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Abstract: The occurrence of catastrophic floods will increase the uncertainty of hydrological forecast-
ing at downstream hydrological stations. In order to solve the problems of the unclear propagation
law of catastrophic floods in the middle and lower reaches of the Yangtze River and the inadaptability
of traditional forecasting methods, this paper uses the M-K trend test method to analyze the annual
average flow and annual average water level of the Yichang and Hankou stations. For conventional
floods and catastrophic floods, Random Forest (RF), Convolutional Neural Network (CNN), Long
Short-Term Memory Network (LSTM), and CNN-LSTM neural networks are used to simulate the
water level/flow of Hankou station. The simulation results are analyzed by Nash–Sutcliffe Efficiency
Coefficient (NSE), Kling–Gupta efficiency coefficient (KGE), Root Mean Square Error (RMSE), and
Symmetric Mean Absolute Percentage Error (SMAPE). The results show that the annual average flow
and annual average water level of Yichang station show a downward trend and the annual average
water level of Hankou station shows an upward trend. By comparing the four indicators of NSE,
KGE, RMSE, and SMAPE, the CNN-LSTM coupling model was determined to be the best fitting
model, with NSE and KGE greater than 0.995 and RMSE and SMAPE less than 0.200. The proposed
coupling model can provide technical support for flood control optimization, scheduling, emergency
rescue, and scheduling impact analysis of the Three Gorges Power Station.

Keywords: catastrophic floods; CNN-LSTM; prediction; middle and lower reaches of the Yangtze River

1. Introduction

In recent years, frequent extreme weather events, uneven distribution of regional
precipitation during the year, and flood disasters caused by extreme weather have caused
serious losses to China’s social economy. In order to meet the needs of flood control and
drought relief or emergency rescue in a concentrated period of time, the water conservancy
and hydropower project increases or reduces the steep flow process formed by discharge,
which is called catastrophic floods. As the most important water conservancy facility in
China, the Three Gorges Reservoir will have a sudden discharge during the dispatching
process, resulting in a sudden change in the water level and flow of the downstream river
in a short time, which is easy to form a catastrophic flood. The occurrence of catastrophic
floods will increase the uncertainty of hydrological forecasting at downstream hydrological
stations, the result being that the water level and flow cannot be predicted timely and
accurately. At the same time, there are many rivers and lakes in the middle reaches of the
Yangtze River in China, and the water network is developed. The interaction between
tributaries and lakes is complex. It is particularly critical to use more advanced methods to
construct relevant hydrological models in the context of global climate change.

In order to deeply understand the influence of catastrophic floods and conventional
floods on the prediction of downstream water level and flow, many scholars have conducted
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extensive research on this hot issue based on different methods and models. Li Xiaoyang [1]
coupled the Variable Infiltration Capacity (VIC) runoff model with the improved distributed
confluence model to realize the hourly flood forecasting based on the VIC model and
verified it in the Biliu River Basin. Zhang Hongbo [2] quantified the variation characteristics
of the runoff series of the three rivers in Jingnan, introduced the STARS method and the
ICSS method to identify the mean and variance changes of the runoff series, and determined
the variation position and variation level. At the same time, by combining the major human
activities that occurred during the same period, the driving causes of runoff variation in
the three rivers in Jingnan were explored from the perspective of physical mechanisms.
Wang Zhiyong [3] extended the branch water level prediction and correction method
for river network calculation to the one-dimensional-two-dimensional model coupling
problem, proposed the coupled boundary water level prediction and correction method,
and established a numerical model suitable for the overall hydrodynamic simulation of a
river–lake system.

The neural network is the core of the deep learning algorithm. With the rapid devel-
opment of computer hardware and the continuous improvement of data sets, the neural
network artificial intelligence algorithm has been widely used in the field of hydrological
forecasting. Zhang et al. (2021) [4] improved the prediction method of reservoir downstream
water level by using the convolutional neural network (CNN) and the long short-term mem-
ory network (LSTM), and improved the calculation accuracy of reservoir power generation
output. Guan Jie [5] started from the practical application scenario of water level early
warning in the middle and lower reaches of the Chishui River. On the basis of fully studying
the relevant theoretical techniques of water level prediction based on machine learning,
three machine learning algorithms based on multiple linear regression (MLR), extreme
random tree (Extra-Tress), and artificial neural network (ANN) were constructed. Based on
the two-dimensional convolutional neural network, Ji Zhansheng et al. [6] constructed the
water level prediction method of the Pingyao hydrological station in Dongtiaoxi, selected
the rising water level, downstream water level, upstream reservoir discharge, and interval
precipitation to construct the feature set, and extracted the effective features of the input
feature set. Although the above research based on neural networks is of great significance
in the study of the complex hydrological relationship between the mainstream, tributaries,
and lakes, unfortunately, the artificial neural feedforward network (BP), random forest (RF),
and support vector machine (SVM) methods [7–14] are mostly used in the network between
hydrological variables, which have high training complexity and are not easy to extract
features from. In contrast, CNN can extract and reduce the dimension of important features
through the convolution layer and the pooling layer. Combined with other neural networks
or methods, CNN is used in the field of flood forecasting [15–19]. The long short-term
memory network, LSTM, has the characteristics of maintaining the relationship between
data in the sequence and has significant advantages in processing data with temporal rela-
tionships. At the same time, LSTM and its combinations are widely used in water level and
flow forecasting [20–24].

Therefore, the main purpose of this study is to take the Yichang–Hankou section of
the Yangtze River as the research area. In view of the unclear propagation law of the
current catastrophic flood in the middle and lower reaches of the Yangtze River and the
inadaptability of traditional forecasting methods, the M-K trend analysis method is used
to analyze the average annual flow and average annual water level of Yichang station
and Hankou station. On this basis, CNN and LSTM are introduced to construct the
water level/flow prediction model, and the advantages of CNN and LSTM are integrated.
The RF model, CNN, LSTM, and CNN-LSTM are used to predict the flow/water level
of conventional floods and catastrophic floods. Finally, the optimal model is selected
by combining NSE, KGE, RMSE, and SMAPE model evaluation indexes. The biggest
innovation of this study is to define the catastrophic floods and put forward the optimal
prediction model of water level/flow response of Hankou station based on the flow of
Yichang station and the real-time fast and accurate estimation method. It provides technical
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support for flood control optimization, dispatching, emergency rescue, and dispatching
impact analysis of the Three Gorges Power Station.

2. Materials and Methods
2.1. Study Area

This study takes the Yichang–Hankou section as the research area. The region is
located in the middle reaches of the Yangtze River, 645 km long. The average annual
temperature in this area is about −3–20 ◦C. The maximum temperature in some areas in
summer can reach 40 ◦C. In winter, the temperature may drop to about 0 ◦C in some areas.
Spring and autumn are transitional seasons, and the temperature is mild. The average
annual precipitation is about 670–2300 mm. Summer is rainy and concentrated, with an
average monthly rainfall of about 300 –500 mm. May to September is a flood-prone period.
In winter, the precipitation is relatively low, and the monthly average rainfall is about
50–100 mm. The precipitation in spring and autumn is moderate, and the monthly average
precipitation is between 100 and 200 mm. In the section, there are the Qingjiang River, the
Juzhang River, the Dongting Lake, and the Hanjiang River. At the same time, we selected
six hydrological stations as the key research objects, including Yichang (YC), Zhicheng
(ZC), Shashi (SS), Jianli (JL), Chenglingji (CLJ), and Hankou (HK). The daily flow, water
level, rainfall, evaporation, and temperature of the previous five stations were used as
model input data to simulate the flow and water level of HK. The Yichang–Hankou section
of the Yangtze River and hydrological stations are shown in Figure 1.
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Figure 1. Study Area.

2.2. Data Sources

The meteorological data of daily-scale water level, rainfall, evaporation, and tem-
perature at six hydrological stations from 2008 to 2020 were obtained from the Yangtze
River Water Resources Commission and Hubei Provincial Meteorological Bureau (http:
//www.cjw.gov.cn/, accessed on 14 May 2022). The reliability of the data is guaranteed by
the reorganization of the relevant units. Based on the quantitative analysis of the outflow
of the Three Gorges Reservoir from 2008 to 2020, this study determined that, in 2010, 2012,
and 2017, due to the operation of the Three Gorges Reservoir, the middle and lower reaches
of the river produced catastrophic floods. The flow chart is shown in Figure 2.

http://www.cjw.gov.cn/
http://www.cjw.gov.cn/
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2.3. Trend Analysis

In this study, the Mann-Kendall trend test (M-K) [25] was used to analyze the hydro-
logical trend. The advantage of this method is that it does not require the sequence to be
detected to follow a certain distribution, the calculation is simple, and it is not disturbed
by a few outliers. In the M-K test, let the null hypothesis be H0: the time series used is
n independent samples, and each sample obeys the same distribution. The alternative
hypothesis H1 is a two-sided test: for any k, j < n, and k 6= j, the distribution of xk and xj is
different. For any sequence Xt (t = 1, 2, . . . , n), n is the length of the sequence to be tested,
and the statistic S can be defined:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(Xj − Xk) (1)

where Xj and Xk are the time series corresponding year data, n is the length of the time
series, and sgn (Xj − Xk) is a sign function.

2.4. Random Forest Model

The RF model is a combined classifier algorithm using Classification and Regression
Tree (CART) as a meta-classifier. It consists of multiple decision trees. Each decision
tree gives an independent classification result for the input. Finally, the final output is
determined by a majority vote based on the classification results of all decision trees [26].
In the process of operation, RF mainly generates different training sets through a bootstrap
self-sampling method to construct each meta-classifier. When the subset is generated by
the sampling method, nearly 37% of the Out-of-Bag (OOB) data in the original sample will
not appear in the new subset. These data are used to estimate the generalization error of
RF to characterize the stability and accuracy of the model [27].

2.5. Convolutional Neural Network

CNN is a deep feed-forward neural network with local connection and weight sharing.
It is generally a feed-forward neural network composed of a convolutional layer, a conver-
gence layer, and a fully connected layer. By moving the receptive field to scan the whole,
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the feature of weight sharing greatly reduces the number of weight coefficients, reduces
the complexity of the model, and makes it closer to the biological neural network [28]. The
convolution layer in CNN is calculated by the convolution algorithm. The convolution
formula is:

I(x, y) ∗ w(x, y) =
a

∑
s=−a

b

∑
t=−b

I(s, t)w(x− s, y− t) (2)

where a = (f − 1)/2, b = (h − 1)/2, f and h are odd integers, and i is the matrix to
be convoluted.

2.6. Long Short-Term Memory Network

The LSTM is a variant of a recurrent neural network, which can effectively solve the
problem of gradient explosion or disappearance of simple recurrent neural networks. The
LSTM network introduces a new internal state ct dedicated to linear cyclic information
transmission, while it (nonlinearly) outputs information to the external state ht of the
hidden layer. The internal state ct is calculated by the following formula:

ct = ft ⊗ ct−1 + it ⊗ c̃t (3)

ht = ot ⊗ tanh(ct) (4)

where ⊗ is the vector element product, ct−1 is the memory unit of the previous moment,
and c̃t is the candidate state obtained by the nonlinear function:

c̃t = tanh(Wcxt + Ucht−1 + bc) (5)

At each time t, the internal state ct of the LSTM network records the historical infor-
mation up to the current time.

The LSTM network introduces a gating mechanism to control the path of information
transmission. The gating mechanism includes the input gate it, forgetting gate ft, and
output gate ot, which are:

(1) The forgetting gate “ft” controls how much information needs to be forgotten in the
internal state of the previous moment.

(2) The input gate “it” controls the candidate state of the current moment, and how much
information needs to be saved.

(3) The output gate “ot” controls how much information the current internal state needs
to be output to the external state.

When ft = 0, it = 1. The memory unit clears the historical information and writes
the candidate state vector c̃t. However, the memory unit ct is still related to the historical
information of the previous moment. When ft = 1, it = 0. The memory unit will copy the
content of the previous moment and not write new information.

The calculation method is:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(W f xt + U f ht−1 + b f )
ot = σ(Woxt + Uoht−1 + bo)

(6)

where σ(•) is the logistic function, its output interval is (0, 1), xt is the input of the current
time, and ht − 1 is the external state of the previous time. Through the LSTM loop unit, the
entire network can establish long-distance temporal dependencies.

2.7. CNN-LSTM

Due to the time-varying water level and flow in flood forecasting, there are great
errors in convolutional neural network (CNN) simulation. In this paper, the long short-
term memory network (LSTM), which can maintain the relationship between the data in
the sequence, is coupled with the convolutional neural network (CNN). The input data
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enter the LSTM network after the first dropout in the convolutional network and enter the
fully connected layer after a dropout. The CNN-LSTM model combines the characteristics
of the two networks. First, the data are input into the CNN, and the important features
are extracted and reduced by the convolution layer and the pooling layer. Then, the full
connection layer is input into the LSTM network unit and the model is obtained by multiple
iterative training.

2.8. Model Goodness Evaluation

This study uses NSE, KGE for efficiency evaluation, RMSE, and SMAPE for error
evaluation. When NSE and KGE are close to 1, the model fitting efficiency is the highest.
The smaller the RMSE and SMAPE are, the smaller the model fitting error is.

3. Results
3.1. Trend Changes of Annual Average Flow and Annual Average Water Level

The M-K trend analysis method was used to study the trend changes of annual average
flow and annual average water level of Yichang station and Hankou station from 1952 to
2020. See Figure 3 for the M-K trend analysis of the annual average flow of Yichang station.
There are multiple intersections between the UF and UB curves in the confidence interval,
which is the time when the annual average flow of Yichang station changes abruptly, such
as 1989 and 1982. The UF curve is within the confidence interval, so the change of annual
average flow is not significant and, since 1971, the annual average flow of Yichang station
has generally shown a decreasing trend. The M-K trend analysis of the annual average
flow of Hankou station shows that the UF and UB curves have multiple intersections in
the confidence interval. From 1955 to 1965, the annual average flow of Hankou station
showed a downward trend, and the downward trend was significant near 1960. From 1965
to 2003, the annual average flow trend tended to be stable. From 2003 to 2008, during the
construction of the Three Gorges Reservoir, the annual average flow of Hankou station
showed an increasing trend.
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The M-K trend analysis of the annual average water level of Yichang station shows that
the intersection of the UF and UB curves is outside the confidence interval, indicating that
the annual average water level of the station has a significant trend at the 95% significance
level; that is, the trend is statistically significant. It can also be explained that the intersection
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of the UF curve and the UB curve outside the confidence interval means that there is
evidence of real potential trends in the data, not just random variability. Since 1967, the
annual average water level has shown a downward trend, and the downward trend was
significant after 1984. The M-K trend analysis of the annual average water level of Hankou
station is carried out. The UF and UB curves have multiple intersections in the confidence
interval, located near 1976, 1979, 2003, 2004, and 2018. According to the UF curve, the
average annual water level of Hankou station showed a downward trend from 1955 to
1990, and an increasing trend from 1990 to 2020. In general, the annual average water level
change trend of Hankou station is not significant; there is only a significant downward
trend near 1960.

3.2. Comparison of Simulation Results of Four Neural Network Models

The RF, CNN, LSTM, and CNN-LSTM coupled network models were used to train
with data from 2008 to 2015 and validate with data from 2016 to 2020. The simulation
results of the flow process and water level process in the flood period of Hankou station are
shown in Figures 4 and 5. In the single model, the prediction efficiency of the CNN model
is low, the error is large, and the error distribution is scattered, which is not suitable for the
prediction of flow and water level. The RF model can well reflect the flow change trend,
and the predicted value can better fit the real value, but, in the prediction process, there will
be a point where the predicted value and the real value differ greatly and the stability is
poor. In the water level prediction, the RF model is more unstable and the simulation of the
trend is not good. The LSTM network has both stability and accuracy. The comprehensive
fitting effect of water level and flow is the best in a single model, which is more suitable for
the prediction of water level and flow.
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The coupled model, CNN-LSTM, is significantly better than the single model in the
simulation of water level and flow. The advantages of CNN in dealing with multi-feature
attributes and LSTM in dealing with time series make the simulation efficiency the highest
and the stability the best. It is suitable for the prediction of water level flow.

3.3. Evaluation of Simulation Results

The observed value is the abscissa and the simulated value is the ordinate drawn in
the coordinate system. The simulation results of the four models are evaluated according
to the distribution trend of the points, as shown in Figures 6 and 7.

Water 2023, 15, x FOR PEER REVIEW 9 of 13

on different years is indeed different, and the stability of the model is not good. The RF
model has obvious errors in both the high water level area and low water level area, and
the error of the LSTM model in the high water level area is greater than that in the low 
water level area. The coupled model performs better than the single model in each water 
level section.

Figure 6. Flow observation and simulation value distribution diagram (the abscissa is the observed
value, the ordinate is simulated). 

Figure 6. Flow observation and simulation value distribution diagram (the abscissa is the observed
value, the ordinate is simulated).



Water 2023, 15, 2329 9 of 12Water 2023, 15, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 7. Water level observation and simulation value distribution diagram (the abscissa is the ob-
served value, the ordinate is the simulated). 

In the year of catastrophic floods (2017), in a single model, the CNN and RF models 
have obvious deviations in the high flow area and high water level area, among which the 
CNN model has a poor simulation effect on the low water level. The simulation effect of 
the LSTM model did not change much compared with the conventional flood. The simu-
lation effect of the coupled model is still better than that of the single model. 

Evaluation indexes of each model in each year are shown in Table 1. In terms of flow 
simulation in conventional flood years, the average NSE of the RF, CNN, LSTM, and 
CNN-LSTM coupled models were 0.947, 0.700, 0.986, and 0.995, respectively. The mean 
KGE was 0.955, 0.751, 0.929, and 0.984, respectively. The average RMSE was 0.238, 0.546, 
0.134, and 0.074, respectively. The average SMAPE was 0.050, 0.150, 0.041, and 0.021, re-
spectively. It shows that, in a single model, CNN has the worst simulation effect, and RF 
is close to the LSTM model. The indexes of the coupled model are better than those of the 
single model. In terms of water level simulation, the average NSE of the RF, CNN, LSTM, 
and CNN-LSTM coupled models are 0.946, 0.872, 0.991 and 0.997, respectively. The aver-
age KGE were 0.956, 0.845, 0.949, and 0.996, respectively. The average RMSE was 0.775, 
1.212, 0.321, and 0.185, respectively. The average SMAPE was 0.021, 0.047, 0.013, and 0.007, 
respectively. It shows that, in a single model, CNN has the worst simulation effect, and 
RF is close to the LSTM model. The indexes of the coupled model are better than those of 
the single model. 

Table 1. Evaluation indexes of each model in each year. 

Discharge Water Level 
Year Model NSE KGE RMSE SMAPE Year Model NSE KGE RMSE SMAPE 

2016 

RF 0.994 0.995 0.095 2.128 

2016 

RF 0.982 0.994 0.482 0.451 
CNN 0.887 0.880 0.415 12.214 CNN 0.845 0.857 1.414 4.598 
LSTM 0.986 0.930 0.145 5.157 LSTM 0.992 0.946 0.318 1.708 

CNN-LSTM 0.995 0.983 0.083 2.377 CNN-LSTM 0.997 0.999 0.206 0.682 
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observed value, the ordinate is the simulated).

In the conventional flood years (2016, 2018, 2019, 2020), in the single model flow
simulation, the data points of the observed value and the simulated value of the CNN
model are the most dispersed, indicating that the model fluctuates greatly in the process
of simulating the flow. The fitting effect of the RF model in the low flow area is slightly
better than that of the LSTM model, and the simulation error of the RF model in the high
flow area increases slightly. The fitting degree of the full flow range of the LSTM model is
similar, the simulation results in the low flow area are larger, and the simulation results in
the high flow area are smaller. The coupling model is better than the single model in the
whole flow section. In the simulation of the single model water level, the effect of the CNN
model on different years is indeed different, and the stability of the model is not good. The
RF model has obvious errors in both the high water level area and low water level area,
and the error of the LSTM model in the high water level area is greater than that in the low
water level area. The coupled model performs better than the single model in each water
level section.

In the year of catastrophic floods (2017), in a single model, the CNN and RF models
have obvious deviations in the high flow area and high water level area, among which the
CNN model has a poor simulation effect on the low water level. The simulation effect of the
LSTM model did not change much compared with the conventional flood. The simulation
effect of the coupled model is still better than that of the single model.

Evaluation indexes of each model in each year are shown in Table 1. In terms of
flow simulation in conventional flood years, the average NSE of the RF, CNN, LSTM, and
CNN-LSTM coupled models were 0.947, 0.700, 0.986, and 0.995, respectively. The mean
KGE was 0.955, 0.751, 0.929, and 0.984, respectively. The average RMSE was 0.238, 0.546,
0.134, and 0.074, respectively. The average SMAPE was 0.050, 0.150, 0.041, and 0.021,
respectively. It shows that, in a single model, CNN has the worst simulation effect, and
RF is close to the LSTM model. The indexes of the coupled model are better than those
of the single model. In terms of water level simulation, the average NSE of the RF, CNN,
LSTM, and CNN-LSTM coupled models are 0.946, 0.872, 0.991 and 0.997, respectively. The
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average KGE were 0.956, 0.845, 0.949, and 0.996, respectively. The average RMSE was 0.775,
1.212, 0.321, and 0.185, respectively. The average SMAPE was 0.021, 0.047, 0.013, and 0.007,
respectively. It shows that, in a single model, CNN has the worst simulation effect, and RF
is close to the LSTM model. The indexes of the coupled model are better than those of the
single model.

Table 1. Evaluation indexes of each model in each year.

Discharge Water Level

Year Model NSE KGE RMSE SMAPE Year Model NSE KGE RMSE SMAPE

2016

RF 0.994 0.995 0.095 2.128

2016

RF 0.982 0.994 0.482 0.451
CNN 0.887 0.880 0.415 12.214 CNN 0.845 0.857 1.414 4.598
LSTM 0.986 0.930 0.145 5.157 LSTM 0.992 0.946 0.318 1.708

CNN-LSTM 0.995 0.983 0.083 2.377 CNN-LSTM 0.997 0.999 0.206 0.682

2017

RF 0.624 0.683 0.543 8.052

2017

RF 0.688 0.804 1.214 3.661
CNN 0.657 0.839 0.519 12.635 CNN 0.420 0.735 1.655 7.117
LSTM 0.975 0.921 0.139 3.416 LSTM 0.980 0.932 0.306 1.140

CNN-LSTM 0.987 0.976 0.102 2.264 CNN-LSTM 0.992 0.990 0.196 0.675

2018

RF 0.985 0.992 0.099 1.265

2018

RF 0.974 0.976 0.387 0.459
CNN 0.554 0.584 0.545 14.354 CNN 0.880 0.812 0.831 3.486
LSTM 0.984 0.937 0.104 3.044 LSTM 0.988 0.952 0.261 1.017

CNN-LSTM 0.994 0.985 0.065 2.040 CNN-LSTM 0.995 0.995 0.169 0.677

2019

RF 0.898 0.947 0.323 8.499

2019

RF 0.906 0.953 1.073 3.771
CNN 0.471 0.673 0.735 22.326 CNN 0.865 0.881 1.284 6.059
LSTM 0.987 0.929 0.115 3.624 LSTM 0.992 0.958 0.307 1.187

CNN-LSTM 0.996 0.986 0.062 2.035 CNN-LSTM 0.998 0.995 0.171 0.677

2020

RF 0.912 0.885 0.437 8.156

2020

RF 0.921 0.902 1.157 3.848
CNN 0.890 0.868 0.489 11.145 CNN 0.897 0.828 1.317 4.811
LSTM 0.986 0.920 0.173 4.442 LSTM 0.991 0.939 0.399 1.483

CNN-LSTM 0.997 0.982 0.086 2.090 CNN-LSTM 0.998 0.995 0.195 0.698

In 2017, the catastrophic flood was caused by the operation of the Three Gorges
Reservoir. In terms of traffic simulation, LSTM has the best simulation effect in the single
neural network traffic model. The NSE and KGE of LSTM are 56.17% and 34.93% higher
than those of the RF model, and 48.44% and 9.77% higher than those of the CNN model,
respectively. The RMSE and SMAPE are 73.12% and 72.96% lower than the CNN model,
respectively, and LSTM is 74.31% and 57.57% lower than the RF model, respectively. The
simulation effect of the CNN-LSTM coupling model is similar to that of LSTM. The NSE
and KGE of the coupling model are 1.17% and 5.93% higher than those of the LSTM model,
and the SMAPE and RMSE are lower than 33.72% and 26.73%, respectively. In terms of
water level simulation, LSTM has the best simulation effect in the single neural network
water level prediction model. The NSE and KGE of LSTM are 42.47% and 15.98% higher
than those of the RF model, and 133.20% and 26.88% higher than those of the CNN model,
respectively. The RMSE and SMAPE are 81.53% and 83.97% lower than the CNN model,
respectively, and LSTM is 74.83% and 68.84% lower than the RF model, respectively. The
simulation effect of the CNN-LSTM coupled model is similar to that of LSTM. The NSE
and KGE of the coupled model are 1.18% and 6.25% higher than those of the LSTM model,
respectively, and the SMAPE and RMSE are lower than 40.78% and 35.83%, respectively.

In summary, CNN is not suitable for the simulation of water level and flow. The LSTM
model and the RF model have similar effects on simulating flow. The LSTM model is better
than the RF model when simulating water level, and the CNN-LSTM coupling model is
better than the single model.

4. Conclusions
4.1. Trend

The trend analysis of the annual average flow and annual average water level of
Yichang station and Hankou station shows that the annual average flow and annual
average water level of Yichang station show a downward trend, the annual average flow
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of Hankou station has no obvious change, and the annual average water level shows an
upward trend.

4.2. Model

The four neural networks of RF, CNN, LSTM, and CNN-LSTM were used to simulate
the water level and flow of Hankou station by combining the hydrological and meteoro-
logical data of Yichang, Zhicheng, Shashi, Jianli, and Chenglingji. For conventional floods,
in a single model, the CNN model has low prediction efficiency, large errors, and a more
dispersed error distribution, which is not suitable for flow and water level prediction. The
RF model can well reflect the flow change trend, and the predicted value can better fit the
real value. However, in the prediction process, there will be a point where the predicted
value and the real value differ greatly, and the stability is poor. In the water level prediction,
the RF model is more unstable, and the simulation of the trend is not good. The LSTM
network has both stability and accuracy. The comprehensive fitting effect of water level
and flow is the best in a single model, which is more suitable for the prediction of water
level and flow. The coupling model, CNN-LSTM, is indeed due to the single model in the
simulation of water level and flow. The advantages of CNN in dealing with multi-feature
attributes and LSTM in dealing with time series make the simulation efficiency the highest
and the stability the best. It is suitable for the prediction of water level flow. For catastrophic
floods, neither the RF nor CNN models can effectively simulate water level and flow, and
the simulation results of LSTM and the coupling models are still excellent. In order to better
quantify the degree of fitting, this paper uses NSE, KGE, RMSE, and SMAPE to analyze the
simulation results. The average values of NSE and KGE in the coupling model are between
0.9830 and 0.9970, and RMSE and SMAPE are between 0.0050 and 0.2000; indeed, better
than a single model.

5. Discussion

Since the Three Gorges Reservoir operated at the normal water level in 2008, there
have been fewer years of catastrophic floods. Due to the lack of neural network training
samples, the catastrophic floods have only been simulated for 2017. Although excellent
prediction results have been achieved, the prediction efficiency lacks universality. The next
step is to increase the catastrophic flood samples and further explore the adaptability and
promotion value of the model. The influence of lakes along the river on its water level and
flow and accurate simulation are also topics that need further study [29].
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