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Abstract: The likelihood of surface water and groundwater contamination is higher in regions close
to landfills due to the possibility of leachate percolation, which is a potential source of pollution.
Therefore, proposing a reliable framework for monitoring leachate and groundwater parameters
is an essential task for the managers and authorities of water quality control. For this purpose, an
efficient hybrid artificial intelligence model based on grey wolf metaheuristic optimization algorithm
and extreme learning machine (ELM-GWO) is used for predicting landfill leachate quality (COD and
BOD5) and groundwater quality (turbidity and EC) at the Saravan landfill, Rasht, Iran. In this study,
leachate and groundwater samples were collected from the Saravan landfill and monitoring wells.
Moreover, the concentration of different physico-chemical parameters and heavy metal concentration
in leachate (Cd, Cr, Cu, Fe, Ni, Pb, Mn, Zn, turbidity, Ca, Na, NO3, Cl, K, COD, and BOD5) and
in groundwater (Cd, Cr, Cu, Fe, Ni, Pb, Mn, Zn, turbidity, EC, TDS, pH, Cl, Na, NO3, and K). The
results obtained from ELM-GWO were compared with four different artificial intelligence models:
multivariate adaptive regression splines (MARS), extreme learning machine (ELM), multilayer
perceptron artificial neural network (MLPANN), and multilayer perceptron artificial neural network
integrated with grey wolf metaheuristic optimization algorithm (MLPANN-GWO). The results of this
study confirm that ELM-GWO considerably enhanced the predictive performance of the MLPANN-
GWO, ELM, MLPANN, and MARS models in terms of the root-mean-square error, respectively, by
43.07%, 73.88%, 74.5%, and 88.55% for COD; 23.91%, 59.31%, 62.85%, and 77.71% for BOD5; 14.08%,
47.86%, 53.43%, and 57.04% for turbidity; and 38.57%, 59.64%, 67.94%, and 74.76% for EC. Therefore,
ELM-GWO can be applied as a robust approach for investigating leachate and groundwater quality
parameters in different landfill sites.

Keywords: landfill leachate quality; groundwater quality; extreme learning machine; multilayer
perceptron artificial neural network; grey wolf optimization
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1. Introduction

Landfill sites play a crucial role in safeguarding the environment. The process of
treating leachate holds significant importance in the functioning of landfill sites. Accurately
predicting the volume and composition of leachate relies heavily on climate conditions and
the types of waste materials being disposed of, making them pivotal factors in minimizing
the environmental impact on the surrounding area during landfill operations. Serious
environmental damage may occur due to waste burial in uncontrolled landfills. As a
consequence of this, landfill-based leachates have a high potential for the contamination
of soil and groundwater resources. The management of leachate and the prediction of
its quality and quantity are essential because of its considerable environmental impacts.
Without a proper design of landfills, leachate can spread in the environment and, hence,
leachate monitoring is necessary for engineered landfills. Providing an accurate prediction
method for analyzing leachate quantity/quality can considerably reduce the high cost of
monitoring programs [1,2].

Many prediction models based on water balance in landfill sites are used for analyzing
the quantity and quality of leachate. These involve the hydrologic assessment of a landfill
model [2–5], which is the equation of Richard for one-phase unsaturated flow through
homogeneous and heterogeneous porous media [6–8]. Another method used for analyzing
solute transport in landfills is a convective–dispersive equation, which uses the transport
and transformation processes of dispersion, advection, and sorption in unsaturated porous
media and chemical and biological transformation [9–12]. The main disadvantage of
such models is the fact that they require a high number of parameters based on chemical,
hydraulic, and biological characteristics. Additionally, mechanical properties are identified
utilizing optimization methods considering measured values in an objective landfill site [13].
Since such models are very complicated, they cannot be applied in the actual operation of
landfill sites. However, they are useful for optimizing the landfill sites’ performance [2].
Due to the limitations mentioned above, researchers have turned to machine learning (ML)
methods as a viable solution for intricate nonlinear hydrological modeling. The reason
behind this shift is ML’s capability to handle vast quantities of data efficiently [14].

In recent decades, machine learning models have been successfully used for modeling
environmental phenomena. However, there is limited number of studies that investigate the
efficiency of ML models in analyzing landfill leachate quantity/quality based on chemical
oxygen demand (COD), biochemical oxygen demand (BOD5), turbidity, and electrical
conductivity (EC) of leachate and groundwater quality parameters. These include COD
prediction in leachate using multi-layer perceptron neural networks (MLPANNs) and M5
model tree to simulate the Khulna landfill in Bangladesh [1], the prediction of temporal
variations in the leachate COD concentration using MLPANN [15,16], and the prediction of
COD using MLPANN and the response surface method (RSM) for the treatment of landfill
leachate [17]. Bhatt et al. (2016) used multi-linear regression for estimating COD and BOD5
concentrations of conventional municipal solid waste landfill considering the inputs of
precipitation rate, temperature, and different types of waste percentages [18]. Bhatt et al.
(2017) estimated leachate BOD5 and COD obtained from a laboratory using multivariate
adaptive regression spline (MARS). They reported the usefulness of this method in the
prediction of leachate quality parameters using waste composition, temperature, and
rainfall rate information [19]. According to the authors’ knowledge, two-stage MLPANN
and extreme learning machine (ELM) integrated with grey wolf metaheuristic optimization
have not been used for analyzing landfill leachate quality based on COD and BOD5
concentrations before.

Due to its better prediction efficiency and less time consumption compared to other
conventional ML models, ELM has been widely used for solving problems in different
engineering fields [20–23]. However, since the single ELM model randomly initializes its
hyper-parameters, this may cause an overfitting problem and affect the predictive perfor-
mance seriously. To cope with this disadvantage, advanced metaheuristic optimization
algorithms, such as GWO, are required. GWO is one of the modern bio-inspired algo-
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rithms commonly utilized for improving ML models [24]. Compared to other bio-inspired
intelligent optimization algorithms, the advantages of GWO are: (i) it has no tuned param-
eters, (ii) its implementation and adaptation to the optimization problems are easy, and
(iii) it has more flexibility and scalability [25]. Additionally, the modeling, prediction, and
forecasting of groundwater quantity and quality employing ML models and metaheuristic
optimization algorithms have been reported. Ghobadi et al. (2022) enhanced the precision
of estimating water quality parameters, such as total dissolved solids (TDS), dissolved
oxygen (DO), and turbidity, using the MLPANN model. The research was conducted in the
Asadabad Plain, Iran, and involved a comparison with standard MLPANN, generalized
regression neural network (GRNN), and multiple linear regression (MLR) methods. The
findings indicated that the hybrid GWO-MLPANN approach proved to be a valuable
tool for estimating water quality, demonstrating a high accuracy and performance [26].
Fadhillah et al. (2021) employed the GWO technique to enhance the performance of sup-
port vector machine (SVM) in mapping groundwater potential in Gangneungsi, South
Korea. By applying the GWO algorithm, the accuracy of the SVM model was improved
by 8.6% [27]. Moayedi et al. (2023) assessed the precision of three ML paradigms, namely
grey wolf optimization (GWO), artificial bee colony (ABC), and Harris hawks Optimization
(HHO) intelligence models, in predicting the total hardness of groundwater quality in the
Shiraz Plain, Iran. The results demonstrated that the GWO-ANN approach exhibited a
high accuracy and capability in simulating and evaluating the quality of groundwater [28].
Nordin et al. (2021) reviewed four ML models for groundwater quality field. They found
that an artificial neural network (ANN) showed a better performance in controlling a large
dataset and providing accurate predictions [14].

COD and BOD5 are among the most important indicators for the pollutants that
leach from landfills [29]. The novelty of the presented study lies in its investigation of the
applicability of two hybrid models, namely MLPANN and ELM integrated with GWO, for
accurately predicting COD and BOD5 in order to assess and analyze landfill leachate quality.
This approach has not been previously explored in the specific context of landfill leachate
analysis based on COD and BOD5 parameters. Additionally, the study extends its analysis
to predict groundwater quality in terms of turbidity and electrical conductivity parameters
using the same hybrid models. By comparing the results of the hybrid models with single
MLPANN, ELM, and tree-based MARS models, the study contributes to understanding
the advantages and performance of the proposed approach in accurately assessing landfill
leachate and groundwater quality.

2. Data and Methods
2.1. Study Area, Leachate, and Groundwater Data

In this study, the Saravan landfill in the north of Iran was selected as the case study to
investigate leachate and groundwater quality by using different artificial intelligence mod-
els, including MARS, MLPANN, ELM, MLPANN-GWO, and ELM-GWO. The groundwater
in this area is the main resource for drinking and agriculture purposes. In this research, two
series data were gathered from both leachate quality (30 data points) parameters (Cd, Cr,
Cu, Fe, Ni, Pb, Mn, Zn, turbidity, Ca, Na, NO3, Cl, K, COD, and BOD5) and groundwater
quality (30 data points) parameters (Cd, Cr, Cu, Fe, Ni, Pb, Mn, Zn, turbidity, EC, TDS,
pH, Cl, Na, NO3, and K) from five different monitored wells to predict leachate quality
(COD and BOD5) and groundwater quality (turbidity and EC) as the target parameters.
The Saravan landfill (latitude 37◦4′17.94′′ N, longitude 49◦37′52:70′′ E), which has an alti-
tude of 200 m above sea level, is located 20 km away from Rasht city and has a mild and
humid climate condition. The average annual rainfall in the region is 1300 mm, the average
temperature is 15.9 ◦C, and the relative humidity is about 81.9%. The geographical location
of landfill is shown in Figure 1.
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2.2. Artificial Intelligence Methods
2.2.1. Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) was introduced by Friedman (1991) [30].
MARS is a modelling strategy mainly used for expressing the relationship between an
ensemble of input variables and their corresponding output variable, i.e., the variable to be
modeled (Figure 2). The mathematical formulation of the MARS model can be established
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in the form of basis function (BFs) with an ensemble of parameters determined during the
training stage. The nonlinear function f (X) linking the input to the output variables can be
expressed using MARS model as follows [31–35]:

f (X) = Ŷ = δ0 +
M

∑
m=1

δmBFm[x] (1)

where f (X) is the MARS predictor; X corresponds to the input variables; δ0 are the coef-
ficients obtained using the least squared method; BFm is the mth basis function, which
can be a single spline or an interaction of several spline functions (i.e., one or more); M is
the number of basis function; and δ0 is the coefficient of the constant basis function. For
solving any regression problem using MARS, a three-step model is needed. First, we start
with a constructive phase; a global model composed of a large number of BF is constructed.
These basis functions are introduced in several regions of the input variables, and they are
combined, which can lead to the overfitting of the model. Consequently, the second step is
reserved for the pruning of the model by deleting some of that irrelevant BF. Finally, in the
third step, the model is fixed using only a sequence of sampler BF [32–34].
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2.2.2. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) [36,37] was originally proposed for fast training the
single-hidden layer feedforward neural networks (SLFNs). Using the ELM model, the
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hidden neurons’ parameters, i.e., the weights and biases (Wij, bj), were randomly generated
and they do not need to be tuned, while the output parameters, i.e., the βj, were analytically
computed (Figure 3). The ELM mathematical formulation can be written as follows:

fL(x) =
L

∑
i=1

βiG(wi, bi, x) (2)

where wi and bi are the weights and biases of the hidden nodes, respectively, and βi is the
weight connecting the ith hidden neuron to the output neuron. G(wi, bi, x) is the output of
the ith hidden neuron, and G is the activation function. For any set of training sample data,
{(xi, yi)}N

i=1 ⊂ Rn × Rm. For an ideal model having the output equal exactly to the target
data, the following expression can be written [38–40]:

Hβ = T (3)

where:

H =


G(w1, b1, x1) · · · G(wL, bL, x1)

... . . .
...

G(w1, b1, xN) · · · G(wL, bL, xN)


N×L

(4)

β =

βT
1
...

βT
L


L×m

and β =

tT
1
...

tT
N


N×m

(5)

where, H is the hidden-layer output matrix of the network. β and T are the correspond-
ing matrices of output weights and targets. So, the output matrix β can be estimated
analytically by:

β̂ = H+T (6)

where H+ is the Moore–Penrose generalized inverse of H [40–42].
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2.2.3. Multilayer Perceptron Artificial Neural Network (MLPANN)

The multilayer perceptron artificial neural network (MLPANN) is a kind of machine
learning model used for the estimation of an output variable, Y, for given input variables,
X, such as Y = f (X) for a given function f (.) [43]. The MLPANN can be defined as a
mathematical model composed from a number of highly interconnected processing ele-
ments organized into several layers similar to that of the human brain [44]. The MLPANN
provides a decision based on the information acquired during previous experiments. Ac-
cording to Figure 4, the MLPANN is composed of one input layer, one hidden layer, and
one output layer. The neurons in each layer play a particular role. By the end of the data
preprocessing, the available information is spread to all the following layers with lightning
speed, thus from the input to the hidden and from the hidden to the output layers. The
neurons of the input layer are used only for the presentation of the variables to the model,
while the hidden neurons play a major and critical role in the model structure, and they are
equipped by a nonlinear sigmoidal activation function [45]. The final response of the model
is then provided by the single output neuron equipped by a linear activation function.
The parameters of the MLPANN model are the weights and biases, and they are updated
during the training process [46]. For any developed MLPANN model, dataset should be
divided into two subsets; the first, generally equal to 70%, is used for training the network
and providing the final parameters and biases, while the remaining 30% are used for testing
the generalization capability of the model [47,48].
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2.2.4. Grey Wolf Optimization (GWO)

The grey wolf optimization (GWO) metaheuristic algorithm was proposed by Mirjalili
et al. (2014) [24]. GWO belongs to the category of swarm-based optimization algorithms
and it was inspired by the hierarchy observed among grey wolves (GWs). In this algorithm,
there exist four categories of wolves, which are alpha (α), beta (β), delta (δ), and omega (ω)
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(Figure 5). According to [24], GWO is composed of three main steps: (i) encircling the prey,
(ii) hunting, and (iii) attacking the prey or the exploitation phase. The GWO algorithm can
be expressed as follows.

Water 2023, 15, x FOR PEER REVIEW 10 of 33 
 

 

 
Figure 5. The gray wolf optimization algorithm (GWO) diagram [24]. 
Figure 5. The gray wolf optimization algorithm (GWO) diagram [24].



Water 2023, 15, 2453 9 of 28

The encircling prey (Ry) is the stage during which the GW encircles the prey and it
can be written as follows [24]:

→
L =

∣∣∣∣→µ ·→ZP(t)−
→
Z(t)

∣∣∣∣ (7)

→
Z(t + 1) =

→
ZP(t)−

→
∂ ·
→
L (8)

In Equations (7) and (8), there are two important positions:
→
ZP shows the position of

the prey and
→
Z is the position of the grey wolf.

→
∂ and

→
µ are coefficient vectors and (t) is

the current iteration.
→
∂ and

→
µ can be calculated as follows:

→
∂ = 2

→
σ ·
→
ℵ1 −

→
σ (9)

→
C = 2

→
ℵ2 (10)

where
→
σ decreases from two to zero, while

→
ℵ1 and

→
ℵ2 are random vectors in the interval of

[0, 1]. It has been shown that omegas follow the best search agents, i.e., α, β, and δ, and
their positions are continuously saved as follows (Figure 6):

→
Lα =

∣∣∣∣→µ1·
→
Zα −

→
Z
∣∣∣∣ (11)

→
Lβ =

∣∣∣∣→µ2·
→
Zβ −

→
Z
∣∣∣∣ (12)

→
Lδ =

∣∣∣∣→µ3·
→
Zδ −

→
Z
∣∣∣∣ (13)

→
Z1 =

→
Zα −

→
∂1·
(→

Lα

)
(14)

→
Z2 =

→
Zβ −

→
∂2·
(→

Lβ

)
(15)

→
Z3 =

→
Zδ −

→
∂3·
(→

Lδ

)
(16)

→
Z(t + 1) =

→
Z1 +

→
Z2 +

→
Z3

3
(17)

where
→
Zα,

→
Zβ, and

→
Zδ are the current positions of the alpha, beta, and delta wolves. This

stage of the algorithm, i.e., the attack of the prey, can be expressed by changing the value

of
→
σ through decreasing levels and consequently the value of

→
∂ [24]. Figure 6 shows the

flowchart of GWO.

2.2.5. Hybrid Models Based on the Grey Wolf Optimization Algorithm

In the present study, five different machine learning models (MARS, MLPANN, ELM,
MLPANN-GWO, and ELM-GWO) were applied and compared. The GWO algorithm
was used to find the most efficient model parameters, which can effectively improve the
prediction performances of the ML models in predicting leachate and groundwater quality
parameters. For the ELM, GWO was used for the optimization of the hidden neuron
parameters, i.e., the weight and biases, taking into account the cost function, i.e., the RMSE.
Similarly, for the MLPANN model, the weight and biases of the model were considered as



Water 2023, 15, 2453 10 of 28

parameters that should be optimized by updating the grey wolves’ location information,
i.e., Z(t), consequently updating the location that can lead to finding the optimum values of
the weight and biases. It is worth mentioning that the GWO algorithm parameters were set
as follows:

Fitness function = Root-mean-square error.
Iterations number = 200.
Number of agents = 100.
C = random vector in [0, 2].
a = in every iteration, this parameter is lowered from 2 to 0.
A = [−a, a].
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3. Model Performance Evaluation Metrics

To examine the performance of the MARS, MLPANN, ELM, MLPANN-GWO, and
ELM-GWO models for the prediction of landfill leachate and groundwater quality, four sta-
tistical measures, including root-mean-square error (RMSE), Nash–Sutcliffe efficiency (NS),
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mean absolute error (MAE), and correlation coefficient (R), were utilized. The following
equations can be applied to calculate the mentioned metrics:

RMSE =

√√√√√ n
∑

i=1
(Q)io − (Q)ip

n
(18)

MAE =

n
∑

i=1

∣∣∣(Q)io − (Q)ip

∣∣∣
n

(19)

NS = 1−

n
∑

i=1
((Q)io − (Q)ip)

2

n
∑

i=1
((Q)io − (Q)io)

2
(20)

r =

n
∑

i=1
((Q)io − (Q)io)((Q)ip − (Q)ip)√

n
∑

i=1
((Q)io − (Q)io)

2 n
∑

i=1
((Q)ip − (Q)ip)

2
(21)

where (Q)ip represents the models’ generated results and (Q)io indicates the observed
values for the leachate and groundwater quality parameters. Additionally, n shows the
total number of data points.

4. Results

In the current research procedure, two case studies (leachate and groundwater quality
modeling) were adopted utilizing the individual water quality parameters (i.e., COD, BOD5,
turbidity, and EC) in the Saravan landfill, which has five groundwater monitoring wells, in
Iran. Assigning the sufficient approach of input combinations for individual water quality
parameters, a different decision regarding the input variables was reached for the diverse
input combinations in both case studies.

First, COD and BOD5 concentrations were predicted based on different machine
learning (ML) models, including MARS, MLPANN, ELM, MLPANN-GWO, and ELM-
GWO, for the leachate quality assessment. In the case of the COD parameter, Na, NO3,
K, Cu, Cd, Cr, and Fe were used as the input variables, whereas the input variables of
the BOD5 parameter were Ca, Na, NO3, Cu, Zn, Cr, Ni, and Fe. Second, the values of
the turbidity and EC indicators were predicted utilizing the afore-mentioned ML models
for groundwater quality assessment. The turbidity indicator was predicted based on the
combination of Cl, pH, K, Cr, Zn, Fe, Mn, and Cu, while the predictive procedure of the EC
indicator was conducted in conjunction with Cl, Na, K, Cr, Pb, Zn, Mn, Ni, and Cu.

As explained in the previous section, the evaluation of single-stage (i.e., MARS, ML-
PANN, and ELM) and two-stage (i.e., metaheuristic optimization algorithm integrated with
machine learning, MLPANN-GWO and ELM-GWO) models for predicting concentrations
(COD and BOD5) and values (turbidity and EC) is the critical feature of the current research.

4.1. Predicting COD and BOD5 Concentrations in the Leachate Quality of the Saravan Landfill
4.1.1. Application of Single- and Two-Stage ML Models for COD Concentration

The predictive results of single- and two-stage ML models utilizing four statistical
measures (i.e., RMSE, NS, R, and MAE) for COD concentration is shown in Table 1. Addi-
tionally, it shows that the predictive results of the ELM-GWO (RMSE = 21.12 mg/L, NS
= 0.998, and MAE = 17.43 mg/L) model was superior to those of the MARS, MLPANN,
ELM, and MLPANN-GWO models in the leachate quality of the Saravan landfill during
the testing phase.
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Table 1. Testing results of the applied models for predicting the COD concentration in leachate
quality assessment.

Classification ML Models
Testing Phase

RMSE (mg/L) NS R MAE (mg/L)

Single stage
MARS 185.28

83.18
81.21

0.880
0.976
0.977

0.976
0.992
0.989

149.24
74.47
51.17

MLPANN
ELM

Two stages MLPANN-GWO 37.26 0.995 0.998 31.41
ELM-GWO 21.12 0.998 0.999 17.43

Figure 7a–e show the scatter plots of the observed and predicted COD concentration
for single- and two-stage ML models. The blue color of the line, equal line, and R values are
situated clearly in the corresponding scatter plots. It can be observed from Figure 7a–e that
there is a clear difference between the single- and two-stage ML models. Additionally, the
ELM-GWO model supplied the first-rate R value (R = 0.999) between single- and two-stage
ML models.

Supplementary information can assess the achievement of single- and two-stage ML
models utilizing a Taylor diagram [49] and violin plot [50]. The Taylor diagram (Figure 8)
applies three specific statistical measures, such as root-mean-square error, normalized
standard deviation, and correlation coefficient, for plotting the observed and predicted
COD concentrations. The Taylor diagram can be used to detect the most adjacent model
with the predicted COD concentration conditional on the correlation coefficient (radial axis)
and standard deviation (polar axis). Figure 8, therefore, illustrates the real precision of the
ELM-GWO model for predicting the COD concentration compared to other single- and
two-stage ML models.

The violin plot can be used as one of approaches to confirm the allocation of the
described numerical values. Figure 9 presents the comparable structures of the ELM-GWO,
MLPANN-GWO, and ELM models following the observed values of the COD concentration,
including the maximum, minimum, mean, and median, based on single- and two-stage ML
models in the leachate quality of the Saravan landfill.

4.1.2. Application of Single- and Two-Stage ML Models for BOD5 Concentration

The predictive assessment of single- and two-stage ML models dependent on four
statistical measures (RMSE, NS, R, and MAE) for BOD5 concentration is presented in Table 2.
It shows that the predictive results of the ELM-GWO (RMSE = 10.50 mg/L, NS = 0.996, and
MAE = 9.21 mg/L) model were better compared to the different models, including MARS,
MLPANN, ELM, and MLPANN-GWO, in the leachate quality of the Saravan landfill during
the testing phase.

Figure 10a–e present the scatter plots of the observed and predicted BOD5 concentra-
tions for single- and two-stage ML models. The correlation coefficient (R) value, dotted
(equal) line, and blue color (fitted) line are observed in the independent scatter plots. It can
be observed from Figure 10a–e that an apparent discrepancy is present between the single-
and two-stage ML models. That is, the ELM-GWO model had the best R value (R = 0.999)
between the single- and two-stage ML models.

Additionally, since the ELM-GWO model is located very close to the observed BOD5
concentration, it can be inferred from the Taylor diagram (Figure 11) that the ELM-GWM
model provides a reliable performance for predicting the BOD5 concentration. In addition,
the violin plot (Figure 12) demonstrates an identical configuration for the ELM-GWO model
resembling the observed values (e.g., the maximum, minimum, mean, and median) of the
BOD5 concentration conditional on single- and two-stage ML models in the leachate quality
of the Saravan landfill.
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Table 2. Testing results of the applied models for predicting BOD5 concentration in leachate
quality assessment.

Classification ML Models
Testing Phase

RMSE (mg/L) NS R MAE (mg/L)

Single stage
MARS 47.11

28.27
25.81

0.930
0.974
0.979

0.974
0.991
0.990

36.67
21.85
23.54

MLPANN
ELM

Two stages MLPANN-GWO 13.80 0.994 0.997 10.57
ELM-GWO 10.50 0.996 0.999 9.21
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Figure 11. Taylor diagram of the observed and predicted BOD5 concentrations for single- and
two-stage ML models.

4.2. Predicting the Turbidity and EC Indicators in the Groundwater Quality of the Saravan Landfill
4.2.1. Application of Single- and Two-Stage ML Models for the Turbidity Indicator

The predictive evaluation of different ML models conditional on four statistical mea-
sures for the turbidity indicator is presented in Table 3. It shows that the predictive
evaluation of the ELM-GWO (RMSE = 0.061 NTU, NS = 0.989, and MAE = 0.045 NTU)
model was better compared to that of the MARS, MLPANN, ELM, and MLPANN-GWO
models in the groundwater quality of the Saravan landfill during the testing phase.
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Table 3. Testing results of the applied models for predicting the turbidity value in groundwater
quality assessment.

Classification ML Models
Testing Phase

RMSE (NTU) NS R MAE (NTU)

Single stage
MARS 0.142

0.131
0.117

0.943
0.951
0.961

0.984
0.982
0.988

0.115
0.093
0.104

MLPANN
ELM

Two stages MLPANN-GWO 0.071 0.985 0.995 0.056
ELM-GWO 0.061 0.989 0.997 0.045

Figure 13a–e show the scatter plots of the observed and predicted turbidity indicator
values for single- and two-stage ML models. The fitted line, matching line, and statistical
measure (R) value are present in the equivalent scatter plots. It can be observed from
Figure 13a–e that an obvious difference can be seen between the single- and two-stage ML
models. In other words, the ELM-GWO model had a superior statistical measure (R = 0.997)
between the single- and two-stage ML models.

To confirm the reliable predictive performance employing visual assistance, the Taylor
diagram (Figure 14) shows the best performance of the ELM-GWO model compared to
other single- and two-stage ML models for the turbidity indicator because the ELM-GWO
model has the nearest distance for the observed values of the turbidity indicator compared
to other single- and two-stage ML models. Additionally, the violin plot (Figure 15) shows
similar results for the ELM-GWO, MLPANN-GWO, and MLPANN models regarding the
observed values of the turbidity indicator based on single- and two-stage ML models in
the groundwater quality of the Saravan landfill.
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ML models: (a) ELM-GWO, (b) MLPANN-GWO, (c) ELM, (d) MLPANN, and (e) MARS.
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Figure 14. Taylor diagram of the observed and predicted turbidity values for single- and two-stage
ML models.

4.2.2. Application of Single- and Two-Stage ML Models for the EC Indicator

The predictive judgement of the diverse ML models conditional on four statistical
measures for the EC indicator is shown in Table 4. Additionally, it shows that the predictive
evaluation of the ELM-GWO (RMSE = 7.66 S/cmµ, NS = 0.990, and MAE = 6.65 S/cmµ)
model was better compared to that of the MARS, MLPANN, ELM, and MLPANN-GWO
models in the groundwater quality of the Saravan landfill during the testing phase.
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Table 4. Testing results of the applied models for predicting the EC value in groundwater
quality assessment.

Classification ML Models
Testing Phase

RMSE (S/cmµ) NS R MAE (S/cmµ)

Single stage
MARS 30.35

23.90
18.98

0.847
0.905
0.940

0.958
0.957
0.976

19.73
18.38
14.75

MLPANN
ELM

Two stages MLPANN-GWO 12.47 0.974 0.993 10.61
ELM-GWO 7.66 0.990 0.997 6.65

Figure 16a–e present the scatter plots of the observed and predicted EC indicator
values for single- and two-stage ML models. The blue solid (fitted) line, dotted (match-
ing) line, and statistical measure (R) value are shown in each scatter plots. It can be
observed from Figure 16a–e that a distinct divergence can be noticed between the single-
and two-stage ML models. Especially, the ELM-GWO model had the best statistical measure
(R = 0.997) between the single- and two-stage ML models.

To approve the predictive efficiency utilizing visual assessment, the Taylor diagram
(Figure 17) shows the superior efficiency of the ELM-GWO model compared to other
single- and two-stage ML models for the EC indicator since the ELM-GWO model had
the shortest distance to reach the observed value of the turbidity indicator. Likewise, the
violin plot (Figure 18) supplies similar shapes for the ELM-GWO, MLPANN-GWO, and
MLPANN models regarding the observed values of the EC indicator dependent on single-
and two-stage ML models in the groundwater quality of the Saravan landfill.
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Figure 16. Scatter plots of the observed and predicted EC values for single- and two-stage ML mod-
els: (a) ELM-GWO, (b) MLPANN-GWO, (c) ELM, (d) MLPANN, and (e) MARS. Figure 16. Scatter plots of the observed and predicted EC values for single- and two-stage ML models:
(a) ELM-GWO, (b) MLPANN-GWO, (c) ELM, (d) MLPANN, and (e) MARS.
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Figure 17. Taylor diagram of the observed and predicted EC values for single- and two-stage
ML models.
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Figure 19a–d show a comparison of the RMSE values of single- and two-stage ML
models for predicting the explained water quality parameters (i.e., COD, BOD5, turbidity,
and EC). It can be found from Figure 19a–d that the ELM-GWO model provided the lowest
RMSE values, whereas the MARS model was the opposite. That is, the ELM-GWO model
was the best model for predicting the leachate and groundwater quality in the landfill site.
In addition, Figure 20a–d presents a comparison of the MAE values of single- and two-stage
ML models for predicting the explained water quality parameters. It can be observed from
Figure 20a–d that the ELM-GWO model is the best model compared to other single- and
two-stage ML models for the prediction of leachate and groundwater quality in the landfill
site, while the MARS model is the opposite. In other words, ELM-GWO is the best model
for the prediction of leachate and groundwater quality in the landfill site.
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Figure 19. Comparison of the RMSE values of single- and two-stage ML models for the prediction 
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Figure 19. Comparison of the RMSE values of single- and two-stage ML models for the prediction 
of (a) COD, (b) BOD5, (c) turbidity, and (d) EC. 
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Figure 20. Comparison of the MAE values of single- and two-stage ML models for the prediction of 
(a) COD, (b) BOD5, (c) turbidity, and (d) EC. 
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rameters (i.e., COD, BOD5, turbidity, and EC) by applying single- and two-stage machine 
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5. Discussion

The current research conducted the predictive achievement of four water quality
parameters (i.e., COD, BOD5, turbidity, and EC) by applying single- and two-stage machine
learning models in the leachate and groundwater quality of the Saravan landfill, Iran. The
current research procedure followed two procedures. First, COD and BOD5 concentration
were investigated utilizing single- and two-stage ML models in the leachate quality of
the landfill site. Second, as the next procedure, turbidity and EC indicators were assessed
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based on single- and two-stage ML models. ELM-GWO, one of two-stage ML models, had
the best predictive performance in the four water quality parameters in the groundwater
quality of the landfill site during the testing phase.

The essential purpose for employing two-stage ML models is to build a predictive
performance assessment of four water quality parameters (COD, BOD5, turbidity, and EC)
of single-stage ML models. In the current research, the MARS model was not combined
into a two-stage ML model (e.g., MARS-GWO). As the results of the models’ application, all
the two-stage ML models (ELM-GWO and MLPANN-GWO) could increase the predictive
reliability of the corresponding single-stage ML models (ELM and MLPANN) for COD,
BOD5, turbidity, and EC relying on the values of four statistical measures (RMSE, NS, R,
and MAE) in the leachate and groundwater quality of the landfill site.

Considering the MLPANN-GWO model conditional on the MAE statistical measure,
COD (137.09% by MLPANN), BOD5 (106.72% by MLPANN), turbidity (66.07% by ML-
PANN), and EC (73.23% by MLPANN) improved the predictive efficiency of the above
water quality parameters. In the case of the ELM-GWO model, COD (193.57 % by ELM),
BOD5 (155.59% by ELM), turbidity (131.11% by ELM), and EC (121.81% by ELM) boosted
the predictive reliability of the explained water quality parameters.

Acknowledging the accomplishment of two-stage ML models (MLPANN-GWO and
ELM-GWO) dependent on the values of MAE statistical measure in the leachate and
groundwater quality of the landfill site, the COD concentration provided the best results
based on the corresponding single-stage ML models (MLPANN and ELM) compared to
the other parameters (BOD5, turbidity, and EC). In addition, the water quality parameters
of the leachate quality provided the better improvement than those of the groundwater
quality in the landfill site.

Additionally, recognizing the previous articles and reports for the prediction of water
quality parameters conditional on ML and deep learning (DL) models in the leachate and
groundwater quality of the landfill site, Azadi et al. (2016) developed ANN and principal
component analysis-M5P (PCA-M5P) to predict the COD concentration in leachates pro-
vided by the lab-scale landfills, in Bangladesh. They demonstrated that ANN performed
better accuracy for predicting COD concentration compared to PCA-M5P [1]. Ishii et al.
(2022) employed long short-term memory (LSTM) for predicting leachate quality, including
COD, BOD, Cl, Ca, and total nitrogen (T-N) parameters, in a landfill area in Japan [2]. The
research of Ishii et al. (2022) demonstrated the predictive processes of leachate quality
and quantity and supplied the possibility of LSTM for future operation and management
of landfill areas. In addition, similar research, which employed ML and DL models for
predicting groundwater quality parameters, can be found in the previous documents.

Band et al. (2020) applied four single-stage ML models (i.e., Bayesian artificial neural
network (BANN), Cubist, random forest (RF), and support vector machine (SVM)) to
estimate the groundwater nitrate concentration in Iran. They concluded that the north part
of the research area provided the highest groundwater nitrate concentration compared
to other parts of research area [51]. Singha et al. (2021) predicted groundwater quality
parameters utilizing four single-stage ML and DL models (i.e., DL, ANN, RF, and extreme
gradient boosting (EGB)) in India. The results showed that DL model had the best accuracy
compared to the other developed models [52]. In addition, Abba et al. (2023) applied
two-stage ML models combining adaptive neuro-fuzzy inference system (ANFIS) and three
metaheuristic optimization algorithms (i.e., genetic algorithm (GA), biogeography-based
optimization (BBO), and PSO) to predict the groundwater salinization of coastal region in
Saudi Arabia. They showed that ANFIS-PSO had the best accuracy for predicting ground-
water salinization compared to ANFIS-GA and ANFIS-BBO [53]. Moayedi et al. (2023)
predicted groundwater quality parameters employing two-stage ML models combining
ANN and three metaheuristic optimization algorithms (i.e., artificial bee colony (ABC), Har-
ris hawks optimization (HHO), and GWO), Iran. This research illustrated that ANN-GWO
provided the best prediction compared to ANN-HHO and ANN-ABC [28].
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In the current research, since the prediction of leachate and groundwater quality in
the landfill site focused on a few machine learning models and evolutionary optimization
algorithms, our method for predicting leachate and groundwater quality cannot strengthen
the reliability and credibility of the employed tools. The diverse application of the employed
tools is required to boost the predictive efficiency of leachate and groundwater quality in
landfill sites.

6. Conclusions

One of the important sources of the pollution of surface water and groundwater is
landfill leachate. This research focused on the prediction of leachate quality by considering
COD and BOD5 as target parameters and also groundwater quality by employing turbidity
and EC as response parameters. The observed dataset was gathered from the Saravan
landfill, Rast, Iran. Then, two different types of artificial intelligence models, including
single-stage (MARS, MLPANN, and ELM) and two-stage (MLPANN-GWO and ELM-
GWO) paradigms, were applied for predicting COD and BOD5 parameters for analyzing
landfill leachate quality; turbidity and EC parameters were also employed for assessing
groundwater quality. The results obtained from both leachate quality and groundwater
quality parameters indicate that ELM-GWO significantly improved the performance in
terms of the RMSE measure of the MLPANN-GWO, ELM, MLPANN, and MARS models
by 43.07%, 73.88%, 74.5%, and 88.55% for the COD parameter; 23.91%, 59.31%, 62.85%, and
77.71% for the BOD5 parameter; 14.08%, 47.86%, 53.43%, and 57.04% for turbidity; and
38.57%, 59.64%, 67.94%, and 74.76% for the EC value, respectively. This study suggests that
ELM-GWO can be a robust alternative to MARS, MLPANN, ELM, and MLPANN-GWO in
leachate quality and groundwater quality applications and the proposed framework can be
utilized by landfill authorities and decision makers for implementing reliable strategies.

Author Contributions: Conceptualization and data analysis, M.A.; Project administration and Su-
pervision, M.A.; Software, M.A.; Methodology, S.H.; Writing—Original draft preparation, Writing—
Review & Editing, S.K.; Writing—Original draft preparation, Writing—Review & Editing, O.K.;
Writing—Original draft preparation, Writing—Review & Editing, M.K.; Writing—Review & Editing,
Z.K. (Zahra Kazemi); Writing—Review & Editing, Z.K. (Zohre Kazemi); Writing—Review & Editing,
I.-M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported financially by the Iran University of Medical Sciences,
Tehran, Iran (No. 1401-4-2-24594). Also, this research was supported by a grant from the Develop-
ment Program of Minimizing of Climate Change Impact Technology funded through the National
Research Foundation of Korea (NRF) of the Korean government (Ministry of Science and ICT, Grant
No. NRF-2020M3H5A1080735).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Azadi, S.; Amiri, H.; Rakhshandehroo, G.R. Evaluating the ability of artificial neural network and PCA-M5P models in predicting

leachate COD load in landfills. Waste Manag. 2016, 55, 220–230. [CrossRef] [PubMed]
2. Ishii, K.; Sato, M.; Ochiai, S. Prediction of leachate quantity and quality from a landfill site by the long short-term memory model.

J. Environ. Manag. 2022, 310, 114733. [CrossRef] [PubMed]
3. Schroeder, P.R.; Peyton, R.L. Verification of the Hydrologic Evaluation of Landfill Performance (HELP) Model Using Field Data; Hazardous

Waste Engineering Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati,
OH, USA, 1988.

4. Jalilzadeh, H.; Hettiaratchi, J.P.A.; Fleming, I.; Pokhrel, D. Effect of soil type and vegetation on the performance of evapotranspi-
rative landfill biocovers: Field investigations and water balance modeling. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020046.
[CrossRef]

5. Ghiasinejad, H.; Ghasemi, M.; Pazoki, M.; Shariatmadari, N. Prediction of landfill leachate quantity in arid and semiarid climate:
A case study of Aradkouh, Tehran. Int. J. Environ. Sci. Technol. 2021, 18, 589–600. [CrossRef]

6. Riester, J.E., Jr. Landfilled Leachate Production and Gas Generation Numerical Model. Ph.D. Thesis, Old Dominion University,
Norfolk, VA, USA, 1994.

https://doi.org/10.1016/j.wasman.2016.05.025
https://www.ncbi.nlm.nih.gov/pubmed/27264459
https://doi.org/10.1016/j.jenvman.2022.114733
https://www.ncbi.nlm.nih.gov/pubmed/35189557
https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000535
https://doi.org/10.1007/s13762-020-02843-5


Water 2023, 15, 2453 27 of 28

7. Fellner, J.; Brunner, P.H. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach.
Waste Manag. 2010, 30, 2084–2095. [CrossRef]

8. Illiano, D.; Pop, I.S.; Radu, F.A. Iterative schemes for surfactant transport in porous media. Comput. Geosci. 2021, 25, 805–822.
[CrossRef]

9. Hubert, J.; Liu, X.F.; Collin, F. Numerical modeling of the long term behavior of Municipal Solid Waste in a bioreactor landfill.
Comput. Geotech. 2016, 72, 152–170. [CrossRef]

10. Reddy, K.R.; Kumar, G.; Giri, R.K. Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid
waste and liner system in bioreactor landfills. Waste Manag. 2017, 63, 143–160. [CrossRef]

11. Shu, S.; Zhu, W.; Shi, J. A new simplified method to calculate breakthrough time of municipal solid waste landfill liners. J. Clean.
Prod. 2019, 219, 649–654. [CrossRef]

12. Lee, Y.S.; Kim, Y.M.; Lee, J.; Kim, J.Y. Evaluation of silver nanoparticles (AgNPs) penetration through a clay liner in landfills.
J. Hazard. Mater. 2021, 404, 124098. [CrossRef]

13. Yu, F.; Wu, Z.; Wang, J.; Li, Y.; Chu, R.; Pei, Y.; Ma, J. Effect of landfill age on the physical and chemical characteristics of waste
plastics/microplastics in a waste landfill sites. Environ. Pollut. 2022, 306, 119366. [CrossRef] [PubMed]

14. Nordin, N.F.; Mohd, N.S.; Koting, S.; Ismail, Z.; Sherif, M.; El-Shafie, A. Groundwater quality forecasting modelling using artificial
intelligence: A review. Groundw. Sustain. Dev. 2021, 14, 100643. [CrossRef]

15. Azadi, S.; Karimi-Jashni, A.; Javadpour, S. Modeling and optimization of photocatalytic treatment of landfill leachate using
tungsten-doped TiO2 nano-photocatalysts: Application of artificial neural network and genetic algorithm. Process Saf. Environ.
Prot. 2018, 117, 267–277. [CrossRef]

16. Roudi, A.M.; Chelliapan, S.; Mohtar, W.H.M.W.; Kamyab, H. Prediction and optimization of the Fenton process for the treatment
of landfill leachate using an artificial neural network. Water 2018, 10, 595. [CrossRef]

17. Masouleh, S.Y.; Mozaffarian, M.; Dabir, B.; Ramezani, S.F. COD and ammonia removal from landfill leachate by UV/PMS/Fe2+
process: ANN/RSM modeling and optimization. Process Saf. Environ. Prot. 2022, 159, 716–726. [CrossRef]

18. Bhatt, A.H.; Altouqi, S.; Karanjekar, R.V.; Sahadat Hossain, M.D.; Chen, V.P.; Sattler, M.S. Preliminary regression models for
estimating first-order rate constants for removal of BOD and COD from landfill leachate. Environ. Technol. Innov. 2016, 5, 188–198.
[CrossRef]

19. Bhatt, A.H.; Karanjekar, R.V.; Altouqi, S.; Sattler, M.L.; Hossain, M.D.S.; Chen, V.P. Estimating landfill leachate BOD and COD
based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environ. Technol.
Innov. 2017, 8, 1–16. [CrossRef]

20. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards short term electricity load forecasting using
improved support vector machine and extreme learning machine. Energies 2020, 13, 2907. [CrossRef]

21. Chen, Y.; Zhang, X.; Karimian, H.; Xiao, G.; Huang, J. A novel framework for prediction of dam deformation based on extreme
learning machine and Lévy flight bat algorithm. J. Hydroinformatics 2021, 23, 935–949. [CrossRef]

22. Deka, P.C.; Patil, A.P.; Kumar, P.Y.; Naganna, S.R. Estimation of dew point temperature using SVM and ELM for humid and
semi-arid regions of India. ISH J. Hydraul. Eng. 2018, 24, 190–197. [CrossRef]

23. Liu, C.; Fu, Q.; Li, T.; Imran, K.M.; Cui, S.; Abrar, F.M.; Liu, D. ELM evaluation model of regional groundwater quality based on
the crow search algorithm. Ecol. Indic. 2017, 81, 302–314. [CrossRef]

24. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
25. Shahin, I.; Alomari, O.A.; Nassif, A.B.; Afyouni, I.; Hashem, I.A.; Elnagar, A. An efficient feature selection method for arabic and

english speech emotion recognition using Grey Wolf Optimizer. Appl. Acoust. 2023, 205, 109279. [CrossRef]
26. Ghobadi, A.; Cheraghi, M.; Sobhanardakani, S.; Lorestani, B.; Merrikhpour, H. Groundwater quality modeling using a novel

hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network:
A case study in Asadabad Plain, Hamedan, Iran. Environ. Sci. Pollut. Res. 2022, 29, 8716–8730. [CrossRef] [PubMed]

27. Fadhillah, M.F.; Lee, S.; Lee, C.W.; Park, Y.C. Application of support vector regression and metaheuristic optimization algorithms
for groundwater potential mapping in gangneung-si, South Korea. Remote Sens. 2021, 13, 1196. [CrossRef]

28. Moayedi, H.; Salari, M.; Dehrashid, A.A.; Le, B.N. Groundwater quality evaluation using hybrid model of the multi-layer
perceptron combined with neural-evolutionary regression techniques: Case study of Shiraz plain. Stoch. Environ. Res. Risk Assess.
2023. [CrossRef]

29. Lee, A.H.; Nikraz, H. BOD:COD Ratio as an Indicator for Pollutants Leaching from Landfill. J. Clean Energy Technol. 2014, 2,
263–266. [CrossRef]

30. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
31. Abdi, J.; Pirhoushyaran, T.; Hadavimoghaddam, F.; Madani, S.A.; Hemmati-Sarapardeh, A.; Esmaeili-Faraj, S.H. Modeling of

capacitance for carbon-based supercapacitors using Super Learner algorithm. J. Energy Storage 2023, 66, 107376. [CrossRef]
32. Shiau, J.; Keawsawasvong, S. Multivariate adaptive regression splines analysis for 3D slope stability in anisotropic and heteroge-

nous clay. J. Rock Mech. Geotech. Eng. 2023, 15, 1052–1064. [CrossRef]
33. Alizamir, M.; Shiri, J.; Fard, A.F.; Kim, S.; Gorgij, A.D.; Heddam, S.; Singh, V.P. Improving the accuracy of daily solar radiation

prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled
with wavelet transform. Eng. Appl. Artif. Intell. 2023, 123, 106199. [CrossRef]

https://doi.org/10.1016/j.wasman.2010.03.020
https://doi.org/10.1007/s10596-020-09949-2
https://doi.org/10.1016/j.compgeo.2015.10.007
https://doi.org/10.1016/j.wasman.2016.12.040
https://doi.org/10.1016/j.jclepro.2019.02.050
https://doi.org/10.1016/j.jhazmat.2020.124098
https://doi.org/10.1016/j.envpol.2022.119366
https://www.ncbi.nlm.nih.gov/pubmed/35487470
https://doi.org/10.1016/j.gsd.2021.100643
https://doi.org/10.1016/j.psep.2018.03.038
https://doi.org/10.3390/w10050595
https://doi.org/10.1016/j.psep.2022.01.031
https://doi.org/10.1016/j.eti.2016.02.002
https://doi.org/10.1016/j.eti.2017.03.003
https://doi.org/10.3390/en13112907
https://doi.org/10.2166/hydro.2021.178
https://doi.org/10.1080/09715010.2017.1408037
https://doi.org/10.1016/j.ecolind.2017.06.009
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.apacoust.2023.109279
https://doi.org/10.1007/s11356-021-16300-4
https://www.ncbi.nlm.nih.gov/pubmed/34491495
https://doi.org/10.3390/rs13061196
https://doi.org/10.1007/s00477-023-02429-w
https://doi.org/10.7763/JOCET.2014.V2.137
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1016/j.est.2023.107376
https://doi.org/10.1016/j.jrmge.2022.05.016
https://doi.org/10.1016/j.engappai.2023.106199


Water 2023, 15, 2453 28 of 28

34. Ashrafian, A.; Panahi, E.; Salehi, S.; Karoglou, M.; Asteris, P.G. Mapping the strength of agro-ecological lightweight concrete
containing oil palm by-product using artificial intelligence techniques. Structures 2023, 48, 1209–1229. [CrossRef]

35. Saha, S.; Bera, B.; Shit, P.K.; Bhattacharjee, S.; Sengupta, N. Prediction of forest fire susceptibility applying machine and deep
learning algorithms for conservation priorities of forest resources. Remote Sens. Appl. Soc. Environ. 2023, 29, 100917. [CrossRef]

36. Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef] [PubMed]

37. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

38. Alizamir, M.; Kim, S.; Kisi, O.; Zounemat-Kermani, M. Deep echo state network: A novel machine learning approach to model
dew point temperature using meteorological variables. Hydrol. Sci. J. 2020, 65, 1173–1190. [CrossRef]

39. Alizamir, M.; Heddam, S.; Kim, S.; Mehr, A.D. On the implementation of a novel data-intelligence model based on extreme
learning machine optimized by bat algorithm for estimating daily chlorophyll-a concentration: Case studies of river and lake in
USA. J. Clean. Prod. 2021, 285, 124868. [CrossRef]

40. Yuan, Z.; Xiong, G.; Fu, X.; Mohamed, A.W. Improving fault tolerance in diagnosing power system failures with optimal
hierarchical extreme learning machine. Reliab. Eng. Syst. Saf. 2023, 236, 109300. [CrossRef]

41. Kisi, O.; Alizamir, M.; Docheshmeh Gorgij, A. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollut.
Res. 2020, 27, 9589–9603. [CrossRef]

42. Xu, Q.; Wei, X.; Bai, R.; Li, S.; Meng, Z. Integration of deep adaptation transfer learning and online sequential extreme learning
machine for cross-person and cross-position activity recognition. Expert Syst. Appl. 2023, 212, 118807. [CrossRef]

43. Alizamir, M.; Kisi, O.; Kim, S.; Heddam, S. A novel method for lake level prediction: Deep echo state network. Arab. J. Geosci.
2020, 13, 956. [CrossRef]

44. Alizamir, M.; Heddam, S.; Kim, S.; Gorgij, A.D.; Li, P.; Ahmed, K.O.; Singh, V.P. Prediction of daily chlorophyll-a concentration
in rivers by water quality parameters using an efficient data-driven model: Online sequential extreme learning machine.
Acta Geophys. 2021, 69, 2339–2361. [CrossRef]

45. Kisi, O.; Alizamir, M. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet
extreme learning machine vs wavelet neural networks. Agric. For. Meteorol. 2018, 263, 41–48. [CrossRef]

46. Alizamir, M.; Kim, S.; Zounemat-Kermani, M.; Heddam, S.; Shahrabadi, A.H.; Gharabaghi, B. Modelling daily soil temperature
by hydro-meteorological data at different depths using a novel data-intelligence model: Deep echo state network model.
Artif. Intell. Rev. 2021, 54, 2863–2890. [CrossRef]

47. Haykin, S. Neural Networks a Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
48. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
49. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.

[CrossRef]
50. Hintze, J.L.; Nelson, R.D. Violin plots: A box plot-density trace synergism. Am. Stat. 1998, 52, 181–184.
51. Band, S.S.; Janizadeh, S.; Pal, S.C.; Chowdhuri, I.; Siabi, Z.; Norouzi, A.; Melesse, A.M.; Shokri, M.; Mosavi, A. Comparative

analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration. Sensors 2020, 20, 5763.
[CrossRef]

52. Singha, S.; Pasupuleti, S.; Singha, S.S.; Singh, R.; Kumar, S. Prediction of groundwater quality using efficient machine learning
technique. Chemosphere 2021, 276, 130265. [CrossRef]

53. Abba, S.I.; Benaafi, M.; Usman, A.G.; Ozsahin, D.U.; Tawabini, B.; Aljundi, I.H. Mapping of groundwater salinization and
modelling using meta-heuristic algorithms for the coastal aquifer of eastern Saudi Arabia. Sci. Total Environ. 2023, 858, 159697.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.istruc.2022.12.108
https://doi.org/10.1016/j.rsase.2022.100917
https://doi.org/10.1109/TNN.2006.875977
https://www.ncbi.nlm.nih.gov/pubmed/16856652
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1080/02626667.2020.1735639
https://doi.org/10.1016/j.jclepro.2020.124868
https://doi.org/10.1016/j.ress.2023.109300
https://doi.org/10.1007/s11356-019-07574-w
https://doi.org/10.1016/j.eswa.2022.118807
https://doi.org/10.1007/s12517-020-05965-9
https://doi.org/10.1007/s11600-021-00678-3
https://doi.org/10.1016/j.agrformet.2018.08.007
https://doi.org/10.1007/s10462-020-09915-5
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1029/2000JD900719
https://doi.org/10.3390/s20205763
https://doi.org/10.1016/j.chemosphere.2021.130265
https://doi.org/10.1016/j.scitotenv.2022.159697

	Introduction 
	Data and Methods 
	Study Area, Leachate, and Groundwater Data 
	Artificial Intelligence Methods 
	Multivariate Adaptive Regression Splines (MARS) 
	Extreme Learning Machine (ELM) 
	Multilayer Perceptron Artificial Neural Network (MLPANN) 
	Grey Wolf Optimization (GWO) 
	Hybrid Models Based on the Grey Wolf Optimization Algorithm 


	Model Performance Evaluation Metrics 
	Results 
	Predicting COD and BOD5 Concentrations in the Leachate Quality of the Saravan Landfill 
	Application of Single- and Two-Stage ML Models for COD Concentration 
	Application of Single- and Two-Stage ML Models for BOD5 Concentration 

	Predicting the Turbidity and EC Indicators in the Groundwater Quality of the Saravan Landfill 
	Application of Single- and Two-Stage ML Models for the Turbidity Indicator 
	Application of Single- and Two-Stage ML Models for the EC Indicator 


	Discussion 
	Conclusions 
	References

