodegradation of crystal violet dye. Crystal violet
dye has been used in a wide range of applications, such as dye processing, medicine,
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dermatological agents, biological staining, printing, textiles, etc. It is a synthetic cationic
dye and belongs to the triphenyl methane family. Being a cationic dye, it easily penetrates
the cell due to its interaction with the negatively charged surface of the membrane. The
inhalation of crystal violet dye causes dizziness, diarrhea, and vomiting [48].

2. Experimental Section
2.1. Synthesis of Manganese Oxide OMS

An acidic precipitation experimental procedure was followed for the synthesis of
manganese oxide OMS. For this purpose, two solutions were prepared: one by taking 14 g
of potassium permanganate (Sigma-Aldrich, St. Louis, MO, USA) in 250 mL of distilled
water, and the other by taking 21 g manganese acetate (Merck, Rahway, NJ, USA) in a
mixture of 190 mL of distilled water and 10 mL of nitric acid (Sigma-Aldrich). Then, both
solutions were mixed by dropwise addition of the solution of potassium permanganate
to the solution of manganese acetate. Later, the resultant mixed solution was refluxed for
24 h. The reflux created a precipitate in the reaction mixture. The precipitate formed was
filtered, washed, and dried at 110 ◦C for 10 h. Finally, the manganese oxide OMS formed
was ground and stored for further analysis. It was designated as OMS.

2.2. Synthesis of Ag-Decorated Manganese Oxide OMS

Ag-decorated manganese oxide OMS was prepared using the green method using
leaf extracts of Calotropis gigantea. Leaf extracts were prepared by refluxing dried and
washed leaves of Calotropis gigantea for 2 h, followed by filtration. Typically, 0.314 g of silver
nitrate (Merck) is taken in 100 mL of distilled water. Then, 1.686 g of previously prepared
manganese oxide OMS was added to a solution of silver nitrate. Finally, 150 mL of leaf
extracts were added to the reaction mixture and stirred for 2 h, followed by filtration and
drying. The prepared substance was designated as Ag-OMS.

2.3. Characterization

The fabricated material was characterized with X-ray diffraction spectroscopy, scan-
ning electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric
analysis, and Fourier transform infrared analysis using JDX-3532-JEOL, JSM-5910-JEOL,
JDX-3532-JEOL, and TGA-7 Perkin Elmer models and Bruker VRTEX70, respectively.

2.4. Photocatalysis

Various degradation experiments were performed for the evaluation of photocatalytic
activities of fabricated OMS and Ag-OMS. An aqueous solution of crystal violet dye
(commercial grade) was used as a model contaminant. The degradation experiments
were performed under the irradiation of sunlight using model wastewater contaminated
with crystal violet dye. The extent of photodegradation was observed by measuring the
absorbance of crystal violet dye at λmax 583 nm using a UV-visible spectrophotometer
(LAMBDA 1050+, PerkinElmer, Waltham, MA, USA). The measure of absorbance was
used for the calculation of the concentration of dye solution using a previously prepared
standard curve. Before the measurement of the photocatalytic activity of Ag-OMS, two
blank experiments were also conducted. The first blank experiment was conducted to find
out the degradation of crystal violet dye due to the absorption of light, i.e., photolysis. For
this purpose, a solution of crystal violet dye was taken in a Pyrex glass beaker and stirred
for one hour in sunlight. The solution was then analyzed for any change in concentration.
The second blank experiment was conducted to find out the contribution of adsorption to
the removal of crystal violet dye. For this purpose, a known mass of catalyst was suspended
in the solution of crystal violet dye, and then the mixture was stirred under dark conditions
for one hour. Then, the solution was analyzed for changes in the concentration of dye.
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3. Results and Discussion
3.1. Synthesis

Manganese oxide was prepared by the precipitation method under acidic conditions
using potassium permanganate and manganese (III) acetate as precursor substances. Man-
ganese oxide was formed as follows:

MnO1−
2 + Mn3+ → 2MnO2

Ag nanoparticles were deposited on manganese oxide by a green method using the
leaf extract of Calotropis gigantea as a reducing agent. The Leaf extract of Calotropis gigantea
contains a wide range of phytochemicals, including flavonoids, gigantin, glycosides, pheno-
lics, saponins, and many more. These phytochemicals have great potential for the reduction
of silver ions and the stabilization of reduced silver nanoparticles [49–52]. The fabrication
of Ag-decorated manganese oxide can be represented as follows:

MnO2 + Ag1+ + Phytochemicals → Ag−MnO2

3.2. Characterization

The crystal structure of fabricated OMS and Ag-OMS was determined by XRD analysis.
As given in Figure 2, the XRD of both OMS and Ag-OMS consists of sharp peaks that con-
firm the crystallinity of the fabricated material. The diffraction signals at 2θ = 28.35◦, 37.75◦,
40.93◦, 42.13◦, 56.35◦, 59.27◦, 65.65◦, 67.23◦, and 72.39◦ represent the existence of β-MnO2.
These peaks correspond to [1-1-0], [1-0-1], [2-0-0], [1-1-1], [2-1-1], [2-2-0], [0-0-2], [3-1-0], and
[3-0-1] hkl planes of the tetragonal unit cell of β-MnO2, respectively [53–56]. The observed
XRD pattern could be radially indexed to tetragonal MnO (1 × 1) pyrolusite (β-MnO2)
(JCPDS 24-0735) [41]. The lattice parameters (a, b, c), Miller indices (h, k, l), and interplanar
spacing (dhkl) for the tetragonal unit call are related as given in Equation (1). The interpla-
nar spacing is related to the angle of diffraction as dhkl = 1.5406/(2Sinθ). The observed
angles of diffraction and hkl planes given in XRD were treated according to Equation (1)
by the nonlinear method for the calculation of lattice parameters. The Solver add-in of the
Excel program was followed for the calculations by the non-linear method. The average
lattice parameters were a = b = 1.34 Å and c = 2.74 Å. The additional diffraction signal
observed in Figure 2b at 2θ = 38.65◦, 44.15◦, and 64.15◦ has been indexed to [1-1-1], [2-0-0],
[2-2-0], and [2-2-2] hkl crystal planes of Ag, respectively (JCPDS: 04-0783). Hence, the XRD
analyses show that Ag has been successfully supported on MnO2 [57–59]. Based on XRD
analysis, the fabricated OMS and Ag-OMS are considered pure and crystalline substances.

1
d2

hkl
=

h2 + k2

a2 +
l2

c2 (1)

The shapes and morphologies of the particles of OMS and Ag-OMS were studied
by scanning electron microscopy. The SEM images of OMS and Ag-OMS particles are
given in Figure 3. It can be observed that OMS exists in the form of rods with a diameter
of approximately 100 nm (Figure 3a). The SEM images show that the rods of OMS are
homogeneous and non-agglomerated in nature. The homogeneous morphology of the
catalysts plays an important role in reproducing the same photocatalytic results. The non-
agglomerated nature of catalyst particles is also very important because nonagglomerated
catalyst particles are easily accessible to reactant molecules. Lachheb and coworkers [60]
have reported mesoporous α-MnO2 with rod-like morphology. They reported that rod-
shaped particles provide easily accessible sites for the reactant molecules. The SEM images
of Ag-OMS (Figure 3b) show that particles of Ag and OMS are spherical rod-shaped in
morphology, respectively. The SEM analysis confirms the successful deposition, coating,
and dispersion of Ag nanoparticles at the surface of OMS. Furthermore, it is observed that
OMS retains its shape and morphology in Ag-OMS.
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The elemental composition of OMS and Ag-OMS was confirmed by EDX analysis.
Figure 4 shows the EDX spectra of the samples. The EDX of OMS confirms the existence of
Mn, O, and K. Hence, it suggests the successful fabrication of manganese oxide OMS. The
existence of a signal for C is suggested as an impurity in the precursor or contamination
during the experimental process. Similarly, the EDX of Ag-decorated manganese oxide
OMS confirms the existence of Ag, Mn, O, and K, along with impure elements. The XRD
and EDX analyses support the successful fabrication of the target material.

Thermal measurements for the OMS and Ag-OMS were studied with thermal gravi-
metric analysis (TGA) and thermal differential analysis (DTA). The measurements were
carried out by taking a known mass of OMS and Ag-OMS in the range of 30–700 ◦C at
10 ◦C/min in a nitrogen atmosphere. Figure 5 depicts the TGA and DTA of OMS and
Ag-OMS. The TGA profile of OMS shows three steps of weight loss. A loss of ~2% in the
mass of OMS was observed before 140 ◦C in the first step. This loss is associated with the
elimination of surface-bound water. The second step consists of a ~3% loss in the mass
of OMS before 300 ◦C, which is associated with the elimination of lattice oxygen and the
phase transformation of MnO2 to Mn2O3. Then there was no appreciable loss in mass
up to 530 ◦C. However, a further loss of ~3% in the mass of OMS was observed in the
temperature range 530–700 ◦C, representing additional elimination of lattice oxygen and
phase transformation of Mn2O3 to Mn3O4 [61–63]. A similar TGA profile was observed for
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Ag-OMS as well; however, the loss in mass before 300 ◦C was slightly higher (~4%), which
might be due to the decomposition of unwashed plant material. The DTA of both OMS and
Ag-OMS consists of exothermic and endothermic portions before and after 230 ◦C, respec-
tively. These positions have been assigned to the elimination of water or plant contents and
phase transformations, respectively.
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FTIR spectra of OMS and Ag-OMS showed bands at 178, 429, 543, 567, 578, 649, 659,
and 720 cm−1, representing the vibrations of Mn-O linkages in MnO6 octahedral units.
The absorption bands near 1600 and 2300 cm−1 represent the vibration of the hydroxyl
group or water molecules in the tunnel of OMS. The absorption band for Ag-Ag metallic
bond vibrations could not be observed in the FTIR spectrum of Ag-OMS because this bond
shows vibrations below 400 cm−1 (Figure 6) [53,64,65].
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3.3. Photocatalysis

The photocatalytic performance of prepared OMS and Ag-OMS was evaluated by
performing photodegradation experiments using crystal violet dye as a model pollutant.
A 100 mg/L solution of dye (50 mL) was used for the measurement of the photocatalytic
performance of different catalyst samples. The photocatalytic degradation study was
accomplished in three steps.

First, the degradation of crystal violet dye due to sunlight was evaluated. For this
purpose, a solution of crystal violet dye was taken in a Pyrex glass beaker and stirred for
one hour under sunlight. Before stirring under sunlight, a sample of dye solution was
taken, and its absorbance was measured using a spectrophotometer. After stirring for one
hour, another sample of dye solution was taken, and its absorbance was measured. It was
noted that there was no difference in the absorbance values taken before and after stirring
the dye solution in sunlight. These results show there is no degradation (photolysis) of
crystal violet dye due to sunlight alone.

In the second step, an optimum amount of OMS or Ag-OMS (0.8 g) was suspended in
the solution of crystal violet dye, and then the mixture was stirred under dark conditions
for one hour. A 0.5-mL sample was taken after 15, 30, 45, and 60 min. The absorbance of
each sample was measured. The analysis of the obtained results showed that there was
approximately a 25% decrease in the concentration of crystal violet dye. This decrease
in the concentration of crystal violet dye is attributed to sorption on the surface of OMS.
The absorbance measured after the one-hour stirring of a dye solution containing OMS or
Ag-OMS was used as the initial absorbance for the investigations in the third step.

In the third step, the dye solution containing OMS or Ag-OMS was stirred contin-
uously under sunlight for two hours. Samples were taken after every 15 min, and the
absorbance of each sample was measured using a spectrophotometer. The extent of pho-
todegradation was calculated using the Beer-Lambert law, according to which the change in
concentration of crystal violet dye (C/Co, Co = 100 mg/L) is proportional to the normalized
absorption value (A/Ao) as given in Figure 7a. The data given in Figure 7a shows that the
deposition of Ag on OMS enhances the photocatalytic performance of OMS. For optimiza-
tion of Ag content, three Ag-OMS photocatalysts having 5, 10, and 15% Ag (designated as
5-Ag-OMS, 10-Ag-OMS, and 15-Ag-OMS) were prepared and used as photocatalysts for
the degradation of crystal violet dye. The photocatalytic performance of OMS, 5-Ag-OMS,
10-Ag-OMS, and 15-Ag-OMS was found to be 68, 79, 95, and 85%, respectively. The reaction
time for 50% photodegradation for OMS was 75 min whereas it decreased to 58, 35, and
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42 min for 5-Ag-OMS, 10-Ag-OMS, and 15-Ag-OMS, respectively. The photodegradation
data of crystal violet dye were further investigated by pseudo first-order kinetic analyses.
Figure 7b depicts the results of kinetics analyses. The kinetic parameters are given in Table 1.
The photocatalytic performance of Ag-OMS increased with an increase in Ag content from
5 to 10%. However, beyond 10% loading of Ag, the photocatalytic activity of Ag-OMS
decreased. It shows that the overloading of Ag content causes a decrease in photocatalytic
performance. The decrease in photocatalytic performance of Ag-OMS with overloading
of Ag content is attributed to the formation of an aggregation effect, which is responsible
for inhibition in the physical contact between Ag and OMS [66]. These results show that
Ag-OMS loaded with 10% Ag exhibits the best photocatalytic performance in this study.
Therefore, this sample was used in further analyses and characterization. The obtained
results show that Ag nanoparticles play a positive role in the photodegradation of crystal
violet dye.
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Table 1. Kinetic parameters of OMS and Ag-OMSs catalyzed photodegradation of crystal violet dye.

Photocatalyst Rate Constant (min−1) R2 Activity (%)

OMS 0.009 0.996 68

5-Ag-OMS 0.013 0.998 79

10-Ag-OMS 0.022 0.986 95

15-Ag-OMS 0.017 0.997 85

The optimization of the photocatalyst dosage is a crucial factor because it significantly
affects the efficiency of the photodegradation reaction. For optimization of photocatalyst
dosage, separate degradation experiments on crystal violet dye were performed with vari-
ous dosages of 10-Ag-OMS in the range of 0.02 to 0.1 g while keeping the other parameters
the same. The analyses of results showed that an increase in the amount of 10-Ag-OMS
caused an increase in the rate of photodegradation reaction up to 0.08 g. There was no
significant increase in the rate of reaction beyond the 0.08 g of the photocatalyst. The
maximum degradation performance was observed at 0.08 g of photocatalyst hence this
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loading of catalyst was considered as optimum dosage and used in further reactions. The
overloading of photocatalysts produces a negative impact on photocatalytic performance.
The higher catalyst dosage diminishes the penetration of light to the surface of the catalyst
by unfavorable light scattering.

The stability and reusability of the photocatalyst are also crucial factors in practical
applications. The best catalyst is the one that can be recycled many times before its
deactivation. The reusability was evaluated by using spent 10-Ag-OMS in three consecutive
photodegradation experiments. The spent catalyst was washed with ethanol and then with
water. After washing, it dried at 100 ◦C for 12 h. Then, it was re-employed as a catalyst
in the photodegradation experiment of crystal violet dye. The photocatalytic activity was
found to be higher than 90% in all recycled experiments. Hence, the photocatalyst reported
in this study is stable and can be recycled many times in photodegradation experiments.

The initial concentration of dye also affects the photocatalytic performance. Therefore,
separate photodegradation experiments were performed using 50, 100, and 150 mg/L
solutions of crystal violet dye under identical experimental conditions. The obtained
data were analyzed using a pseudo-first-order kinetics model. The obtained results are
given in Table 2. The data given in Table 2 show that the photocatalytic performance
of 10-Ag-OMS is inversely proportional to the initial concentration of crystal violet dye.
At higher concentrations of dye, the photon cannot reach effectively the surface of the
photocatalyst due to the scattering and absorption of photons by dye molecules.

Table 2. Effect of the concentration of crystal violet dye on the photocatalytic performance of 10-Ag-OMS.

Crystal Violet Dye (mg/L) Rate Constant (min−1) R2 Activity (%)

50 0.036 0.978 100 *

100 0.022 0.986 95 **

150 0.011 0.997 71 **
Note: * 75 and ** 120 min reaction duration, respectively.

3.4. Mechanism of the Photocatalytic Process

The enhanced photocatalytic performance of Ag-OMS is due to the efficient harvesting
of sunlight on its exterior. Pristine OMS absorbs photons in the ultraviolet (edge at∼335 nm)
and near infra-red (∼650–825 nm) regions. For the Ag-OMS junction, the surface plasmon
phenomenon shifts the absorption to the visible region (edge at ∼490 nm) and enhances the
absorption in the near-infrared region (600–1100 nm) as well. Hence, Ag-OMS efficiently
harvests sunlight. Figure 8 explains the photocatalytic process. The absorbed sunlight
causes the excitation of photoelectrons from the valence band of OMS to its conduction
band. The interfacial connection of OMS (MnO2) with Ag creates a Schottky junction that
causes an efficient separation of photogenerated electrons and positive holes. As a result of
efficient separation due to the Schottky junction, the rate of recombination of electrons and
positive holes diminishes and ultimately enhances photocatalytic performance [67–69]. The
separated photogenerated positive holes and electrons initiate a series of redox reactions
and produce OH radicals that mineralize the molecules of crystal violet dye. These redox
reactions are given below.

Ag−OMS + hϑ→ Ag−OMS
(
h+ + e−

)
Ag−OMS + hϑ→ Ag−OMS

(
h+ + e−

)
Ag−OMS

(
h+ + e−

)
→ OMS

(
h+)+ Ag

(
e−

)
OMS

(
h+)+ H2O → OH•

Ag
(
e−

)
+ O2 → O•−2
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O•−2 + H+ → HO•2

HO•2 → OH•

CV + OMS
(
h+)+ Ag

(
e−

)
+ OH• + O•−2 + HO•2 → Degradation products
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The proposed mechanism was tested with a trapping experimental system. For this
purpose, ammonium oxalate, benzoquinone, and tertiary butanol were used as scavengers
for positive holes, superoxide anion radicals, and hydroxyl radicals, respectively. Photo-
catalytic performance was significantly impaired in the presence of benzoquinone and
tertiary butanol; however, there was no significant effect of ammonium oxalate on the
photocatalytic performance. This testifies that superoxide anion radicals and hydroxyl
radicals are the key species taking part in the mineralization of crystal violet dye [70–72].

The photocatalytic results of this study show that Ag-OMS may effectively catalyze
water molecules and oxygen molecules into hydroxyl radicals under the irradiation of
sunlight. It has been reported earlier that MnO2 nanowires have shown promising perfor-
mance in the dye’s degradation due to the potential of MnO2 for the activation of oxygen
molecules [64]. Kong et al. have reported the reduction of oxygen by reaction with photo-
induced electrons and the oxidation of water by reaction with photo-induced positive holes
under irradiation of ultraviolet light [73].

Similarly, Wang and his co-workers have suggested that water molecules present in
the reaction mixture and the tunnel of MnO2 rods are responsible for the production of
hydroxyl radicals, due to which the breaking of the dye azo linkage (−N=N−) becomes
easier [74]. The involvement of the breaking of azo linkage (−N=N−) in photodegradation
is evident in the higher degradation rate of Congo red dye than the photodegradation
rate of methyl orange, as reported by Lachheb and coworkers [60]. They attributed the
higher degradation rate of Congo red dye to the availability of two reaction sites in the
dye (−N=N−) because the hydroxyl radicals can easily attack these active sites of the
dye molecule.

4. Conclusions

In summary, manganese oxide octahedral molecular sieves designated as OMS and
Ag-decorated manganese oxide octahedral molecular sieves designated as Ag-OMS were
successfully synthesized and utilized for the photodegradation of a model pollutant, crys-
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tal violet dye. The XRD analysis confirmed the successful fabrication of β-MnO2 and
Ag-decorated β-MnO2 designated as OMS and Ah-OMS, respectively. The EDX analy-
sis verified the existence of Ag, Mn, O, and K, along with impure elements. The XRD
and EDX analyses support the successful fabrication of the target material. The results
established that an optimum Ag-OMS showed outstanding photocatalytic performance
in visible light-assisted degradation of crystal violet dye. Approximately 100, 95, and 75%
photodegradation of 50, 100, and 150 mg/L crystal violet dye was observed in 90, 120,
and 120 min in the presence of 10% Ag-OMS, respectively. The outstanding photocatalytic
performance of Ag-OMS is attributed to the efficient separation of photogenerated positive
holes and electrons. Furthermore, the mechanism of the photocatalytic process demon-
strated that hydroxyl and superoxide anion radicals play a key role in the mineralization of
organic pollutants. Therefore, the present study offers an efficient and facile photocatalyst
for the treatment of real wastewater in the future.
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