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Abstract: This study investigates the impact of precipitation on Middle Eastern countries like Iran
using precise methods such as stable isotope techniques. Stable isotope data for precipitation in
Tehran were obtained from the Global Network of Isotopes in Precipitation (GNIP) station and
sampled for two periods: 1961–1987 and 2000–2004. Precipitation samples were collected, stored,
and shipped to a laboratory for stable isotope analyses using the GNIP procedure. Several models,
including artificial neural networks (ANNs), stepwise regression, and ensemble machine learning
approaches, were applied to simulate stable isotope signatures in precipitation. Among the studied
machine learning models, XGboost showed the most accurate simulation with higher R2 (0.84 and
0.86) and lower RMSE (1.97 and 12.54), NSE (0.83 and 0.85), AIC (517.44 and 965.57), and BIC values
(531.42 and 979.55) for 18O and 2H compared to other models, respectively. The uncertainty in the
simulations of the XGboost model was assessed using the bootstrap technique, indicating that this
model accurately predicted stable isotope values. Various wavelet coherence analyses were applied
to study the associations between stable isotope signatures and their controlling parameters. The
BWC analysis results show coherence relationships, mainly ranging from 16 to 32 months for both
δ18O–temperature and δ2H–temperature pairs with the highest average wavelet coherence (AWC).
Temperature is the dominant predictor influencing stable isotope signatures of precipitation, while
precipitation has lower impacts. This study provides valuable insights into the relationship between
stable isotopes and climatological parameters of precipitation in Tehran.

Keywords: artificial neural networks; precipitation; local parameters; regional parameters; stable
isotopes; stepwise model; ensemble machine learning algorithm; wavelet coherence analysis; Tehran

1. Introduction

Tehran, the capital of Iran, is the most populated and largest metropolitan area in
the country. Over the last few decades, the water shortage crisis has significantly affected
the lives of millions of people living in this city. Therefore, assessing the conditions of
existing water resources and discovering new ones is critical for this metropolitan area.
Stable isotope techniques play a crucial role in the study of precipitation because of their
accuracy and the simplicity of their application in water resource studies. In water resource
studies, the assessment of precipitation characteristics is an important initial step. Many
studies [1–7] in Iran have used stable isotope techniques, such as precipitation moisture
identification, to assess precipitation characteristics. The Global Network of Isotopes in
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Precipitation (GNIP) has established a global network of stations in order to sample and
analyse stable isotopes in precipitation. GNIP only had one “Tehran” station in Iran, which
covered an area of over 1,648,195 km2. This station was operational from 1961 to 1987 and
again from 2000 to 2004. In addition to stable isotopes (18O and 2H), precipitation samples
at this station were analysed for 3H.

The stable isotope content of precipitation is controlled by local factors (such as air
temperature, precipitation amount, and water vapour pressure) and regional components
(teleconnection indices). Some of these teleconnection indices’ effects on precipitation stable
isotope signatures have been studied in surveys worldwide, including [8–13]. Among the
various teleconnection indices, only bivariate ENSO (BEST), southern oscillation index
(SOI), North Atlantic oscillation (NAO), Indian Ocean dipole (IOD), and quasi-biennial
oscillation (QBO) have an impact on Iran [14–18].

Isotope simulation can help to improve hydrological modelling in areas where there
are not enough precipitation sampling stations to measure the stable isotope signature of
precipitation. To simulate stable isotope signatures in precipitation, precise techniques
such as statistical techniques can be used. Stepwise regression models are among the most
accurate simulation methods. These models use both local and regional parameters as pre-
dictors to simulate the target variable (stable isotopic signatures of precipitation). Stepwise
regression is a technique for building regression models where the selection of predictors
is conducted automatically. This method involves iteratively evaluating the statistical
significance of each predictor in a linear regression model. Forward selection, backward
elimination, and bidirectional elimination are three approaches to stepwise regression. In
the backward approach, the stepwise method starts with a full model containing several
predictors and then removes one predictor at a time to test the importance of each. In con-
trast, the forward selection approach begins with no predictors and adds them one by one,
testing for statistical significance at each step. Finally, bidirectional elimination combines
both the backward and forward methods to determine which predictors should be included
or excluded from the model [19,20]. The stepwise technique has several advantages, includ-
ing its high accuracy and speed compared to other statistical models. Additionally, this
model can identify the most effective predictors influencing the target variable, which is
crucial when there are many predictors. However, the main disadvantage of the stepwise
model is that it can lead to data overfitting. This means that the stepwise model may fit
the data with high accuracy, capturing even the random noise in the data, and in addition
determine the relationship between the predictors and target variables [21,22]. Stepwise
techniques have been applied in some climate studies at several sites across Iran and the
Middle East. For example, Mohammadzadeh and colleagues used the stepwise technique
to study and simulate the stable isotope signature in precipitation in western Iran and
eastern Iraq [23]. Heydarizad and colleagues used stepwise techniques to study the stable
isotope signature in precipitation and groundwater resources across Iran. They presented
maps of the spatial distribution of 18O, 2H, and d-excess in precipitation across Iran using
the stepwise technique [4]. Additionally, Heydarizad and colleagues developed a spatial
distribution map of stable isotope signatures in precipitation across the Middle East using
the stepwise model [24].

Advanced machine learning techniques (ML) can also predict stable isotope signatures
in precipitation. Artificial neural network (ANN) techniques [25,26] are among the most
widely used ML models in a variety of scientific fields. McCulloch and Pitts developed an
ANN technique in 1943 by creating a computational model for neural networks [27]. A
deep neural network (DNN) model contains several hidden layers between the predictors
and target variables, as opposed to comprising a simple black-box shallow neural network
(SNN) model with only one hidden layer. The DNN model can be applied to cases where
the predictor and targets variables have highly comprehensive and complex relationships.
The term “deep” in deep learning is due to the application of multiple layers in the network.
A multi-layer perceptron (MLP) is a common subset of DNN. An MLP is made up of units
known as perceptrons. These have one or more inputs, with an activation function and an
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output. An MLP model is constructed by arranging perceptrons in structured layers. The
perceptrons in a given layer are independent of each other but are connected to all other
perceptrons in the next layer. Each layer consists of a set of neurons and is trained using a
backpropagation algorithm. Backpropagation is one of the most widely used algorithms
for the supervised training of multilayer neural networks [28]. It works by approximating
the nonlinear relationship between the input and output by adjusting the internal weight
values [29]. Artificial Neural Networks (ANNs) have several advantages, including their
ability to work with large datasets and to identify complex patterns between predictors and
the target parameter. Additionally, the multiple hidden layers in Deep Neural Networks
(DNNs) increase their efficiency at learning complex features and performing more compli-
cated computational tasks [30]. In Iran, Deep Neural Networks (DNNs) have been applied
to hydrology and climatology in several studies. For example, Sahour and colleagues used a
DNN to model the salinity of groundwater due to seawater intrusion into coastal aquifers in
the Caspian Sea region. [29]. Heydarizad and colleagues examined the primary sources of
moisture that contribute to precipitation in Iran using the FLEXPART model and predicted
precipitation amounts by employing moisture uptake rates as predictors with various
machine learning techniques, including DNNs [31]. Dehghani and colleagues employed a
multi-layer feed-forward artificial neural network (FFANN) to predict hydrological drought
in the Karoon River in southwestern Iran using the Standardized Hydrological Drought
Index (SHDI) time series [32]. Hamidi and colleagues contrasted support vector machines
(SVMs) and artificial neural networks (ANNs) in their ability to model monthly precipita-
tion fluctuations at two synoptic stations in Hamadan, Iran [33]. ANNs have also been used
to simulate the stable isotope signatures of precipitation. Heydarizad and his colleagues
have used an ANNs to predict the stable isotope signatures in precipitation in Bangkok.
They investigated the role of local (wind speed, potential evaporation, vapor pressure, air
temperature, and precipitation amount) and regional parameters (teleconnection indices)
on the stable isotope content in the precipitation. Their study demonstrated that among
the local and regional parameters, precipitation amount and potential evaporation (local)
and the BEST teleconnection index (regional) had dominant roles in controlling the stable
isotope content of the precipitation [13].

In addition to neural networks, other machine learning techniques such as ensemble
learning models, including extreme gradient boosting (XGBoost) and Random Forest (RF),
have also been applied in water resources studies, including isotope hydrology. XGBoost is
an ensemble learning method that uses multiple decision trees to make predictions. It is
based on the principle of gradient boosting, which improves the performance of a model
by iteratively adding new models to the ensemble. Each new model is trained to correct the
errors made by the previous models. XGBoost uses a more regularised model formalization
to control over-fitting, giving it better performance compared to other gradient boosting
techniques. It also has several other features that make it efficient and effective, such
as handling missing values and parallel processing. XGBoost has been widely adopted
in data science competitions and real-world applications due to its high performance
and versatility [34]. This method has been applied in some studies to predict the stable
isotope signatures in precipitation. For example, Nelson and his colleagues used XGboost to
simulate the stable isotope signatures in precipitation at a monthly resolution across Europe.
Their model predictions are accurate enough to be applied for exploration of inter-annual
and long-term variability of both stable isotopes (18O and 2H) in water resources across
Europe [35]. In another study, the stable isotope content in precipitation was simulated
using geostatistical and machine learning methods. Their results showed that machine
learning techniques performed better compared to geostatistical models [36]. RF is another
ensemble learning method that operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees. This algorithm is known for its ease
of use and flexibility in handling both classification and regression problems. In a study
by Erdelyi and colleagues, they compared the performance of different variants of RF
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in predicting the spatial variability of precipitation stable oxygen isotope values across
Europe. The developed models were evaluated based on their ability to reproduce overall
trends and seasonal patterns of precipitation stable isotope variability. The results showed
that all variants were capable of reproducing these trends and patterns, with the RFsp
model yielding the smallest mean absolute error and highest Lin’s concordance correlation
coefficient [37].

The current study has two main goals. Firstly, it aims to study the impacts of local
and regional parameters on stable isotope signatures of precipitation. Secondly, it aims to
simulate the stable isotope signatures in Tehran Metropolitan precipitation using various
regression techniques, including stepwise model, ANNs, RF, and XGboost. The accuracy of
the developed models has been assessed using various methods, and the most accurate
model has been selected among the studied ones. Finally, Bootstrap uncertainty analysis has
been used to estimate the uncertainty in the most accurate developed model. In the second
step, wavelet coherence analysis has been used to characterize the dynamic relationship
between the studied datasets.

In this study, we aim to provide an in-depth examination of stable isotope signatures in
Tehran’s precipitation through the application of ANNs, stepwise regression, XGBoost, RF,
and wavelet coherence methodologies. Our research question is: How can we accurately
simulate the stable isotope signatures of precipitation in Tehran using various machine
learning models? To answer this question and achieve our objectives, we collected and
pre processed data, selected relevant input data, chose appropriate machine learning algo-
rithms or statistical models, trained and evaluated our models using appropriate metrics,
performed cross-validation, chose the best-performing model, performed uncertainty anal-
ysis, and used bivariate wavelet coherence (BWC) and partial wavelet coherence (PWC)
analyses to study the correlation between predictors and target value. This study is innova-
tive because it is the first to simulate the stable isotope signatures of precipitation in the
Middle East region and Iran using various machine learning models and to consider the
role of different machine learning methods in simulating the stable isotope signatures of
precipitation. Additionally, several methods were employed to select the best model and
bootstrap uncertainty analysis was conducted on the most accurate model.

The remainder of this article is structured as follows: In Section 2, we describe the
climate and topography of Tehran. In Section 3, we present our materials and methods,
including data collection and pre processing, the selection of relevant input data, the choice
of machine learning algorithms or statistical models, and the evaluation of our models
using various evaluation metrics. In Section 4, we discuss the results of our analysis,
including the performance of our models and the results of our uncertainty analysis as well
as present our wavelet coherency analysis using BWC and PWC. Finally, in Section 5, we
conclude the implications of our findings.

2. The Climate and Topography of Tehran

Tehran, Iran’s capital, has a population of over nine million people. It is the most pop-
ulous metropolitan area in West Asia, and the Middle East’s most populous metropolitan
area (Figure 1a).
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Figure 1. (a) The location of Tehran in Iran and the location of the GNIP station in Tehran metropol-
itan area. (b) The main water bodies near Iran and the dominant air masses that influence the coun-
try. 

The Köppen climate classification places Tehran in the BSk group with a cold semi-
arid climate [24]. Tehran’s climate is heavily influenced by the geographic features that 
separate the city’s northern (Alborz Mountains) and southern (central desert) halves. 
Mount Damavand located near Tehran, has the highest elevation in Iran and even the 
Middle East region. The weather in Tehran is normally mild during spring and autumn. 
However, extremely cold and wet weather conditions occur in the winter, and hot and 
dry weather occurs during summer [22]. The monthly variations in some climatological 
parameters, including precipitation amount, air temperature, and water vapour pressure 
at the Tehran GNIP station, as well as stable isotope signatures in precipitation, are pre-
sented (Figure 2). During the cold period (November to April), the monthly precipitation 
amount showed higher values, while the water vapour pressure and air temperature 
showed lower values, compared to the warm period (May to October) of the year. The 

Figure 1. (a) The location of Tehran in Iran and the location of the GNIP station in Tehran metropolitan
area. (b) The main water bodies near Iran and the dominant air masses that influence the country.

The Köppen climate classification places Tehran in the BSk group with a cold semi-
arid climate [24]. Tehran’s climate is heavily influenced by the geographic features that
separate the city’s northern (Alborz Mountains) and southern (central desert) halves. Mount
Damavand located near Tehran, has the highest elevation in Iran and even the Middle East
region. The weather in Tehran is normally mild during spring and autumn. However,
extremely cold and wet weather conditions occur in the winter, and hot and dry weather
occurs during summer [22]. The monthly variations in some climatological parameters,
including precipitation amount, air temperature, and water vapour pressure at the Tehran
GNIP station, as well as stable isotope signatures in precipitation, are presented (Figure 2).
During the cold period (November to April), the monthly precipitation amount showed
higher values, while the water vapour pressure and air temperature showed lower values,
compared to the warm period (May to October) of the year. The stable isotope signatures
demonstrated depleted precipitation during the wet period. This was caused by rainout,
which occurred as a result of more intense precipitation events (precipitation amount effect).
However, enriched stable isotope values were observed during precipitation events in
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the warm and dry periods of the year. The dominant enrichment observed in the stable
isotope signatures of precipitation during this period was caused by the negligible relative
humidity in the atmosphere and high air temperature [38].
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Figure 2. Monthly vapor pressure, precipitation amount, air temperature, and stable isotope signa-
tures at the Tehran GNIP station for two periods: 1961–1987 and 2000–2004. Data obtained from the
Global Network of Isotopes in Precipitation (GNIP) database.

Large variations in monthly wind speed and direction, as well as precipitable water
over Iran for the wet and cold as well as warm and dry periods, were observed (Figure 3).
During cold and wet periods, moisture fluxes from the Persian Gulf, Mediterranean Sea,
Arabian Sea, and Caspian Sea are observed toward Iran. The precipitable water also
demonstrated higher values in the western and southwestern parts of Iran over the Zagros
Mountains as well as in the Caspian Sea coastal area (Figure 3). However, during the
dry period in northwestern Iran, precipitable water is primarily controlled by moisture
originating from the Black Sea. Furthermore, moisture from the Caspian Sea has a strong
influence on precipitable water in the Caspian Sea coastal area. The tropical monsoon causes
massive wind systems and moisture transfer in the Indian Ocean and Arabian Sea. This
tropical monsoon occasionally influences the southwestern part of Iran and causes large
precipitation events (Figure 3). During cold and wet periods Tehran, receives a significant
portion of its precipitation from Mediterranean, Maritime Polar (MP), Continental Tropical
(Ct), and Continental Polar (CP) air masses. However, monsoon precipitation sometimes
influences the southeastern part of Iran via Maritime Tropical (MT) air mass during the dry
and hot periods (Figure 1b).
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Figure 3. The monthly variations of wind speed, wind direction, and precipitable water over Iran.

3. Materials and Methods

During this investigation, stable isotope data for precipitation in Tehran were obtained
from the GNIP station located in 35◦40′48′′ N and 51◦19′12′′ E at an elevation of 1200 m [39].
Stable isotope signatures in precipitation of Tehran have been sampled for two periods:
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1961 till 1987 and 2000 till 2004 on a monthly basis. The statistical characteristics of the
studied parameters were analysed and are presented in Table 1.

Table 1. Statistical characteristics of parameters in the analysis of Tehran precipitation.

Parameter
Min Max Mean Std. Deviation Variance

Statistic Statistic Statistic Std. error Statistic Statistic

δ18O (VSMOW‰) −15.34 9.30 −4.59 ±0.43 4.72 22.28
δ2H (VSMOW‰) −114.20 55.80 −26.77 ±2.93 32.28 1.04

Precipitation (mm) 1.00 117.00 23.71 ±2.06 22.69 514.80
Temperature (◦C) −4.10 30.70 13.03 ±0.74 8.23 67.82

Vapor pressure (Pa) 1.10 28.70 6.47 ±0.28 3.05 9.32
NAO −2.47 2.16 −0.23 ±0.089 0.97 0.95
BEST −2.46 1.63 0.06 ±0.68 0.75 0.56
SOI −2.01 2.85 −0.07 ±0.082 0.90 0.82
IOD −0.05 0.94 0.12 ±0.024 0.26 0.07
QBO −24.18 14.16 −2.28 ±0.98 10.75 115.50

The procedure for precipitation sampling for stable isotope analysis presented by
GNIP has been used in this study [40]. After it rained, the precipitation samples were
immediately transferred from the rain gauges into 1 L air-tight high-density polyethylene
bottles to reduce evaporation. The bottles were then stored in a refrigerator, eliminating
the need for additional substances like paraffin. The rain gauges were designed to resist
evaporation and accurately measure precipitation amount. At the end of each month, the
precipitation in the monthly bottles was shipped to a laboratory for stable isotope analyses.

Stable isotopes in precipitation samples have been analysed in several laboratory
across the world including the university of Copenhagen (Denmark), International Atomic
Energy Agency (IAEA), and AGH- University of Science and technology (Krakow, Poland)
using a Los Gatos Research (LGR) Liquid Water Isotope Analyzer or a Delta-Plus XP isotope
ratio mass spectrometer (IRMS) (Thermo Finnigan, Germany). The laboratories calibrated
their stable isotope measuring instruments with VSMOW (Vienna Standard Mean Ocean
Water) to avoid errors. Precipitation’s stable isotope values are expressed in delta notation
(δ), which represents the sample’s relative deviation from the Vienna Standard Mean Ocean
Water (VSMOW) and is determined using Equation (1):

δ = 1000 (RSample − RVSMOW)/RVSMOW (1)

In this case, R represents the ratio of either 2H/H or 18O/16O. For the majority of
samples, the analytical standard uncertainties were ±0.1 ‰ for δ18O and ±1 ‰ for δ2H.

3.1. Selection of Predictors for Stable Isotope Simulation

In this stage, Local parameters such as precipitation amount, air temperature, and
water vapor in Tehran were obtained from the GNIP network, while regional parameters
including IOD, NAO, BEST, SOI, and QBO teleconnection indices were obtained from the
National Oceanic and Atmospheric Administration (NOAA) website [41].

3.2. Simulation Models Applied to Predict Stable Isotopes Content

In this stage, the simulation models applied to predict stable isotope content are de-
scribed. Several models were developed, including stepwise regression, ANNs (including
DNN and SNN), XGBoost, and RF. Stepwise modelling is a useful tool for developing
statistical models that accurately predict outcomes or responses while minimizing the num-
ber of predictors required [4,19,20,24]. This technique is used to choose the most suitable
predictor variables for a multiple linear regression model, which is generally expressed as
Equation (2):

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε (2)
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where y represents the dependent variable, x1, x2, . . . , xk are the independent variables, β0,
β1, β2, . . . , βk are the coefficients for the independent variables, and ε is the error term.

In addition to the stepwise technique, more advanced machine learning techniques,
including ANNs, RF, and XGboost, have been applied. The ability of ANNs to automatically
identify and extract features from input data is one of their primary advantages. ANNs, as
opposed to traditional statistical models, can learn features directly from the input data.
A simple shallow artificial neural network (SNN) with only one hidden layer and a deep
neural network (DNN) were used to predict the stable isotope signatures of precipitation.
To apply ANNs, it is highly important to have sufficient amount of data to train the
model and to select appropriate neural network architecture that is capable of accurately
representing the problem being simulated [42]. For the DNN model, the main parameters
were as follows: The number and size of the hidden layers were specified by the ‘hidden’
parameter, which was set to two hidden layers with 150 neurons each. The number of
training epochs was specified by the ‘epochs’ parameter, which was set to 5000. The
activation function used was specified by the ‘activation’ parameter, which was set to
‘Rectifier’. However, for the SNN model, there was only one hidden layer. The main
parameters were as follows: The number of units in the hidden layer was specified by
the ‘size’ parameter, which was set to 150. The maximum number of iterations for the
optimization algorithm was specified by the ‘maxit’ parameter, which was set to 5000.

In addition to ANNs, the RF model has also been applied to simulate the stable isotope
signatures in precipitation. Similar to neural network techniques, certain requirements
must be met to use RF. In RF model, a well-defined problem with labeled data will be
needed to train the model [43]. The data should have some actual signal in the features so
that the model can perform better than random guessing would, and it is also important
to have a sufficient amount of data to train the model [44]. For the RF model, we used
the train function from the caret package to train our model. The main parameters used
were as follows: the model type was specified by the ‘method’ parameter, which was
set to ‘rf’ for random forest. The performance metric used was specified by the ‘metric’
parameter, which was set to ‘accuracy’. The tuning grid for the hyperparameters was
specified by the ‘tuneGrid’ parameter, which was set to a grid of values for the mtry
parameter ranging from 1 to 10. The resampling method used for model selection was
specified by the ‘trControl’ parameter, which was defined by the trControl object. The
computation of variable importance was specified by the ‘importance’ parameter, which
was set to TRUE. The minimum size of terminal nodes was specified by the ‘nodesize’
parameter, which was set to 14. The number of trees growing was specified by the ‘ntree’
parameter, which was set to 300. In addition, the data should have some actual signal in
the feature so that the model can perform better than random guessing. Finally, the basic
requirements for using both random forest and XGBoost are similar. However, there are
some differences between these two algorithms in terms of their implementation and the
specific details of how they work. For instance, XGBoost is based on gradient boosting,
while RF is based on bagging. This means that there may be some differences in terms of
the hyperparameters that need to be tuned and the specific techniques used to improve
the performance of the model [45]. For the XGBoost model, a max_depth of 9, an eta of
0.1, a rate_drop of 0.01, a skip_drop of 0, a min_child_weight of 12, a subsample of 0.85, a
colsample_bytree of 0.9, and a gamma of 5 were used. The objective was set to reg: linear
and the eval_metric was set to rmse. The number of rounds for tuning was set to 1500.

3.3. Repeated v-Fold Cross-Validation

After creating the model with the help of training the data, its accuracy is evaluated
by using the best dataset. To validate the machine learning methods, a common technique
called cross-validation (v-fold variant) using rsample package in R language is used, which
involves dividing the datasets in training and testing sets. The crucial concern when
dividing data into training and testing sets is that the distribution of the test datasets may
not be representative of the entire dataset [46]. In v-fold verification, the dataset is randomly
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partitioned in the v non-overlapping splits or subsets to divide data into training and test
sets. Each split i (1 ≤ i ≤ v) is used as a validation set, while the model is trained on all
other splits except for i. This process is repeated v times to ensure that every split is exactly
once as a validation set [46]. A common approach is to use 5 or 10 repetitions of V-fold
cross-validation, although some studies may use more or fewer repetitions depending
on their specific needs [46]. Ultimately, the choice of the number of repetitions should be
guided by a balance between computational feasibility and the desired level of accuracy
and robustness in the estimates of model performance. Finally, the evaluation metric is
averaged across all the v iteration to obtain an estimate of the model’s performance on
unseen data.

It is possible to have a noisy estimate using v-fold cross-validation [47]. This can
happen if the data are not representative of the population or if there is high variance in
the data. In addition, if the sample size is small, there maybe high degree of variability in
the estimates [47]. To avoid noisy estimates using v-fold cross-validation, the number of
folds can be increased or a different type of cross-validation method such as leave-one-out
cross-validation can be applied. Additionally, the sample size can be increased or the
variance in the data can be reduced by removing outliers or transforming variables. Finally,
it is crucial to ensure that the data used for training and testing are representative of the
population and that any biases are considered [47].

3.4. Evaluation Procedure and Uncertainty Analysis of the Developed Model

To determine the most accurate model among the studied ones, several indicators
such as coefficient of determination (R2), root-mean-squared error (RMSE), Nash–Sutcliffe
efficiency (NSE), Akaike information criterion (AIC), and Bayesian information criterion
(BIC) were used to validate the accuracy of the developed models. R2, NSE, and RMSE can
provide information about how well the model fits the data, while AIC and BIC can provide
information about the relative quality of different models while taking into account their
complexity. By considering multiple measures, the most accurate model can be identified.
After determining the most accurate model according to the RMSE, R2, AIC, NSE, and
BIC methods, bootstrap uncertainty analysis was applied to assess the robustness of its
predictions. This allowed for the estimation of the uncertainty in the chosen model and
provided a more comprehensive evaluation of its performance.

3.5. Wavelet Coherency Analyses of Studied Parameters

After identifying the dominant predictors that influence the stable isotope signatures
of precipitation, BWC and PWC analyses were used to investigate the multi-scale associa-
tions between the stable isotope signatures of precipitation and the dominant predictors
influencing it. Firstly, BWC analysis was conducted, considering the role of each dominant
predictor on the stable isotope signatures of precipitation. BWC is a measure used to study
the correlation between two variables at different frequencies or scales over time. This
method can help to determine the relationship and patterns between two variables whose
correlation might not be clear when observing them separately [48]. It is noteworthy to
mention that interrelationships exist among the dominant predictors influencing the BWC
analysis. To unveil these relationships between the predictors, the concurrent or partial role
of various dominant predictors in the stable isotope signatures of precipitation was studied
using PWC analysis [49,50]. The coherence analysis and relationships between the various
parameters were quantified using average wavelet coherence (AWC) [48,51].

In this study, various packages in the R language [52] were used to develop models,
perform validation studies using R2, RMSE, NSE, AIC, and BIC, conduct uncertainty
analysis using bootstrap, and perform wavelet coherence analysis. Details of the specific
packages used are provided at the end of this manuscript.
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4. Results and Discussion
4.1. Selection of the Optimum Predictors

In this section, the selection of the optimum predictors for simulating stable isotope
signatures in Tehran precipitation is described. Several parameters that may influence
stable isotope signatures were analysed for potential correlation using Pearson correlation
analysis and Spearman’s rank correlation at a 95% confidence level. The results showed
that temperature and the amount of precipitation have notable influence on stable isotope
(δ18O and δ2H) signatures in precipitation, while the role of other parameters, including
teleconnection indices, is negligible (Figure 4). The precipitation amount shows a negative
correlation with stable isotope signatures due to the precipitation amount effect, while
temperature shows a positive correlation with stable isotope signatures. In moderate- and
high-latitude stations like Tehran, an increase in temperature causes more intense evapora-
tion, which results in raindrops accumulating heavier isotopes. A moderate correlation has
been observed between different input parameters such as a negative correlation between
temperature and precipitation as well as a positive correlation between vapor pressure
and temperature. As temperature increases, the air can hold more water vapor, which
means that the saturation vapor pressure also increases. Among teleconnection indices,
only SOI and BEST show a strong negative correlation. To prevent multicollinearity, the
teleconnection index BEST was removed from the list of predictors.
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4.2. The Impacts of the Regional and the Local Components on the Stable Isotope Signatures of
Precipitation in Tehran

The importance of the dominant local and regional components influencing precip-
itation in Tehran was determined using the ANNs’ models (Figure 5). The results of the
SNN model demonstrated that the dominant factors affecting the stable isotope signa-
tures of precipitation were air temperature and precipitation amount. However, regional
parameters (teleconnection indices) played a minor role. On the other hand, the DNN
model outputs depicts the dominant impacts of vapour pressure, air temperature, and
precipitation amount on the stable isotope signatures of precipitation, whereas SOI, air
temperature, and precipitation amount played dominant roles for δ2H signatures. The sig-
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nificant role of local parameters, such as the precipitation amount and air temperature that
predominantly control the stable isotope signatures of precipitation, has been investigated
in some studies [6,53–57]. However, the negligible role of teleconnection indices (regional
parameters) that control stable isotope signatures of precipitation has been mentioned in
other studies [21,22].
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4.3. Simulation of the Stable Isotope Signatures in Precipitation by Various Machine Learning
Models and Their Validation

The stable isotope signatures in Tehran precipitation were simulated using various ma-
chine learning models, including DNN, SNN, ensemble learning models such as XGBoost
and RF, and stepwise regression methods. The results showed that the DNN and SNN
models had low R2 values and high RMSE, NSE, AIC, and BIC values, indicating that they
were not capable of accurately predicting stable isotope signatures. In contrast, models
based on stepwise techniques were able to simulate stable isotope signatures with higher
levels of accuracy. Among the ensemble learning models, XGBoost is the most accurate due
to its highest R2 values and lowest RMSE, NSE, AIC, and BIC values, while the RF model
had the lowest accuracy (Table 2). The low accuracy of some of the developed models may
be due to overfitting, which can occur if the model is too complex and captures noise in the
training data, or if the training set is too small.
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Table 2. Evaluation of simulated δ18O and δ2H signatures in Tehran precipitation using the various
evaluation metrics (AIC, BIC, R2, RMSE, and NSE).

Isotope Method XGboost DNN SNN Random
Forest Stepwise

δ18O (VS-
MOW‰)

AIC 517.44 605.20 614.04 680.12 531.42
BIC 531.42 618.99 628.02 694.09 545.10
R2 0.84 0.69 0.65 0.34 0.80

VNS 0.83 0.68 0.64 0.33 0.80
RMSE 1.97 2.83 2.93 3.85 2.08

δ2H (VS-
MOW‰)

AIC 965.57 1062.39 1083.06 1148.70 972.14
BIC 979.55 1076.37 1097.04 1162.75 986.12
R2 0.86 0.63 0.62 0.32 0.85

VNS 0.85 0.62 0.62 0.31 0.84
RMSE 12.54 18.72 20.39 26.75 12.89

Plotting real vs. simulated stable isotope signatures in precipitation shows good
matching in both models developed by XGboost for δ18O and δ2H (Figure 6). Other models,
such as ANNs and stepwise, also show good matching in their simulations. However, the
simulation made by the RF model shows the lowest accuracy level and very low matching.
The results obtained during this study are in agreement with previous studies that tried
to simulate stable isotope signatures using machine learning techniques. For instance, the
high accuracy of the XGboost model was also observed in the study of Nelson and his
colleagues [35] in Europe. In the study of Erdelyi and colleagues [37], the RF model showed
better accuracy compared to this study. In the study of Heydarizad and colleagues [13],
the ANNs showed approximately the same accuracy as this study when simulating the
stable isotope content of precipitation in Bangkok. The stepwise model was also been
applied to simulate the stable isotope signatures of precipitation in some places such as
the Middle East region [24] and showed high accuracy like the stepwise model in the
current study. Since the stable isotope data in all these studies were mainly provided by
GNIP, the slight difference observed in the accuracy of the developed model may have
been due to differences that exist in the structure of the isotope datasets in these stations.
Although the stable isotope signatures in precipitation predicted by the XGboost model
have appropriate levels of precision, higher accuracy can also be achieved by improving
the number of predictors involved in the models. Adding new predictors to the models,
such as cloud microphysical parameters, cloud-top temperature (CTT), cloud-top pressure
(CTP), atmospheric stability (ω), and outgoing long-wave radiation (OLR), can increase
accuracy [21]. However, these parameters are not available for the entire stable isotope time
series in Tehran from 1961–2005 and only cover small parts of the stable isotope dataset.
Applying these parameters in models simulating stable isotope signatures of precipitation
leads to a significant increase in model accuracy. In addition, focusing on hybrid algorithms,
such as machine learning wavelet transform algorithms or hybrid reinforcement and deep
learning algorithms, can also help to achieve more accurate models when simulating the
stable isotope signatures of precipitation.
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Figure 6. Comparison between measured and simulated stable isotope signatures in Tehran GNIP
station using R2 values.

The level of uncertainty in the simulations of the XGboost model, which was the most
accurate model in this study, was determined using the bootstrap technique. A 95% confi-
dence interval was established for the simulated data, providing a better understanding of
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the range of estimates associated with the model. Figure 7 displays the lower and upper
bounds of the 95% confidence interval for stable isotope signatures in precipitation in
Tehran. The majority of the simulated stable isotope data for both δ18O and δ2H fell within
the confidence intervals, indicating that the XGboost model accurately predicted the stable
isotope values. However, during several short periods, the simulated stable isotope data
exceeded the upper confidence interval bound, indicating that the model underestimated
extremely the high values, or fell below the lower confidence interval bound, indicating
that the model overestimated the extremely low values.
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4.4. Studying the Multiscale Coherence Analysis of Stable Isotope Signatures and Climate
Parameters in Tehran Precipitation

This section explores the relationship between stable isotope signatures and climate pa-
rameters in Tehran precipitation using multiscale coherence analysis. Continuous wavelet
transform analysis (CWT) with the Morlet wavelet is applied to investigate the variations
observed in the dominant predictors obtained by the ANNs models and stable isotope
signatures. Figure 8 presents the CWT spectra of the dominant predictors and target
variable, with black contour lines indicating statistically significant wavelet power at 5%
significance levels.
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(h) IOD, and (i) QBO.

The CWT analysis demonstrated a notable periodicity of 6–8 months, but only for
the temperature and QBO indices time series. However, periodicity in other time series
in this study was very localised in time, indicating the notable role played by local and
temporary climatological conditions in the stable isotope signatures of precipitation. The
wavelet coherence between the dominant predictors and the stable isotope signatures of
precipitation was examined using BWC and PWC analyses.

The BWC analysis results are shown in Figure 9, where the BWC coherence relationship
mainly ranges from 16 to 32 months for both δ18O–temperature and δ2H–temperature pairs.
For δ18O–precipitation and δ2H–precipitation pairs, coherence relations are observed that
range from 4 to 8 months, extending up to 16 months for the δ18O–precipitation pair.
However, the coherence relation for δ18O–vapor pressure and δ2H–SOI pairs is intermittent
and localised in the time domain. In addition to the dominant long 16–32-month scale and
intra-annual scale of 4–8 months of coherence observed between the studied pairs, seasonal
scale (less than 4 months) coherence has also been observed. However, these seasonal
coherence relations are negligible and intermittent for the studied pairs. The coherence
relation for δ18O–vapor pressure, as well as stable isotopes and teleconnection indices pairs
such as δ18O–NAO, δ18O–IOD, δ18O–QBO, δ2H–NAO, δ2H–IOD, δ2H–SOI, and δ2H–QBO
pairs, is highly intermittent and localised in the time domain.



Water 2023, 15, 2357 17 of 23Water 2023, 15, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 9. BWC analysis of the main predictors and the stable isotope (δ18O and δ2H) signatures. The 
upper panels demonstrate the BWC analysis of δ18O with (a) precipitation amount, (b) vapor pres-
sure, (c) temperature, (d) IOD, (e) NAO, and (f) QBO, while the lower panels show the BWC analysis 
of δ2H with (g) precipitation amount, (h) SOI, (i) temperature, (j) IOD, (k) NAO, and (l) QBO. 

To determine which dominant predictor has the strongest influence on the stable iso-
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Figure 9. BWC analysis of the main predictors and the stable isotope (δ18O and δ2H) signatures.
The upper panels demonstrate the BWC analysis of δ18O with (a) precipitation amount, (b) vapor
pressure, (c) temperature, (d) IOD, (e) NAO, and (f) QBO, while the lower panels show the BWC
analysis of δ2H with (g) precipitation amount, (h) SOI, (i) temperature, (j) IOD, (k) NAO, and (l) QBO.

To determine which dominant predictor has the strongest influence on the stable
isotope signatures, the average wavelet coherence (AWC) was conducted. The AWC values
obtained for BWC analysis for the studied datasets have been tabulated in Table 3. Studying
the values of AWC shows that δ18O–temperature and δ2H–temperature pairs shows the
highest AWC values.
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Table 3. The values of AWC calculated for BWC and PWC analysis between the stable isotope (δ18O
and δ2H) signatures in precipitation and the main predictor variables. (P stands for precipitation
amount, T stands for temperature, and V stands for vapor pressure).

Combination AWC Combination AWC

PWC 18O 2H BWC 18O 2H

Temperature
18O-T-P/2H-T-P 0.45 0.45 18O-T 0.63
18O-T-V/2H-T-V 0.43 0.42 2H-T 0.55

Precipitation
18O-P-T/2H-P-T 0.35 0.3 18O-P 0.62
18O-P-V/2H-P-V 0.44 0.37 2H-P 0.50
Vapor pressure

18O-V-P 0.44 18O-V 0.53
18O-V-T 0.32

SOI teleconnection
18O-NAO-P 0.35 18O-NAO 0.33
18O-NAO-T 0.44

18O-SOI-P 0.33 18O-SOI 0.30
18O-SOI-T 0.31
18O-IOD-P 0.37 18O-IOD 0.31
18O-IOD-T 0.44
18O-QBO-P 0.38 18O-QBO 0.32
18O-QBO-T 0.46
2H-NAO-P 0.30 2H-NAO 0.33
2H-NAO-T 0.32

2H-SOI-P 0.42 2H-SOI 0.42
2H-SOI-T 0.31
2H-IOD-P 0.31 2H-IOD 0.31
2H-IOD-T 0.32
2H-QBO-P 0.32 2H-QBO 0.33
2H-QBO-T 0.42

In addition to BWC, PWC analysis was also conducted on the studied time series. This
analysis is particularly useful in cases where the target value is influenced by multiple
predictors as it can determine the partial correlation between the target parameter and
each predictor while eliminating the influence of other predictors. Figures 10 and 11
display the PWC spectrum for δ18O and δ2H stable isotopes. The highest AWC values were
observed in the relationship between δ18O and temperature and δ2H and temperature,
with a periodicity of 16–32 months. In all the studied cases, AWC values of PWC analysis
demonstrated lower values compared to the corresponding BWC analysis (Table 3). This
confirms the existence of an interrelationship of the dominant predictors in stable isotope
signatures of precipitation. In general, predictors normally influence each other and the
target variable.
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ing precipitation amount), (h) δ18O vs. IOD (excluding precipitation amount), (i) δ18O vs. QBO (ex-
cluding precipitation amount), (j) δ18O vs. NAO (excluding temperature), (k) δ18O vs. IOD (exclud-
ing temperature), and (l) δ18O vs. QBO (excluding temperature). 

Figure 10. PWC analysis between δ18O signatures in Tehran metropolitan precipitation and the main pre-
dictor variables: (a) δ18O vs. precipitation amount (excluding temperature), (b) δ18O vs. precipitation
amount (excluding vapor pressure), (c) δ18O vs. temperature (excluding precipitation amount),
(d) δ18O vs. temperature (excluding vapor pressure), (e) δ18O vs. vapor pressure (excluding Precipita-
tion amount), and (f) δ18O vs. vapor pressure (excluding temperature), (g) δ18O vs. NAO (excluding
precipitation amount), (h) δ18O vs. IOD (excluding precipitation amount), (i) δ18O vs. QBO (exclud-
ing precipitation amount), (j) δ18O vs. NAO (excluding temperature), (k) δ18O vs. IOD (excluding
temperature), and (l) δ18O vs. QBO (excluding temperature).
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pact. The dominant role of temperature in stable isotope signatures of precipitation has 
also been confirmed by models developed by machine learning techniques. The dominant 
role of temperature on stable isotope signatures of precipitation in semi-arid and arid re-
gions in middle and high latitudes has been mentioned in previous studies such as 
[3,4,23,38]. This is because the humidity in the atmosphere of these regions is low and 
temperature rises in a dominant manner, increasing the evaporation rate (secondary evap-
oration). This has a direct influence on raindrops and causes enrichment in the stable iso-
tope signatures of precipitation.  

  

Figure 11. PWC analysis between δ2H signatures in Tehran metropolitan precipitation and the main
predictor variables: (a) δ2H vs. precipitation amount (excluding temperature), (b) δ2H vs. precipitation
amount (excluding vapor pressure), (c) δ2H vs. temperature (excluding precipitation amount),
(d) δ2H vs. temperature (excluding vapor pressure), (e) δ2H vs. vapor pressure (excluding precipi-
tation amount), (f) δ2H vs. vfapor pressure (excluding temperature), (g) δ2H vs. NAO (excluding
precipitation amount), (h) δ2H vs. IOD (excluding precipitation amount), (i) δ2H vs. QBO (exclud-
ing precipitation amount), (j) δ2H vs. NAO (excluding temperature), (k) δ2H vs. IOD (excluding
temperature), and (l) δ2H vs. QBO (excluding temperature).

According to BWC and PWC analysis, temperature is the dominant predictor influenc-
ing the stable isotope signatures of precipitation, while precipitation has a lower impact.
The dominant role of temperature in stable isotope signatures of precipitation has also
been confirmed by models developed by machine learning techniques. The dominant role
of temperature on stable isotope signatures of precipitation in semi-arid and arid regions
in middle and high latitudes has been mentioned in previous studies such as [3,4,23,38].
This is because the humidity in the atmosphere of these regions is low and temperature
rises in a dominant manner, increasing the evaporation rate (secondary evaporation). This
has a direct influence on raindrops and causes enrichment in the stable isotope signatures
of precipitation.
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5. Conclusions

In this study, it was found that local parameters, such as temperature and precipitation
amounts, have a dominant influence on the stable isotope signatures in precipation around
Tehran, while most regional parameters, such as teleconnection indices, play minor roles.
It was also shown that the ensemble machine learning algorithm XGboost outperforms
other machine learning models in simulating the stable isotope signatures in precipitation.
These findings contribute to the understanding of the factors that influence stable isotope
signatures in precipitation and demonstrate the potential of machine learning algorithms
for simulating these signatures.

The results of this study have several implications for future research. First, they
suggest that the focus of future studies could be turned to developing hybrid algorithms,
such as machine learning wavelet transform algorithms or hybrid reinforcement and deep
learning algorithms, to achieve more accurate models. Second, they indicate that the
accuracy of the models could be improved by increasing the number of input parameters
and considering microphysical parameters or satellite-derived parameters. Third, they
suggest that changes to the structure of the model, such as using leave-one-out cross-
validation (LOOCV) instead of simple v-fold or k-fold cross-validation, could also improve
model performance.

In conclusion, valuable insights into the factors that influence stable isotope signa-
tures in precipitation were provided by this study and the potential of machine learning
algorithms for simulating these signatures was demonstrated. The results suggest several
pathways via which future work can further improve the accuracy of these simulations.
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