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Abstract: Soil moisture has a great influence on vegetation growth and survival in arid and semi-
arid regions. Information about deep soil moisture dynamics is vital for restoring vegetation and
improving land management on the water-limited Loess Plateau. The spatiotemporal dynamics
and temporal stability of deep soil moisture (at a soil depth of 600 cm) were observed in situ under
Caragana korshinskii shrubs that had various stand ages (named CK-10yr, CK-20yr and CK-35yr) in
the Loess hilly region of China. The results showed that under C. korshinskii, soil moisture generally
decreased as the stand age rose. Meanwhile, its moisture was consistent with precipitation variation,
and an obvious time lag in soil moisture was found compared to that in precipitation during the
entire growing season. Along the soil profile, a transition belt linking the shallow with deep soil
moisture occurred at a 200 cm soil depth in different slope positions and aspects. At the slope scale,
both the slope aspect and slope position significantly affected soil moisture variation in the areas with
planted C. korshinskii shrubs, experiencing a decreasing trend from semi-shady slopes to sunny ones
and from lower positions to upper ones. However, the variance in soil moisture between different
positions and slope aspects was small. For the slope aspect, except for CK-20yr, the different-aged
C. korshinskii shrubs had higher soil moisture content on sunny slopes than on semi-shady slopes
at the upper 0–200 cm soil depth, while the opposite was true at the 200–600 cm soil depths. For
slope positions, the soil moisture variation was small between the 0 and 200 cm soil depths and larger
between the 200 and 600 cm soil depths. Within the whole profiles, the representative depth under the
C. korshinskii shrubs for the soil moisture content was mainly concentrated between the 400–500 cm
soil depths, on average, showing a gradual deepening trend with increasing restoration age. In
summary, the findings indicate that natural recovery with low-water consumption grasslands and
manual management measures, such as thinning and mowing, should be strengthened to minimize
the high soil moisture consumption rates that occur in a healthy soil moisture environment and
maintain sustainable vegetation restoration.

Keywords: spatiotemporal dynamics; temporal stability; soil moisture content; Caragana korshinskii
shrub; Loess hilly region

1. Introduction

Soil moisture is recognized as a basic resource for the sustainable development of
terrestrial ecosystems and can even determine the recovery time of ecosystems after drought
disturbance [1]. As the main source of plant water on the Loess Plateau, soil moisture is also
the main limiting factor in maintaining ecosystems in arid and semiarid areas. It plays a
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central and important role in the soil-vegetation-atmosphere system, as well as hydrological,
ecological and biological processes [2–4]. However, inappropriate afforestation efforts in
water-limited regions have had negative effects on soil moisture, such as large-scale soil
desiccation and groundwater storage reduction [5,6], which have seriously affected the
land water cycle process and constrained the sustainable growth of plants on the Loess
Plateau [7,8]. Therefore, studying the spatial and temporal dynamics of soil moisture as
well as its eco-hydrological processes in planted plantations is essential for ensuring the
stability of terrestrial ecosystems.

Recent studies have focused on the spatiotemporal dynamics and spatial variability
in soil moisture, from in situ studies to spatial monitoring, focusing on topics such as
influencing factors of the spatiotemporal variability in soil moisture and its scale influence
during the whole growing season [9]. In addition to the obvious temporal dynamics of soil
moisture with precipitation, the soil moisture’s distribution varies little as time goes by
spatially, and at a given measured position, it can approximatively represent the average
values over an entire profile, which is called the temporal stability of soil moisture [10] and
it provides convenient conditions to predict the soil moisture as a whole [11–14]. Since this
method was proposed, it has been widely used, especially in areas with relatively scarce
water resources on the Loess Plateau [15,16]. However, relevant studies largely concentrate
on shallow soil moisture, and few studies have focused on the temporal stability of soil
moisture in deeper soil profiles. Thus, knowledge of the spatiotemporal dynamics and
temporal stability of deep soil moisture at the slope scale can provide an effective basis
for selecting representative sample points and sampling depths for regional soil moisture
monitoring. It is also of special significance for managing soil water resources in both arid
and semiarid regions.

Owing to natural factors as well as anthropogenic ones, the Loess Plateau is one of
the most severely erodible places among all globe areas [17]. Thus, the government has
conducted numerous efforts since the 1950s to restore the fragile ecological environments
in this area, including the Grain for Green Program, the Natural Forest Protection Program,
the Beijing-Tianjin Sandstorm Source Control Project, and the Three-North Shelter Forest
Program [18]. Following the implementation of these afforestation projects, most of the
cultivated lands on the steep slopes have been converted into forests, shrubs and grasses.
Because of its adaptability to high temperatures and drought, Caragana korshinskii has
become the main shrub type used for constructing plantations on the Loess Plateau. By
2017, the planted area of C. korshinskii shrubs on the Loess Plateau was approximately
1.33 × 106 hm2, and this shrub was widely distributed in Gansu, Ningxia, northwestern
Shaanxi and northwestern Shanxi [19,20]. A large number of studies indicate that C.
korshinskii plays ecological roles in soil and water conservation, sand fixation and wind
breaking in this area [21,22]. However, due to their well-developed root systems, C.
korshinskii shrubs consume more water from deep soil layers than from other layers, which
exacerbates the deterioration of the soil moisture environment, leading to severe soil
desiccation and a gradual decline in C. korshinskii plantations [3,23,24]. Thus, it is essential
to analyze the spatiotemporal dynamics and temporal stability of soil moisture to better
understand the relationships between C. korshinskii shrub growth and the soil moisture
environment. The findings of this study are important for policy makers and scientific
researchers.

2. Materials and Methods
2.1. Introduction to the Studied Area

The field site (111.77◦ E, 38.98◦ N, 1448 m a.s.l.), named the Zhangjiaping Forestry
Center, is situated in the northern part of the Loess Plateau in Shanxi Province, China
(Figure 1). This region is dominated by a typical continental monsoon climate, with warm
and wet summers and dry and cold winters [25]. According to the records of the local
meteorological stations, the average annual temperature and precipitation are 4.8 ◦C and
478.5 mm, respectively. A large proportion of the precipitation (60–70%) falls between June
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and September, with high-intensity and short-duration storms, and its annual variability
is large, especially in the growing seasons (Figure 2). In addition, the mean annual pan
evaporation is relatively high, accounting for approximately 1784.4 mm. The area belongs
to a typical hilly gully region, with elevations ranging from 1397 to 1533 m. The soil in
the region has low fertility, with 1.25% clay, 33.1% silt and 65.65% sand [26]. The current
land use types are rain-fed croplands, forestlands, shrublands and native grasslands. The
dominant vegetation types are Caragana korshinskii Kom., Populus simonii Carr., and Pinus
tabuliformis Carriere. Moreover, grasslands have naturally grown on the land after croplands
were abandoned. The main characteristics of the sampling sites are shown in Table 1.
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Figure 1. Locations of the studied area and sample sites. Red points indicate the four sampling sites,
i.e., CK-10yr (P1), CK-20yr (P2), CK-35yr (P3) and the abandoned land (P4).
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Figure 2. Monthly precipitation and mean monthly temperature of the study area in 2013 and 2016.
The 60-year mean average precipitation and temperature are the mean values during 1957–2016.

Table 1. General characteristics of sampling sites under Caragana korshinskii shrubs of different ages.
The abandoned land was considered to represent the background SMC.

Field Conditions CK-10yr CK-20yr CK-35yr Abandoned
Land

Longitude (◦) E 111.771 E 111.773 E 111.774 E 111.776
Latitude (◦) N 38.980 N 38.983 N 38.981 N 38.982
Altitude (m) 1445.02 1429.04 1441.85 1430.03

Plant height (m) 0.86–1.25 1.17–2.02 1.56–2.35 — —
Crown diameter (m) 1.21 × 1.55 1.80 × 2.34 2.00 × 2.85 — —

Slope gradient (◦) 7 5 6 5
Plant number 7500 7500 7500 — —

2.2. Experimental Design and Soil Sampling

At the experimental field station, continuous soil moisture observation experiments
were conducted in C. korshinskii shrub plots with different stand ages. In this paper, two
different precipitation years, 2013 (668 mm during the growing season) and 2016 (503.9 mm
during the growing season), were selected to analyze the temporal dynamic process of soil
moisture. The annual precipitation during the two years is shown in Figure 2. To prevent
the influence of soil texture and extra environmental factors, all C. korshinskii sampling
sites (namely, CK-10yr, CK-20yr and CK-35yr, which represented 10-year-old C. korshinskii,
20-year-old C. korshinskii and 35-year-old C. korshinskii, respectively) and the control plot
(namely, abandoned land) were located at similar elevations for the same slope position
and at a distance of less than 500 m from each site (Figure 1). Each sampling period
lasted between 2 and 3 days, and no precipitation occurred during the sampling period
to avoid the influence of precipitation on the soil moisture. The restoration years of the
C. korshinskii stands were obtained from the planting records of Zhangjiaping Forestry
and by asking local residents [25]. A GPS receiver (5 m precision) was used to locate the
sampling sites with longitude, latitude and altitude. A geological compass was used to
determine the slope gradient, position and aspects. Climate data, such as temperature and
precipitation, were collected from the national weather station two kilometers away from
the experimental station.
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Soil samples were gathered from a depth of 600 cm at each site at an interval of 10 cm
using a soil auger (5 cm in diameter). In total, 60 samples were collected from one site.
After collection, the gravimetric soil moisture content was determined immediately by
means of the oven-drying method (105 ◦C to a constant weight). Subsamples of disturbed
soil were air-dried and sieved through a 1-mm mesh to analyze soil particle composition
by laser diffraction with a Mastersizer 3000 (Malvern Instruments, Malvern, England).
Undisturbed soil cores were also gathered from a depth of 100 cm using cutting rings
(5 cm in diameter, 5 cm in height) to measure soil bulk density (BD) and other physical
characteristic parameters.

In addition, a vegetation survey was performed during the vigorous growth period
(July to August), and the plant height and crown width of C. korshinskii plantations with
different stand ages were measured. Since all of the C. korshinskii shrubs were planted,
with uniform plant spacing and row spacing, the measured number of plants was the same
(7500 plants/ha).

2.3. Data Analysis

The following calculates the gravimetric soil moisture content (SMC):

SMC =
G1 − G2

G2 − G
∗ 100% (1)

where SMC serves as the gravimetric soil moisture content (%), G represents the weight
of the empty aluminum box (g), G1 and G2 are the total weight before and after drying,
respectively (g).

Relative difference (RD) was applied to explore the temporal stability of deep soil
moisture under C. korshinskii shrubs of various stand ages [26]. Within a certain point,
the relative difference value (RDij) of the ith soil layer at the jth period was calculated as
follows:

RDij =
SMCij − SMCj

SMCj
(2)

where SMCij represents the soil moisture content of the ith soil layer during the jth period.
SMCj refers to the mean soil moisture content at the jth period across the whole profile,
which was calculated as follows:

SMCj =
1
n∑n

i=1 SMCij (3)

where n numbers the soil layers. In our study, the sampling interval was 10 cm, and the
whole 0–600 cm soil profile was divided into 60 layers (n = 60).

At each site, the mean relative difference (MRD) and standard deviation of the relative
difference (SDRD) of soil moisture along a time sequence were calculated as follows [26]:

MRDi =
1
m∑m

j=1 RDij (4)

SDRDi =

√
1

m − 1∑m
j=1

(
RDij − MRDi

)2 (5)

where m represents the number of soil moisture measurements. In this paper, soil moisture
was measured 13 times in total in 2013 and 2016 (m = 13).

The relative difference method was mainly used to determine the variability in soil
moisture within the soil profiles over time. For example, during the observation period,
when the MRD value of the SMC in the soil layer was equal to or close to 0 and the
corresponding SDRD was small, the difference between the SMC of one soil layer and
the average profile SMC was smaller; that is, the SMC in this layer could be used as a
representative of the profile soil moisture content.
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3. Results
3.1. Temporal Dynamics of Soil Moisture under Caragana korshinskii Shrubs

The study found that the soil moisture under the planted C. korshinskii shrubs was
consistent with the annual precipitation pattern. As precipitation decreased, soil moisture
under C. korshinskii of various ages also gradually decreased, showing a downward trend,
followed by increasing (stabilizing) changes throughout the year (Figure 3). According
to the precipitation records in the different experimental years in the study area, the
precipitation in 2013 was 682.2 mm, while in 2016, it was 20% lower at 556.8 mm (Figure 2).
Taking CK-10yr as an example, the average soil moisture content during the growing
season was 12.47% in 2013. Due to the reduction in precipitation, the average soil moisture
content dropped to 10.10% in 2016, a reduction of 20%. With the decrease in precipitation,
soil moisture in CK-20yr, CK-35yr and abandoned land decreased by 15.40%, 18.89% and
12.96%, respectively (Figure 3).
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Figure 3. Temporal dynamics of soil moisture variation under Caragana korshinskii shrubs in varying
precipitation years.

Within a single growing season, the soil moisture under the planted C. korshinskii
shrubs increased with increasing precipitation. However, there was an obvious time lag in
the soil moisture content compared to that in the precipitation period. For instance, in the
CK-10yr plot, although the heaviest precipitation occurred in July (184.8 mm) during the
growing periods of 2013 (Figure 2), the average soil moisture content in August (12.58%)
was higher than that in July (12.01%) (Figure 3). Similarly, during the 2016 growing season,
although July and August had precipitation of 135.6 mm and 100.3 mm, respectively, the
average soil moisture content in August was almost 15.37% higher than that in July. The
study also observed similar soil moisture variation trends in the CK-20yr and CK-35yr
shrublands and the control abandoned land.

3.2. Soil Moisture Variations with Slope Aspects under Caragana korshinskii Shrubs

The study found that soil moisture under the different-aged C. korshinskii shrubs
varied with the slope aspect. Overall, the semi-shady slopes had higher soil moisture than
the sunny slopes, but the difference between the slope aspects was small (Figure 4). For
example, in the CK-10yr plantations, the average soil moisture content on the semi-shady
slope was 11.25%, while that on the sunny slope was 10.59%, with a difference of 0.66%,
which was 6.2% higher than that on the semi-shady slope. In the CK-20yr and CK-35yr
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shrub plots, the soil moisture on the semi-shady slopes was 7.8% and 16.8% higher than
that on the corresponding sunny slopes, respectively. In the control abandoned land, the
average soil moisture content on the semi-shady slopes turned to be 25.3% overrunning
that on the sunny slope, with average soil moisture contents of 12.20% and 9.74% for the
semi-shady and sunny slopes, respectively. Additionally, the experiment also revealed that
the 200 cm soil layer was a critical point in the soil moisture profile in varying slope sections
of the different-aged C. korshinskii stands. Except for the CK-20yr plot, soil moisture above
the 200 cm soil layer was higher on the sunny slope than on the semi-shady slope in the
C. korshinskii stands and the control abandoned land, while the opposite was true in the
200–600 cm soil layers. For example, the average soil moisture contents of the semi-shady
slope and the sunny slope in the 0–200 cm soil layer of the CK-10yr plot were 8.29% and
10.61%, respectively, and the latter was approximately 28.0% higher than that of the semi-
shady slope. In the 200–600 cm soil layer, the average soil moisture content was 12.72%
on the semi-shady slope, which was approximately 20.2% higher than that on the sunny
slope at 10.58%. However, for the CK-20yr plot, in the 0–200 cm soil layer, the average
soil moisture content on the semi-shady slope was 21.2%, exceeding that on the sunny
slope, with soil moisture contents of 10.4% and 8.58%, respectively. In the deep 200–600 cm
soil layer, the soil moisture content on the sunny slope was 7.4%, exceeding that on the
semi-shady slope.
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3.3. Soil Moisture Variations along Slope Positions under Caragana korshinskii Shrubs

Overall, the soil moisture content of the varying-aged C. korshinskii plantations changed
with slope positions and was higher at the lower slope position than at the upper slope
position, with small differences among the different slope positions (Figure 5). For example,
in the CK-10yr shrubland, the average soil moisture contents at the lower and upper slope
positions were 10.59% and 9.62%, respectively, which were approximately 10.08% higher
than those at the upper slope profile. In the 20-yr and 35-yr C. korshinskii plantations, the
soil water content in the lower slope profile, on average, was 6.59% and 5.12% higher than
that in the upper slope profile, respectively. In the CK-20yr and CK-35yr plots, the average
soil moisture content in the lower slope profile was 6.59% and 5.12% higher than that in the
upper slope profile. However, the average soil moisture content was significantly different
between the upper and lower slopes in abandoned land. The soil moisture content of the
lower slope site was 25.26% higher than that of the upper slope site, with corresponding
average soil moisture contents of 12.20% and 9.74%, respectively. In general, the soil mois-



Water 2023, 15, 2334 8 of 13

ture content decreased as the growth age increased, with a sequence of CK-20yr > CK-10yr
> abandoned land > CK-35yr plantations. Similarly, soil moisture in different slope profiles
was generally bounded to the soil layer at a depth of 200 cm and its difference in soil
moisture gradually expanded within the 200–600 cm soil layer among these sampling sites.
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3.4. Temporal Stability of Soil Moisture under Caragana korshinskii Shrubs

Figure 6 presents the relative difference values of profile SMC in the 0–600 cm soil
layers of the 10-yr, 20-yr and 35-yr C. korshinskii shrubs. The mean relative difference
(MRD) of the SMC in different soil layers in the study area ranged from −37.12% to 31.82%
(CK-10yr), −41.38% to 44.68% (CK-20yr), and −34.01% to 46.11% (CK-35yr). The MRD of
the soil moisture content in the CK-20yr plantation was the largest, and that in the CK-10yr
plantation was the smallest. The mean standard deviation of relative difference (SDRD)
of soil moisture in different-aged C. korshinskii stands was 15.03%, 15.66% and 21.51%,
respectively, indicating that soil moisture in CK-35yr stands fluctuated greatly with time
series, followed by the CK-20yr stands. However, the SMC of CK-10yr was relatively stable
over time.

The standard deviation of the mean relative difference (MRD) showed a gradually
decreasing trend with increasing profile soil depth, indicating that shallow soil water was
more obviously affected by external factors, such as vegetation and climate, and that deep
soil water tended to be more stable than shallow soil in the time series. According to
the criterion of temporal stability, the representative depths of soil water content in the
0–600 cm soil layer for the CK-10yr, CK-20yr and CK-35yr plantations were 430 cm, 440 cm
and 460 cm, with corresponding soil moisture contents of 10.94%, 10.46% and 7.34% and
differences from the average profile soil moisture content of −0.66%, −0.28% and −0.94%,
respectively, and these values were all less than 1%.
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4. Discussion
4.1. Spatiotemporal Dynamics of Soil Moisture under Caragana korshinskii Shrubs

The study found that the soil moisture of the C. korshinskii plantations with varying
stand ages was generally greater on semi-shady slopes than on sunny slopes, which
conformed to previous research [27,28]. This difference in moisture among the different
slope directions was due to varying levels of precipitation redistribution and solar radiation
on different slope aspects. Generally, sunny slopes receive more solar radiation, leading to
more intense soil moisture evaporation and resulting in different degrees of soil moisture
dissipation [29–32]. However, in this study area, the growing environment of the C.
korshinskii shrubs was mainly on sunny slopes, resulting in a small overall difference in soil
moisture between the two slope aspects (Figure 4). In addition, the transition point for soil
moisture variation between the semi-shady and sunny slopes of C. korshinskii was found
to be at a depth of 200 cm in the soil layer along the profile, which was mainly concerned
with the depth of precipitation infiltration, as well as the distribution depth of roots in C.
korshinskii stands. Relevant studies have found that precipitation infiltration in the Loess
Plateau region is concentrated in the 100–200 cm soil layer [33,34], where trees and shrub
roots are concentrated [35–37]. This scenario resulted in a clear transition in soil moisture
between the lower and upper sections of the 200 cm soil layer (Figure 4). Soil moisture on
the sunny slope between 0 and 200 cm was greater than on the semi-shady slope, which
might have been due to differences in precipitation on the slope aspects. The sunny slope
received direct precipitation, resulting in slightly lower surface soil moisture between 0
and 200 cm compared to that on the semi-shady slope. However, the soil moisture on
the semi-shady slope exceeded that on the sunny slope below the 200 cm precipitation
infiltration layer.
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From the slope perspective, the infiltration capacity of the upslope was limited due to
the influence of precipitation redistribution processes such as evaporation, infiltration and
runoff collection on the slope surface. Additionally, there was no external runoff recharge
coupled with strong winds and radiation, resulting in significant soil moisture differences
between the upslope and the downslope [29,38]. Soil moisture in the planted C. korshinskii
plantation showed a gradually decreasing trend with an increased slope position (Figure 5),
which was consistent with previous research results [39]. The difference in soil moisture
between the 0–200 cm soil layers became small, but the difference between the 200–600 cm
soil layers was relatively large due to local topographical conditions. The slope of the
selected sample plot was mainly located in a low and moderately hilly area, resulting in
a small difference in soil moisture above the precipitation infiltration depth. However,
the difference was affected by the water absorption of the roots below the precipitation
infiltration layer, resulting in a larger difference in deep soil moisture (Figure 5).

4.2. Temporal Stability of Soil Moisture under Caragana korshinskii Shrubs

The standard deviation of the relative difference in soil moisture (SDRD) was adopted
mainly to reflect the temporal stability of soil moisture characteristics. Judging from the
results of this study, the SDRD tended to decrease as the soil depth increased, indicating
that the temporal stability of soil moisture gradually enhanced (Figure 6), which conformed
to the results of the preceding research [40–42]. The main reason for the increased temporal
stability of deep soil moisture was that compared with that in the shallow layers, soil
moisture in the deeper layers was less influenced by climate, soil evaporation, vegetation,
site conditions and anthropogenic activities such as crop grading and grazing [25,41].
On the Loess Plateau, the infiltration depth of precipitation was mainly concentrated
within the upper 100–200 cm soil layers [25,43], which reduced the variability in deep
soil moisture over time, again suggesting that deep soil moisture was more stable than
shallow soil moisture [38,44]. Based on the definition of the temporal stability of soil
moisture, soil moisture at a given location tended to be temporally stable with time,
which is beneficial for predicting the field mean soil moisture through the representative
locations [40,41]. Meanwhile, the representative soil depth obtained from the temporal
stability analysis could help determine the sampling depth in the field sampling, thus
saving labors. However, on account of the soil texture or various sampling periods, the
accuracy should also be further tested with a large number of experimental data in future
experiments.

4.3. Implications for Deep Soil Moisture Management

Afforestation is the major method of ecological restoration in arid as well as semi-arid
areas, and it can not only improve vegetation coverage but also consolidate and enhance
ecosystem service functions. However, the negative impacts on the soil moisture environ-
ment caused by intense afforestation still need to be addressed. The arid and semi-arid
Loess Plateau is a representative water-scarce area where soil moisture limits the growth
of vegetation [45,46]. The large-scale introduction of plantations with exotic species with
high water consumption would inevitably cause severe deep soil moisture deficits because
of well-developed deep root systems and intense water depletion, which would result in
vegetation growth decline and, in contrast, seriously restrict the sustainable development of
both semi-arid and arid regions against the backdrop of global warming [25]. For example,
in our study, the deep soil moisture under the fully grown C. korshinskii shrubs (CK-35yr)
was much lower than that in abandoned land, indicating that continuous afforestation may
aggravate soil moisture deficits and soil desiccation [47–49]. On the other hand, precipita-
tion is the only source to supply soil moisture in water-limited regions, and changes in the
soil moisture and its response process are largely restrained by precipitation features, such
as rainfall amount, intensity and duration. However, the infiltration depth of precipitation
is concentrated only in soil layers less than 200 cm, which makes it difficult to meet the
water supply of deep soil [24,50,51]. Therefore, under the background of regional warm-
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ing and drying, the soil moisture environment should be taken into consideration when
integrated protection and restoration projects are carried out in water-restricted areas [6].
According to rainfall characteristics, nature-based solutions, such as native species that
consume less water, are more reasonable for these dry regions. At the same time, in view
of the water-consumption characteristics of shrubs at different growth ages, appropriate
management measures, such as conservation thinning, mowing and species replacement,
should be adopted to further improve the regional soil moisture environment as well as
promote the carbon sequestration capacity of vegetation.

5. Conclusions

The soil moisture environment has a great influence on the success of ecological
restoration efforts in both arid and semi-arid areas. In the present study, the spatiotemporal
dynamics and temporal stability of deep soil moisture under C. korshinskii shrubs with
varying stand ages were determined in the Loess hilly region of China. The results showed
that, during the growing periods, the soil moisture content of C. Korshinskii plantations,
on average, fell as the stand age rose along soil profiles, which was generally consistent
with the seasonal variation in precipitation. At the slope scale, both the slope aspect and
slope position affected soil moisture variation under the plantation of C. korshinskii shrubs,
generating a decreasing tendency from semi-shady slopes to sunny slopes and from lower
positions to the upper positions. However, the variances in the soil moisture content
between sites with different slope aspects and positions were small. Along the 0–600 cm
soil profile, a transition belt linking the shallow and deep soil moisture occurred at the
200 cm soil depth at different slope positions and aspects. For the slope aspect, except for
CK-20yr, the soil moisture content of different-aged C. korshinskii shrubs exceeded on sunny
slopes rather than on semi-shady slopes at the upper 0–200 cm soil depth, while opposite
at the 200–600 cm soil depth. In addition, for slope positions, the profile soil moisture
variation was small between 0–200 cm soil depths and larger among 200–600 cm soil depths.
Within the whole soil profile, the representative depth for the mean soil moisture content
under the C. korshinskii shrubs was mainly concentrated between 400–500 cm soil depths,
showing a gradual deepening trend with increasing restoration age. From the perspective
of a healthy soil moisture environment and the sustainability of vegetation restoration, we
suggest that natural recovery with low-water consuming grassland species and manual
management measures, such as thinning and mowing, should also be strengthened to
minimize the high levels of soil moisture consumption in water-limited regions.
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