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Abstract: In this study, the optimal conditions and effects of external factors on tetracycline adsorption
by magnetic multi-walled carbon nanotubes (MMWCNTs) were established by a response surface
methodology for the first time. Batch adsorption experiments showed that increasing the dosage
and contact time effectively promoted the adsorption of tetracycline and maximum removal of
97.93–99.13% was achieved at pH 3–7. The pseudo-second-order model and Fourier-transform
infrared spectroscopy spectra indicated that the mechanism of adsorption may be π–π electron
interaction and cation–π electron bonding. Design Expert was utilized to develop a response surface
methodology for the analysis and optimization of tetracycline adsorption by magnetic multi-walled
carbon nanotubes. The Box–Behnken design (BBD) results showed that the optimization exhibited
high significance and reliability. The main effect plots and Pareto chart indicated that pH exerted
a significant individual effect on the regulation of adsorption, while 3D response surface plots and
interaction effect plots exhibited a significant antagonistic interaction between pH and contact time.
A maximum tetracycline removal of 99.16% was achieved under the optimal conditions of 12 mg
adsorbent dosage at pH 5.43, with an adsorption time of 120 min. Mathematical and experimental
results confirmed the accuracy of the established optimal conditions.

Keywords: magnetic carbon nanotubes; tetracycline; adsorption; Box–Behnken design; process
optimization

1. Introduction

Tetracycline (TC) is an emerging contaminant and one of the most commonly occurring
antibiotics, which has been extensively utilized for medical applications due to its highly
lethal effect on a variety of bacteria [1,2]. TC is difficult to degrade in organisms and can
even be converted into more toxic substances [2,3]. Studies have shown that 70–90% of TC
was excreted by humans and animals in an unmetabolized form, resulting in the occurrence
of TC in various aquatic environments [4–7]. TC has been detected in the wastewater
generated from a variety of sources including human municipal, animal husbandry, agricul-
ture, medical, pharmaceutical, and sewage plant drainage [8–13]. TC remained in aquatic
environments and has been shown to destroy microbial communities in receiving water
bodies [14]. TC would induce the formation of multi-resistant genes in microorganisms,
resulting in resistance to TC drugs and increasing public health risks [15–17].

In the field of organic micropollutant treatment, the adsorption process has been
certified by the U.S. Environmental Protection Agency as the most efficient treatment
technology and is currently the more widely used technology. [18–23]. The researchers
proposed that adsorption by magnetic multi-walled carbon nanotubes (MMWCNTs) was a
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highly practical process due to the simplicity of design, excellent contaminant adsorption
performance, and low environmental impact [24–28]. Previous studies have indicated
that the adsorption process by MMWCNTs was capable of highly efficient removal of
antibiotics [29–31]. Although MMWCNTs could effectively remove TC, the optimization
of the adsorption effect of MMWCNTs on TC and the interaction of various factors on
treatment efficiency have not been documented [32,33].

According to the survey, the conditional optimization methods used in the adsorption
process are listed in Table S1 [32,34–44]. Among the experimental methods, response
surface methodology (RSM) was utilized to fit a mathematical model and experimental
data, to analyze the relationship between influencing factors and response values, and
to obtain the optimal operating conditions for a specific system [25,38,41,45–48]. In RSM,
both Box–Behnken design (BBD) and central composite design (CCD) are plane-centered
design methods. Compared with CCD, BBD is more inclined to solve the local optimal
solution (the level of BBD factors is generally less than 5) [20,49,50]. As one of the most
commonly used response surface methods, the BBD avoided extreme conditions, and
it had a moderate number of experiments, simple and efficient software operation, and
high reliability and accuracy of optimization results, without massive training data for
the simulation [25,29,51–53]. The removal rate of TC in this study was affected by three
factors (pH, time, and adsorbent dosage). Apparently, BBD is more suitable for this
study. In this paper, the studies on the optimization of TC removal and multiwall carbon
nanotube (MWCNTs) adsorption process by RSM-BBD were summarized, which were
recorded in Tables S2 and S3. Table S2 [54–57] and Table S3 [58–66] showed that BBD
could improve adsorption efficiency and save resources in the fields of MWCNTs adsorbent
and TC removal, respectively [54,58]. At present, RSM-BBD optimization of MMWCNTs
adsorption TC needs further practice.

In this study, MMWCNTs were successfully synthesized using a previously reported
method for TC removal. To our knowledge, no one has ever used RSM-BBD to simulate, an-
alyze and optimize the process of TC adsorption on MMWCNTs, using three independent
variables: adsorbent dosage, pH, and time. The independent variable input values and the
individual effects of the three factors were studied using batch adsorption experiments. The
adsorption mechanism was established according to adsorption kinetics fitting and char-
acterization results. Analysis of variance (ANOVA) was used to examine the significance
of the model. The interactive effects of factors were assessed using response surface plots,
interaction effect plots, and Pareto chart analysis, allowing the related parameters affecting
removal efficiency to be statistically optimized. This study provides a feasible method for
optimizing and adjusting TC adsorption conditions while enhancing the potential for the
practical application of magnetic carbon nanotubes. The optimization of external conditions
promotes the quality and efficiency of the TC adsorption process, providing a reference
method for the improvement of TC removal efficiency. The process optimization method
of TC adsorption by MMWCNTs should further adapt the actual operating conditions to
increase the optimization parameters and pollutant types.

2. Materials and Methods
2.1. Reagents and Instruments

The multi-walled carbon nanotubes (tubes diameter of 8–10 nm) employed to pre-
pare the adsorbent material were purchased from Helue Lida Power Materials Co., Ltd.
(Xinxiang, China). Analytically pure NaOH, ferric chloride, and manganese chloride were
supplied by Yingda Rare Chemical Reagents Factory Co., Ltd., (Tianjin, China). TC (98%
purity) was supplied by Hefei Bomei Biological Technology Co., Ltd. (Hefei, China). Ni-
tric acid, sodium hydroxide, and anhydrous ethanol (Shuangshuang Chemical Co., Ltd.,
Laiyang, China) were of analytical grade.

An electronic balance (BSA124S- CW, Sartorius AG, Mettler Toledo Instrument Co.,
Ltd., Shanghai, China) was used to weigh materials and a pH meter (PB-10, Sartorius AG)
was used to determine the pH of solutions. A digital display electric constant temperature
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water bath (XMTD-204, Honour Instrument Shaker Co., Ltd., Tianjin, China) was used to
heat carbon nanotube solutions and the iron–manganese mixture. A JJ-1 electric mixer and
GL-88-b type vortex mixer (Haimen Kyling-bell Lab Instruments Co., Ltd., Haimen, China)
was used for solution mixing.

2.2. Experimental Methods
2.2.1. Preparation of MMWCNTs Composites

The MMWCNTs (Size is about 10–50 nm) were prepared using a co-precipitation
method previously reported by Zhao et al. [7]. The specific preparation methods of MMWC-
NTs, as well as Transmission Electron Microscope (Figure S1a,b), zeta potential (Figure S1c),
and Fourier-transform infrared spectroscopy (Figure S1d) scanning electron microscope
(Figure S1e) and Energy Dispersive X-ray spectroscopy (Figure S1f) characterization, are all
provided in the Supplementary Materials.

2.2.2. Batch Adsorption Experiments

In this study, the dosage of adsorbent, pH, and the adsorption time were assessed as
the variable factors for batch adsorption experiments. According to previously reported
studies, adsorbent dosage directly affects the number of adsorption sites and the mass transfer
efficiency [25,67]. Due to protonation and deprotonation, the surface charge of the material
and the chemical forms of organic compounds are transformed under varying pH conditions,
affecting electrostatic and chemical bonding between TC and adsorbents [8,67–70]. The
influence of contact time on adsorption is indicative of the adsorption reaction kinetics and
can be used to establish the adsorption mechanism [4,17,70].

For the adsorption time batch experiment, 50 mL of the 20 mg/L TC solution was
placed in a 150 mL conical flask, then 12 mg of MMWCNTs were accurately weighed
using an electronic balance and mixed with the TC solution. The pH of the solution was
maintained at 7 by adding 1 M nitric acid or sodium hydroxide in a dropwise manner
as required. The conical flask was fixed in a thermostatic water bath at a temperature
of 298.15 K, with continual oscillation at 140 rpm for 1500 min. Samples were collected
from a conical flask for measurements at specified time points (1, 2, 5, 8, 10, 15, 20, 25, 30,
45, 60, 90, 120, 720, 840, 960, and 1440 min). For batch experiments assessing the effects
of varying pH, the maximum adsorption time was fixed at 1440 min, with the pH of the
solution varying from pH 2–10, while for adsorbent dosage batch experiments, the dosage
varied from 5 to 13 mg, with all other conditions remaining constant as described above.
After adsorption, the adsorbent and TC solution mixture were left to stand for 30 min
before 5 mL of supernatant was taken from the conical flask with a gel head dropper
and filtered through a 0.45 µm cellulose filter membrane. The absorbance of the filtered
sample was measured using a spectrophotometer (TC adsorption wavelength of 360 nm).
The experiments were repeated in triplicate under the same conditions, with the average
values used for further analysis. The solution removal rate (%) and equilibrium adsorption
capacity qe (mg/g) were calculated according to Equation (1) and Equation (2), respectively.

Removal rate = (C0 − Ce)/C0 × 100% (1)

qe= (C0 − Ce)/m × V (2)

Here, C0 represents the initial concentration of TC before adsorption (mg/L); Ce repre-
sents the concentration of TC after adsorption (mg/L); m indicates the mass of MMWCNTs
(mg); and V indicates the volume of the solution.

2.3. Box–Behnken Design Model

According to the TC removal efficiency under different conditions, the range of condi-
tions associated with higher removal rates was preliminarily determined [51]. As shown
in Table S4, adsorbent dosage (A), adsorption time (B), and solution pH (C) values were
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divided into three levels (−1, 0, 1), with adsorbent dosage levels of 6, 9, and 12 mg, ad-
sorption time levels of 120, 300, and 480 min, and pH value levels of 4, 5, and 6. In total,
17 experiments were simulated using Design Expert (v. 10.0.3) software, with TC removal
efficiency set as the response (Y) for each respective variable. ANOVA and residual values
were used to establish the fitness of the model, the rationality of equations, and the signifi-
cance of the response [52,71]. The main effect plots and Pareto chart for different factors
were analyzed to assess the individual effect of each factor, with the interactions between
factors then established using 3D response surface plots, Pareto chart, and interaction effect
plots [26]. The RSM was employed to identify the exact external condition values capable
of achieving maximum removal efficiencies [72]. Actual measurement values verified the
predicted effect of the model.

The nonlinear quadratic model adopted for response surface analysis is shown in the
Supplementary Materials.

3. Results and Discussion
3.1. Batch Adsorption Experiments
3.1.1. Effect of Dosage

With the initial increase in dosage of MMWCNTs from 5 mg to 7 mg the removal
rate increased linearly from 78% to 87% due to the increase in active sites and the high
available concentration of TC (Figure 1). However, due to the agglomeration of adsorbents,
further increases in adsorbent dosage led to a decline in the total adsorbent surface area
and the availability of active surface sites [73]. Increasing adsorbent dosages from 8 to
12 mg resulted in a smaller increase in the adsorption efficiency (<5%), with the adsorption
rate becoming slower and gradually stabilizing from a dosage of 12 mg upwards, achieving
a maximum TC removal rate of 99.5%. The relationship between the adsorption capacity
and removal rate exhibited an inverse trend, with an increase in adsorbent dosage from
5 to 6 mg resulting in a reduction in adsorption capacity from 202.6 mg/g to 145 mg/g,
with a further increase in dosage to 13 mg causing the adsorption capacity to reduce to
80 mg/g. With the increase in TC removal and adsorbent dosage, the adsorption mass
transfer efficiency declined, due to TC molecules saturating the surface adsorption sites
and reducing the total surface area of the adsorbent [74]. The final adsorption capacity
was maintained at about 83 mg/g (equilibrium adsorption capacity of 20 mg/L TC). In
summary, increasing adsorbent dosage can promote TC removal, although adsorption is
reduced with excessive TC concentrations. According to the experimental results, at a
concentration of 20 mg/L TC, 6–12 mg was selected as the adsorbent dosage input value
for RSM analysis.

3.1.2. Effect of pH

As shown in Figure 2, the optimal pH range for TC removal by 12 mg MMWCNTs
within 24 h was pH 3–7, achieving a removal rate of 97.59–99.31%. The qe reached a
maximum of 83 mg/g at pH 3 and gradually declined as the pH increased to pH 6 and above.
At pH < 3.0 and >7.0, the adsorption effect of TC reached a maximum of 90–95%, with an
adsorption capacity of <80 mg/g. Under different pH conditions, TCs showed different
functional groups, making the adsorption effect of MMWCNTs on TCs inconsistent. In
aqueous solutions, TC exhibits three pKa values of 3.3, 7.7, and 9.7 [5,75], due to its
characteristics of containing electron-deficient amino and enone groups, as well as an
electron-rich phenol ring [67,69]. At pH < 3.3, the solution is acidic, resulting in the
dimethylamine group attracting protons and TCH3

+ being the dominant component in the
TC group, causing the TC molecules in the solution to exhibit cationic properties [17,76],
with the potential of MMWCNTs being approximately 32 mV (Figure S1c). Despite strong
interactions that resulted in the adsorption of more than 90% of TC in solution, adsorbents
and contaminants are subject to electrostatic repulsion. At 3.3 < pH < 7.7, the dominant
group in TC was TCH2

0, which has no external electrical properties, indicating that the
adsorption of TC reached a peak level without the occurrence of electrostatic repulsion [4].
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At pH > 7.7, TC was dominated by negatively charged TCH2
− and TC2−, while the

potential of MMWCNTs was about −15mV due to the deprotonation of carboxyl groups on
the adsorbent [10,15,77–79]. At pHpzc, adsorption could not be attributed to electrostatic
interactions, and therefore, the removal of TC by MMWCNTs was higher at pH 3–7. The
reason may be that the pH is in the range of 3–7, the TC amphiphilic form (TCH2

0) exists,
the TC molecules have almost no electrostatic attraction or repulsion to MMWCNTs, and
the effect of pH on TC adsorption is negligible. Whereas, when the pH is less than 3 or
more than 7, TC and MMWCNTs have the same charge, and a certain degree of electrostatic
repulsion is generated, which is not favorable for the adsorption of TC by MMWCNTs.
Based on the above analysis, the pH input value was set to 4–6 in the RSM.
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Figure 1. Effect of adsorbent dosage on the Tetracycline (TC) removal rate and adsorption capacity
of magnetic multi-walled carbon nanotubes (MMWCNTs). Reaction conditions included an initial
TC concentration of 20 mg/L, pH 7.0 ± 0.1, contact time of 1440 min, and reaction temperature of
298.15 K. (The black data points in the graph represent the removal rate and the red data points
represent the qe.).
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of 1440 min, and reaction temperature of 298.15 K. (The red data points in the graph represent the
removal rate and the black data points represent the qe.).
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3.1.3. Effect of Time

The TC adsorption capacity of MMWCNTs increased to 82.33 mg/g, within 720 min
(Figure S2). The qe of TC by MMWCNTs reached 80 mg/g prior to 200 min and remained
around 83 mg/g for the remainder of the contact time, reaching adsorption equilibrium
after 700 min. Within the initial 50 min of the reaction, the high concentration of TC in the
solution enhanced the effect of mass transfer, with the adequate availability of adsorption
sites providing a high probability of collision between molecules, resulting in a rapid TC
adsorption rate [9,12]. After MMWCNTs had rapidly adsorbed a huge amount of TC at
150 min, many of the adsorption sites were occupied and the adsorption rate declined.
Therefore, based on these findings the contact time range input value for RSM analysis was
120–480 min.

3.1.4. Adsorption Kinetics

Figure 3 presents the results of data fitting using the pseudo-first-order, pseudo-second-
order, Elovich, Weber and Morris, and Banham models. The equations applied for the
different models are provided in the supporting information, with the obtained kinetic
parameters shown in Table S5. The results demonstrate that the pseudo-first-order model
data fitting was good, with an R2 of 0.944, although the adsorption capacity calculated
using this model was 80.57 mg/g, which differed from the experimental results. The
determination coefficients of the Elovich and Bangham models were 0.729 and 0.668, with
qe values of 87.05 and 87.82 mg/g, respectively. The Weber and Morris model classified the
adsorption process as being surface adsorption and slow intra-particle diffusion. However,
the R2 using the Weber and Morris model was 0.412 and the straight line failed to pass
through the origin of the coordinates. The pseudo-second-order kinetic model successfully
explained the experimental data (R2 = 0.975 and qe = 84.13 mg/g), indicating that the
adsorption of TC by MMWCNTs may occur via chemical adsorption, due to the sharing or
interchange of electrons between adsorbents and adsorbates resulting in valence forces. The
chemical adsorption process can be separated into two phases, with (1) TC initially adsorbed
on the surface forming a monolayer and (2) chemisorption mechanisms dominating once
monolayer physical adsorption approaches saturation [17,80,81]. In summary, pseudo-
second-order kinetics were optimal for depicting the TC adsorption process on MMWCNTs.
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conditions included an initial TC concentration of 20 mg/L, adsorbent dosage of 12 mg, pH 7.0 ± 0.1,
and reaction temperature of 298.15 K.
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3.1.5. Mechanism of TC Adsorption by MMWCNTs

According to the results of FT-IR infrared spectroscopy, single-factor experiments
with pH variation and adsorption kinetics results, the proposed TC adsorption mechanism
(Figure S3) can be explained by the following two mechanisms: (1) π–π interactions between
TC’s polarity/ionization groups (including amino, carboxyl, phenol, ethanol, and acetone)
(Figure S4) and oxygen-containing functional groups on MMWCNTs, (carboxyl and hy-
droxyl groups) (Figure S1d), with some groups serving as π–electron donors (hydroxyl)
or π–electron receptors (carboxyl, conjugated enone structures) [69,82], while the TC ring
structure and hexagonal cells in MMWCNTs form π–π stacked interactions [70,75,83,84].
(2) The formation of cation–π bonds due to electrostatic forces between cation-induced
polarized regions and the quadrupole of π-electron-rich aromatic structures [85]. TC is am-
photeric in a pH range of 3–7, with a cationic dimethyl amino group (pKa = 9.7), resulting in
π electrons on MMWCNTs easily forming cation–π bonds. The amino and hydroxyl groups
on TC molecules tend to form strong hydrogen bonds with carbon-based adsorbents [68].

3.2. Box–Behnken Design Model
3.2.1. Modeling and Statistical Analysis

Table 1 demonstrates the experimental design, experimental results, and the model-
predicted TC removal rate (%). The experimental results show that TC removal ranged
from 73.35% to 97.88%, with an overall deviation of <3%. Kinetic analysis (Table S6) shows
the results of data fitting using four models (Linear, 2FI, Quadratic, Cubic), with F-test
analysis indicating that the quadratic model exhibited the highest level of significance
(F-value (Fisher rate) = 22.10; p-value (prob > F) = 0.0002; F-value of the lack of fit = 0.34),
indicating that most of the variation could be explained by the quadratic model regression
equation [38,86]. The influence of noise probability was only 0.02% with a signal-to-
noise ratio of >4, while the p-value of lack of fit was 0.798, indicating that misfit error
could be ignored. The calculation methods are described in detail in the Supplementary
Materials. Equation (3) describes the quadratic model equation for the TC removal rate
with varying dosage, contact time, and pH, with negative interaction terms (AB, BC, AC,
B2, C2) indicating an antagonistic effect on the removal rate [25]. All the analyses presented
in this paper were based on quadratic model analysis.

Y = 91.28 + 1.66 × A + 1.54 × B + 0.2 × C − 4.17 × A × B − 3.08 × A × C − 10.4 × B × C−
0.32 × A2 + 2.29 × B2 − 8.74 × C2 (3)

where Y represents the TC removal rate by MMWCNTs; A represents the adsorbent dosage;
B represents the adsorption time; C represents the pH value.

Table 1. Experimental factor level values with experimental and predicted TC removal values at each
factor level.

Run
Order

Dosage
(mg)

Time
(min)

pH
TC Removal (%)

Experimental Predicted

1 9 300 5 89.56 91.28
2 9 300 5 94.55 91.28
3 9 300 5 90.32 91.28
4 12 300 6 82.29 81.01
5 6 480 5 97.88 97.31
6 12 480 5 91.65 92.28
7 9 300 5 88.65 91.28
8 9 480 4 97.28 96.57
9 9 120 6 93.19 93.90
10 6 120 5 86.52 85.89
11 9 300 5 93.34 91.28
12 6 300 6 83.93 83.85
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Table 1. Cont.

Run
Order

Dosage
(mg)

Time
(min)

pH
TC Removal (%)

Experimental Predicted

13 9 480 6 75.54 76.19
14 12 120 5 96.97 97.54
15 9 120 4 73.35 72.70
16 6 300 4 76.01 77.29
17 12 300 4 86.68 86.76

3.2.2. Analysis of Variance

ANOVA was performed to verify the statistical significance of the experimental de-
sign and establish the interactions between independent variables and response effects
(Table S7) [41,72]. ANOVA subdivides the total variation into two components, with
variation associated with either the model or experimental error [87,88]. F- and p-values
(prob > F, confidence interval = 95%) for the model were obtained as shown in Table S7.
The F-value of the lack of fit (0.34) and the p-value (>0.05) were insignificant, proving
that the second-order model with interactive effects was adequate for approximating the
RSM [89]. p (AB) = 0.006, p (BC) = 0 and p (C2) = 0 were more significant than the other
interaction terms, while the p-values of B (0.796) and B2 (0.768) were appreciably greater
than 0.05, indicating that the influence of these factors on the response value could be
ignored. The accuracy of the predictions generated by the model was verified according
to the R2 (0.9660), Radj

2 (0.9223), and standard deviation (2.15). A total of 7.7% of the total
variation could not be explained exclusively by the model [46,53]. Overall, the ANOVA
indicated that the BBD model exhibited excellent accuracy and reliability for TC adsorption
by MMWCNTs [52].

3.2.3. Main Effect of Variables

The main effect of variables represents the regulatory effect of a specific individual
factor on the response value [25]. The main effect plot for varying dosage (Figure S6a)
demonstrated that an increase in adsorbent dosage from 6 to 12 mg resulted in an increase
in the average removal rate from 86.08% to 89.39%, while the curve slope decreased with
increasing dosage from 0.778 (6–9 mg) to 0.325 (9–12 mg), indicating that the promotive ef-
fect of dosage on the removal rate decreased with increasing dosage levels. Initial increases
in adsorbent dosage increase the surface area available for TC adsorption. However, at an
adsorbent dosage of 13 mg, the qe of the adsorbent was close to the equilibrium adsorption
capacity of 83 mg/g, leading to a decrease in the main effect of this factor. According to the
results of variance analysis, the p-values of A and A2 were 0.082 and 0.065, respectively.
Pareto chart analysis showed that the contributions of A and A2 to the removal rate were
0.41% and 0.39%, respectively, indicating that the effect of dosage on the removal of TC
was weak.

The main effect plot for pH (Figure S6b) indicated that the TC removal rate increased
rapidly from 83.33% (pH 4) to 92.16% (pH 5), then decreased to 83.73% (pH 6), with the slope
of the curve altering by 200%, while the intersection angle between the curve and reference
line was the largest compared with the other two factors. Variance analysis showed a
p-value for pH of 0.066 (<0.05) and a p-value for pH2 of 0, indicating a strong individual
effect. According to Figure S1c, the pHpzc of MMWCNTs was 4–5, with TCH2

0 being the
dominant species at pH 5, indicating that adsorption was far greater than electrostatic
repulsion. Once the pH value deviates from pHpzc, a small portion of TCH- groups on TC
molecules will repel the adsorbent surface. Therefore, compared with contact time and
dosage, the pH value exhibited the most significant individual effect on the rate of TC
removal by MMWCNTs.

The main effect plot for adsorption time (Figure S6c) was drawn from the average TC
removal rate values at 120, 300, and 480 min in 17 groups of experiments, according to
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the RSM. Before the 300 min, the curve slope was 0.0014, running almost parallel to the
reference line, with the removal rate changing by 0.25%. After 480 min, the average TC
removal rate increased to 90.58%. Variance analysis demonstrated that contact time exerted
a low effect on TC removal (p-value for time = 0.796, p-value for time2 = 0.768). Due to the
affinity among adsorbates and adsorbents and the excessive concentration of TC, the high
mass transfer efficiency resulted in the adsorption equilibrium being reached within a short
time and the adsorption time indicating a weak individual effect on the removal rate.

The standardized Pareto chart (Figure 4) indicated the influence of the items in Equa-
tion (3) on TC removal [26,90]. The results showed that the most significant factors affecting
TC adsorption by MMWCNTs were pH2 (standardization effect = 8.27%) and pH-time
(standardization effect = 10.13%) interactions, indicating an acceptable level of agreement
with the observed results shown in Table S7 (p-value for pH2 and pH-time = 0). These
results validate the previously established conclusion, that the individual effect of pH was
the most significant (pH (4.53%), pH2 (8.27%), pH-time (10.13%), and pH-dosage (4.06%)).
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Figure 4. Pareto chart of the interactive effect of experimental factors (dosage, time and pH) with TC
removal as the corresponding variable (α = 0.05).

3.2.4. Interaction of Contact Time and Adsorbent Dosage

To understand the interactions of various factors on removal, contour plots, 3D re-
sponse surface plots, and interaction effect plots were constructed according to the proposed
regression model (Equation (2)) [91]. Figure 5a,b show contour plots and response surface
plots for adsorption time and adsorbent dosage. As the adsorbent dosage increased from 6
to 12 mg and the contact time was extended from 120 to 480 min, the TC removal rate grad-
ually increased. TC removal reached a maximum of 97% in 480 min at an adsorbent dosage
of 6 mg and 120 min at an adsorbent dosage of 12 mg. The lowest adsorption efficiency
(86%) occurred at a dosage of 6 mg and a contact time of 120 min, with the extension of
adsorption time increasing the collision probability for TC molecules and the adsorbent,
while the rise in adsorbent dosage increases the accessibility of the exchangeable surface
adsorption sites. When a maximum contact time and dosage were applied (480 min contact
time and 12 mg dosage), the adsorption efficiency decreased (92%) due to the antagonistic
effect of time and dosage. Figure S7 shows an interaction effect plot for time and dosage,
which was utilized to describe the dynamic interaction between various factors. From 120
to 300 min, the curves intersected, and the slope varied from 0.036 at 6 mg, and −0.044 at
9 mg, to 0.069 at 12 mg, indicating a distinct interaction between the time and dosage. In
the Pareto chart (Figure 4), the interactive contribution of time and dosage on the removal
rate was 4.06% > 2.57% (minimum statistically significant effect magnitude), indicating the
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significance of time–dosage interactions. In summary, the interactive effect of adsorbent
dosage and contact time on TC removal was significant and substantial (p-value = 0.006,
Table S7).
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(contact time = 300 min); (d) Response surface plot of pH and dosage (contact time = 300 min);
(e) Contour plot of pH and time (dosage of 9 mg); (f) Response surface plot of pH and time (dosage
of 9 mg). (The color changes from blue to red, indicating that the removal rate is getting higher
and higher).

3.2.5. Interaction of Adsorbent Dosage and pH

Figure 5c,d are contour and 3D response surface plots for pH and adsorbent dosage.
The results show that the removal rate initially increased and then decreased with the rise in
pH from 4 to 6. TC removal occurred monotonically (86–93%) with increasing dosage from
6 to 12 mg. The peak TC removal rate (92%) occurred at pH 5 and a dosage of 12 mg, which
was attributed to the π–π electron interactions and cationic–π electron bonds between
MMWCNTs and TC molecules at pHpzc (with weak electrostatic repulsion). The results
indicate that increasing dosage does not affect the relationship between pH and the TC
removal rate, and neither does increasing pH affect the relationship between dosage and
the TC removal rate, verifying the insignificance of pH and adsorbent dosage interactions.
As shown by the pH and adsorbent dosage interaction plot (Figure S7), with increasing
pH, TC removal initially increased to a maximum level (90–95%) and then decreased to
85%. The three interaction curves demonstrate that the variation in adsorbent dosage did
not alter the overall trend, although the removal effect could be improved. At pH 5–6, the
slope fluctuated from 8.27 (6 mg) to 6.919 (9 mg) to 12.02 (12 mg), indicating the low level
of interaction between pH and adsorbent dosage. The same result was shown by the Pareto
chart (Figure 4), where the contribution of interaction between pH and the adsorbent dose
was only 3%. Therefore, the interactive effect of dosage and pH on TC removal was low
(p-value = 0.024, Table S7).

3.2.6. Interaction of Contact Time and pH

Figure 5e,f display the contour plot and response surface plot for the pH and contact
time of adsorption efficiency. The maximum percentage of TC removal was achieved at
480 min and pH 4.5. At pH levels < 5, a significant increase in the amount adsorbed was
observed from 120 to 480 min, while the opposite trend was observed at pH levels > 5.
Similarly, within 300 min, the adsorption effect increased with higher pH values (from 80%
to 94%), while from 300 to 480 min, the adsorption effect decreased with increasing pH
values from 4 (96%) to 6 (82%), further proving the antagonistic interaction between pH
and contact time. Therefore, simultaneous increases in pH and contact time significantly
reduced the TC adsorption effect. As shown by the pH and time interaction plot (Figure S7),
in which from 120 to 480 min the varying pH initially increased from 4 to 6 the TC removal
rate (73.35–93.19%) at a pH of 4 and then decreased the removal rate (97.28–75.54%) at a pH
of 6, verifying the occurrence of antagonistic interactions. Pareto chart analysis revealed
that pH-contact time contributed 10.13% to the removal rate and ANOVA (F-value = 93.62,
p-value = 0) demonstrated that the interaction between pH and contact time was most
significant compared with the other interaction terms.

3.3. Validation of Box–Behnken Design Optimization

To determine the practical application effect of RSM-BBD on the parameter opti-
mization of TC adsorption by MMWCNTs, the optimum conditions for TC removal by
the MMWCNTs adsorbent were investigated with varying adsorbent dosage, pH, and
adsorption time [51].

Design Expert software suggested that pH 5.4, an adsorbent dosage of 12 mg, and
contact time of 120 min, were the optimum conditions to achieve a maximum TC removal
by MMWCNTs of 99.16%, with desirability of 0.984.

Table 2 shows the validation results for 10 groups of different experimental conditions
simulated by Design Expert software (v.10.0.3). The experimental results show that the
TC removal rate reached 98.86% under optimal conditions, with an error level of 0.3%.
The overall error of the 10 groups of experiments was <1%, proving the accuracy of the
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model prediction. Overall, RSM-BBD was found to reliably simulate TC adsorption by
MMWCNTs, allowing effective method optimization.

Table 2. Experimental design conditions and the TC removal response (%) of each run. Initial TC
concentration: 20 mg/L and temperature: 298.15 K.

Run Order
Parameter

Experimental (%) Predicted (%) Expectation Deviation (%)
Dosage (mg) Time (min) pH

1 12.0 120 5.4 98.86 99.16 0.984 −0.300
2 12.1 120 5.5 98.12 98.99 0.981 −0.870
3 12.2 123 5.5 98.11 98.92 0.980 −0.810
4 11.8 120 5.4 98.00 98.96 0.968 −0.960
5 11.9 120 5.1 97.98 98.15 0.965 −0.170
6 12.0 136 5.5 97.98 97.87 0.959 0.110
7 12.1 480 4.2 97.96 97.32 0.948 0.640
8 12.3 479 4.3 97.83 97.27 0.947 0.560
9 11.9 479 4.2 97.06 97.32 0.945 −0.260
10 11.9 479 4.2 97.01 97.33 0.943 −0.320

4. Concluding Remarks

In this study, RSM-BBD was employed to establish a quadratic polynomial model
to analyze the TC adsorption process by MMWCNTs, in terms of dosage, pH, and time.
The main conclusions are as follows: (1) ANOVA established a high level of significance
(F-value = 22.1, p-value < 0.05), fitness (R2 = 0.966 and Radj

2 = 0.922), and accuracy (the
residual fit the normal probability distribution) of the model. (2) From the analysis of the
Pareto Diagram and main effect diagram, the promoting effect of dose on removal rate
decreases with the increase in dose level, and the effect on TC is weak. Main effect plots
demonstrated that in the pH range from 4 to 6, the average removal curve slope changed
by 200%, with the effect of pH on TC removal being the most significant (contribution of
pH2 on removal = 8.27%, F-value = 69.60, p-value = 0). (3) The pseudo-second-order model
was successfully applied to explain the adsorption kinetics (R2 = 0.975 and qe = 84.1 mg/g).
The TC adsorption mechanism involved π–π electronic interaction and cation–π electronic
bonding. (4) The response surface plots, Pareto chart, and variance analysis established that
the strongest antagonistic interaction occurred between contact time and pH (contribution
of time-pH = 10.13%, F-value = 93.62, p-value = 0). In addition, the correlations of pH with
dosage and dosage with time were not significant. (5) The maximum TC removal efficiency
of 99.16% was achieved at an adsorbent dosage of 12 mg, pH 5.4, within 120 min, and
desirability = 0.984. The verification experiment results indicated that the actual removal
under optimal conditions was 98.86%, indicating that the RSM-BBD model could effectively
be used for optimizing TC adsorption by MMWCNTs. The optimization method used
in this paper determined the optimal adsorption conditions and the influence of external
factors, promoting the industrial application of MMWCNTs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w15132392/s1, Figure S1: (a) Transmission electron microscopy observation
of MWCNTs at 20 nm (Quanta-250, FEI, Waltham, MA, USA); (b) Transmission electron microscopy
observation of MMWCNTs at 20 nm (Quanta-250, FEI, US); (c) Zeta potential of MWCNTs and
MMWCNTs (pH = 2–10); (d) FT-IR of MnFe2O4, MWCNTs and MMWCNTs [7];(e) Characterization
of MMWCNTs by scanning electron microscope (SEM, Quanta-250, FEI, USA) [7]. (f) Characterization
of MMWCNTs by Energy Dispersive X-ray spectroscopy [7]; Figure S2: Effect of adsorption time
on TC adsorbent adsorption capacity. Initial TC concentration of 20 mg/L; adsorbent dosage of
12 mg; pH 7.0 ± 0.1, reaction temperature of 298.15 K; Figure S3: Schematic mechanism of the
π–π interactions and cationic-π bonding between MMWCNTs and TC molecules; Figure S4: The
main components of TC (phenolic hydroxyl group (C-OH); dimethyl amino group (-N(CH3)2);
acylamino group (-CONH2); and the keto-enol conjugated double bond system) and the acidity

https://www.mdpi.com/article/10.3390/w15132392/s1
https://www.mdpi.com/article/10.3390/w15132392/s1


Water 2023, 15, 2392 13 of 17

coefficient of each component; Figure S5: Residual diagnostic chart of TC adsorption test results:
(a) Normal % probability versus internally studentized residuals; (b) Residuals versus predicted
values; (c) Residuals versus run number; (d) Plot of model predicted value versus actual experimental
value; Figure S6: Main effect plots for (a) Dosage; (b) pH and (c) Reaction time for the response
surface method; Figure S7: Interaction plot of dosage, reaction time and pH; Table S1: Optimization
methods of various adsorption processes; Table S2: Current status of BBD-RSM in the optimization
of TC adsorption process with different adsorbents; Table S3: Current status of BBD-RSM in the
optimization of MWCNTs adsorption process with different adsorbents; Table S4: The experimental
factors, levels and coded values for TC removal experiment, including three factors and three
response levels; Table S5: Parameters of kinetic models for the adsorption of TC by MMWCNTs;
Table S6: Statistical analysis of the effectiveness of models for modeling the process of TC adsorption
by MnFe2O4/MWCNTs (confidence interval = 95%); Table S7: Analysis of variance (ANOVA) for TC
removal according to the response surface quadratic model (confidence interval: 95%).
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