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Abstract: This study explored the application of machine learning, specifically artificial neural
network (ANN), to create prediction models for manganese (Mn) concentration in soil and surface
water (SW) on the island province with two open mine pits overflowing to two major rivers that
experienced mining disasters. The two ANN models were created to predict Mn concentrations in
soil and SW from 12 and 14 input parameters for soil and SW, respectively. These input parameters
were extracted from extensive field data collected at the site during sampling program in 2019, 2021,
2022, and initially processed with spatial analysis via geographic information system (GIS). All
datasets were then divided for model training and validation, using 85% and 15% ratio, respectively.
Performance evaluation of each model with mean absolute percentage error (MAPE) and root mean
squared error (RMSE) confirmed the accuracy of both models. The soil Mn model achieved MAPE
and RMSE values of 2.01% and 23.98, respectively. The SW Mn model was split into two models
based on SW Mn values within the 0–1 mg/L range and >1 mg/L range. The SW Mn model
for >1 mg/L performed better with MAPE and RMSE of 4.61% and 0.17, respectively. Feature
reduction was also conducted to identify how the models will perform if some input parameters
were excluded. Result showed sufficient accuracy can still be obtained with the removal of 4–5 input
parameters. This study and these models highlight the benefit of ANN to the scientific community
and government units, for predicting Mn concentration, of similar environmental conditions.

Keywords: artificial neural network; heavy metals; spatial analysis; prediction model; environmental
monitoring; machine learning; contamination

1. Introduction

Protection of the environment is a major part of the United Nation’s sustainable
development goals (SDGs), particularly SDG 2, 3, 6, 11, 13, 14, and 15 [1]. These SDGs
demonstrate the critical importance of the environment in maintaining sustainable life
in each country. Soil [1] and surface water (SW) [2,3] are the two media that should be
given the most focus as they have high exposure to the accumulation of pollutants, while
being accessible to human and animal consumption via various avenues, particularly food
production [4,5]. According to food and agriculture organizations of the United Nations,
40.8% of Earth’s total surface is croplands, grasslands, and bare soils [6], while 0.27% of its
freshwater is found in lakes and rivers [7].

Effective monitoring is essential to prevent or mitigate contamination in the envi-
ronment that can adversely impact human health and natural ecosystems [8]. Despite
significant advancements in instrumentation, environmental monitoring remains highly
challenging due to various political and economic factors [9]. Hence, developing a tool
that can predict metal concentration, such as manganese (Mn), could be useful in both data
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collection and evaluation, as well as making strategic programs and prompt decision. For
instance, less developed countries have limited capacity to provide expensive equipment
and expertise for effective monitoring [10]. Instead of always needing complex instruments,
artificial intelligence (AI) may be used as an accessible alternative to characterize and/or
predict environmental data [11,12]. Artificial neural network (ANN), which relies mainly
on training data to learn and improve prediction capability, is now one of the most popular
AI techniques to develop prediction models for security [13], economics [14], aerospace [15],
healthcare [16], seismic activity [17], and weather forecasting [18], to name a few. ANN is a
machine learning tool that combines related parameters to estimate a target parameter [19].

The accumulation of metals in soil and SW is influenced by various parameters that
could be easily measured on site, such as soil pH [20], flood level and curve number [21],
physicochemical properties of SW (i.e., pH, temperature, electric conductivity (EC), and
total dissolved solids (TDS)) [12], river morphology [22,23], and atmospheric precipita-
tion [24]. An ANN model would be highly beneficial if it was first trained on the relationship
between accessible parameters and the target parameter (e.g., pH/TDS to metal concentra-
tion) and then used to predict future target parameter values from input parameter values
only, without the need of complex equipment. Previous studies developed prediction
models for soil [25,26] and water [27–29]; however, this study considered the physicochem-
ical properties of both media, that are frequently monitored, to provide scientific-based
information in making prompt decisions. In 2018, Shi et al. [30] demonstrated the very
important role of hydrodynamic conditions on metal transport in rivers, where it induces
more dispersion compared to hydrostatic conditions. Climate change could generate more
frequent flooding in rivers [31], which can contribute to the accumulation of metals in both
soil and SW [32]. High runoff rates can carry metals to rivers, which, in turn, can transfer
to soils via adsorption and desorption [33,34].

Marinduque is an island province in the Philippines where extensive mining activities
used to exist. Unfortunately, two catastrophic mining disasters [35] occurred in 1993 and
1996. In 1993, toxic mine tailings spilled from the San Antonio pit into the adjacent Mogpog
River, while in 1996, a drainage tunnel burst in the Tapian pit, spilling 1.6 million m3 of
mine tailings into Boac River. The soil and SW in both Mogpog and Boac River are now
highly contaminated with toxic metals [21,35–37], posing a great environmental concern
in the surrounding areas. Furthermore, no remediation strategies have been developed,
and the two mining pits still exist and are liable to flooding and overflow during extreme
storm events [38]. It is evident from studies conducted in 1998 [39] and 2019 [35] that the
concentration of metals has increased in soil and SW over time, particularly Mn.

Mn is a naturally occurring element in soils that is essential to plant growth and
reproduction [40]; however, excessive Mn can trigger oxidative stress and disrupt pho-
tosynthesis [41] while also being very harmful to humans. The exposure of humans to
toxic amounts of Mn can result in neurotoxicity [42] and damage to the central nervous
system [43]. According to the United States Environmental Protection Agency (USEPA), hu-
mans are only allowed to consume 0.14 mg/kg-day of Mn to avoid toxicity [44]. Alarming
levels of Mn have been found in some agricultural products on the island of Marinduque,
such as rice [36,45], and products in aqueous environments, such as crustaceans and
tilapia [46]. Limited environmental monitoring has been performed in the area, with com-
munities mostly unaware of the excessive levels of Mn in nearby soils and SW. Most of
the municipalities in Marinduque are classified as third-class, and according to the report
of Department of Trade and Industry, the total revenue for Marinduque was only PHP
682,353,324 (USD 12,565,898) in 2022 [47]. This highlights the challenge for the island to
continuously monitor the environment with complex equipment.

Hence, the main objective of this study is to develop an ANN model to predict Mn
concentration in soil and SW within the Mogpog and Boac river areas in Marinduque,
Philippines. The developed model will reduce the need for complex and expensive equip-
ment to estimate and predict metal concentrations in soil and surface water. Moreover, it
will address the challenges in implementing sampling and analysis activities in rural areas
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where access to appropriate laboratories is difficult. These model predictions could provide
guidance to local communities and government units to design and implement efficient
mitigation strategies. This study specifically aims to: (i) spatially analyze Mn concentration
from collected soil and SW samples within the areas surrounding the rivers; (ii) identify
input parameters that have the highest association with the target parameter Mn; and
(iii) develop and train an ANN model for both soil and SW to predict Mn concentration.
The developed models could provide information that will aid in making prompt decisions
that would contribute to socio-economic development of the island.

2. Materials and Methods
2.1. Project Site Location

Marinduque is an island province in the Philippines (Figure 1) that hosted exten-
sive mining activities [48] using an open-mining pit process. Two of the worst mining
disasters in the world occurred on the island in 1993 and 1996. Enormous volumes of
toxic mine tailings spilled from the San Antonio and Tapian mine pits into the Mogpog
and Boac Rivers, respectively [8], flooding neighboring towns and villages and heavily
contaminating associated soil and surface water bodies. Although mining operations
ceased after the disasters, the soil and SW within the rivers and surrounding areas remain
contaminated [12,21,35,36,39]. Despite being abandoned, the two open pits produce sheet
flows, especially during intense rainfall and flooding, that discharge mine tailings to
both rivers and adjacent land [21]. This has resulted in significant increases in metal
concentration from 1998 to 2019, particularly Mn, which increased from 1060 ppm to
68,169 ppm [35,39].
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Figure 1. Site map of Marinduque island in the Philippines, the location of the San Antonio and
Tapian open mine pits, and Mogpog and Boac Rivers.

2.2. Soil and Surface Water Sampling in Mogpog and Boac Municipalities

Field sampling events were conducted in three different years to collect soil and SW
samples in strategic locations inside the Mogpog and Boac municipalities only. The location
of all sampling points is indicated in Figure 2, with most samples collected near the two
rivers and the open mining pits. A total of 40 soil samples were collected in February 2022
by following the procedures outlined in the USEPA guidelines LSASDPROC-300-R4 [49],
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while 22 and 26 SW samples were collected in December 2019 and July 2021, respectively,
using USEPA LSASDPROC-201 R5 [50].
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Figure 2. Soil and SW sampling locations in (a) 2019, (b) 2021, and (c) 2022. Blue and cyan color stand
for SW and soil, respectively.

The physicochemical properties of SW, such as pH, temperature, electric conductivity
(EC), and total dissolved solids (TDS), were analyzed with a portable multi-parameter meter
(HANNA, Woonsocket, RI, USA) with a HI1285-5 probe and accompanying calibration
and cleaning solutions (e.g., HI70007, HI70031, HI70032, HI700661). The physicochemical
properties of the soil, including pH, temperature, EC, and humidity, were also measured
using a Renke portable soil analyzer with multi-probes. Soil moisture content (MC) was
also calculated for the soil samples using the oven drying method. Mn concentrations
in soil and SW were measured with a portable Olympus Vanta X-ray fluorescence (XRF)
analyzer (Olympus, Bartlett, TN, USA) and Optima 8000 Inductively Coupled Plasma
Optical Emission Spectrometry (ICP-OES) (PerkinElmer, Waltham, MA, USA), respectively.
The ICP-OES used the multi-element standard solution IV and resulting R2 equal to 0.99
during the analysis. The XRF was calibrated using its standard reference material and the
Olympus Vanta blank in resealable plastic no. 2. The XRF device was extremely beneficial
for measuring soil Mn as the study site is on a remote island without an appropriate
analytical laboratory. It can analyze metal concentrations in soil samples, though the focus
of this study is Mn, with a confidence level of 99.7% [51] and has been employed for a
range of environmental monitoring studies [52–54].

2.3. Prediction Model Development Framework

Figure 3 illustrates the framework that was developed to create the ANN prediction
model aided by spatial analysis using a geographic information system (GIS). The two sets
of data for SW (2019 and 2021) and the one set of data for soil (2022) contained the physico-
chemical properties and Mn concentrations measured at each sampling point. In this study,
12 parameters were considered in the prediction of soil Mn, namely pH, temperature, EC,
humidity, soil MC, ground slope, ground elevation, curve number (CN), flood level, soil
texture, average rainfall, and average atmospheric temperature. All these parameters were
gathered using spatial analysis to assess their relationship to the corresponding Mn con-
centration in soil. Fourteen parameters were considered for SW, namely pH, temperature,
EC/TDS, ground slope, ground elevation, CN, flood level, soil texture, average rainfall,
average atmospheric temperature, and morphologic parameters such as river bends, river
width, and sinuosity. Morphologic parameters for SW were employed to account for the
hydrodynamics of the river.
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Figure 3. Schematic of the framework developed for the development of the ANN model.

Correlation analysis was also performed to determine the degree of relationship of
the identified parameters in soil and SW to their respective concentration of Mn. Sets of
spatial data were extracted with the aid of GIS, which were used to create the prediction
model using ANN. For the training of the ANN model, 85% of all data extracted from the
spatial analysis were used, with the remaining 15% used for external validation. External
validation is very important to ensure that the trained model will perform strongly in
predicting data outside of the datasets used for training [55]. MIKE Eco Lab was used
to validate river morphology parameters as an additional input to the ANN model that
significantly affects Mn accumulation in SW.

2.3.1. GIS Spatial Analysis of Identified Parameters

Spatial analysis was performed using a GIS to convert point data into spatially con-
tinuous data, with systematic interpolation assigning data to unsampled sites. Spatial
interpolation is widely employed in environmental studies, where it can be highly effec-
tive [56] in improving the assessment of an area’s condition [57,58]. In this study, the inverse
distance weighting (IDW) method was used to estimate values in unsampled locations
using the weighted average of known data points, with these weights inversely correlated
to the distances between the sampled and predicted points.
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2.3.2. Spatial Grid Mapping and Zonal Statistics

Grid mapping was performed on the study area to assign spatial data to specific loca-
tions [59]. While point data only represent a value specific to that location, grid data take the
average of all point data enclosed within each node using zonal statistics [60]. Figure 4 presents
the developed grid map with a node size of 500 m, with soil and SW having 563 and 117 grid
nodes, respectively. Note that both 2019 and 2021 SW data consisted of 117 grid nodes and were
lumped together into a single SW dataset with 234 nodes.
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Figure 4. Site map of the study area showing the grid nodes associated with soil and SW.

The spatial grid nodes and zonal statistics were integrated to assign and process data
for each identified input parameter. A variety of maps were superimposed over the gridded
map to determine the various parameters: (i) CN was determined from land cover maps;
(ii) ground elevation, ground slope, and river morphology were determined from digital
elevation models such as in-SAR; (iii) flood level from hazard maps of the Mines and
Geosciences Bureau; (iv) soil texture from the National Mapping and Resource Information
Authority (NAMRIA); and (v) rainfall and temperature from the Philippine Atmospheric,
Geophysical and Astronomical Services Administration (PAGASA).

2.3.3. Artificial Neural Network Modelling

ANN is a machine-learning approach that mimics the function of a real biological
neuron in the prediction and forecasting of complicated systems. ANN has been used in
different environmental studies to provide reliable results in the assessment and prediction
of contaminants in media, such as water [61], air [62], and soil [63]. The prediction capability
of an ANN model relies on the dataset training quality. Datasets with known input and
output parameter values are used to train the model, with ANN then identifying the
relationship and patterns between input and output [64]. Backpropagation neural network
learning is a subset of supervised learning that focuses on error minimization in this study.
It needs a training dataset with a defined output and uses training to reduce the discrepancy
between the projected output and the actual output [65]. The architecture of the ANN
model is shown in Figure A1 in Appendix A.

In this study, the ANN models were created with MATLAB R2021a following the
architecture as presented in Figure 5a,b for So and SW. The network type used was feed-
forward backdrop, while Levenberg–Marquardt was chosen as the training algorithm due
to its time efficiency in training moderate-sized feed-forward neural network models [66],
with the Learn Gradient Descent with Momentum weight for the adaption learning function.
The developed model used a hyperbolic tangent sigmoid (tansig) as the transfer function to
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connect the weight of the neuron with the input elements in the model. Complete internal
characteristics of the ANN model used are presented in Table 1. All the datasets in this
study that were extracted from the spatial grid maps (i.e., 563 soil + 117 SW 2019 + 117 SW
2021) were divided for the training and validation steps, with 85% of the data used to train
the model, and 15% of the data used for external validation (see Figure 3) [67]. The network
structure followed the equation 2m + 1, wherein “m” is the number of hidden neurons,
as suggested in the study by Law et al. (in 2020) [68]. According to Nguyen et al. [69],
excessive numbers of training datasets could lead to overfitting and provide erroneous
results, thereby suggesting that training should not use all datasets and a portion should
be left for validation.
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Table 1. Simulation environment used in the ANN model.

Internal Characteristic Max

Network Type Feed-forward backdrop
Training Algorithm Levenberg–Marquardt
Learning Function Gradient descent with momentum weight and bias

Performance Function Mean Squared Error
Transfer Function Hyperbolic Tangent Sigmoid
Number of Layer 2
Hidden Neurons 25, 29

2.3.4. Correlation Analysis of Identified Parameters and Feature Reduction

Correlation analysis was performed using Pearson correlation on all identified param-
eters for both soil and SW (input) and Mn concentration (output) to identify the degree of
relationship [70]. The respective correlation between each input parameter and output Mn
establishes how critical it would be in the developed ANN prediction model [71].

Feature reduction was also performed by reducing the number of input parameters
in the training of the model. The input parameters for soil and SW were removed one by
one, with the removal order based on the degree of correlation between input parameters
and Mn (i.e., input parameter with the lowest degree of correlation would be removed
first, and so on). This parameter reduction was performed to assess how the prediction
model would perform with less input parameters [72], which may replicate the scenario at
some sites or site areas where data and parameters are more limited and determine which
parameters are critical and which can be neglected. For each scenario, parameter reduction
was performed prior to model training.

2.3.5. Performance Evaluation

Performance evaluation of the ANN model is very important to determine the reliabil-
ity of its prediction ability [73]. It can show whether the model is performing as desired or
if it needs to undergo further training. The correlation coefficient (R) and mean squared
error (MSE) were utilized to assess the performance of the soil ANN and SW ANN models
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during training within MATLAB. The R value indicates the performance of the network
generalization and signals training termination when generalization ceases to improve.
Both R and MSE were used by the model as basis in terminating its iteration or training. R
and MSE can be seen as Figures A2 and A3 in Appendix A.

In this study, the mean absolute percentage error (MAPE) was also computed to
identify the average error of the model via comparison of the predicted value with the
actual/measured value (see Equation (1)). Jierula et al. [74] evaluated a range of equations
for measuring the accuracy of prediction models and indicated that MAPE is one of the
best and most logical methods to employ.

MAPE =
measured value− predicted value

measured value
× 100% (1)

The root mean squared error (RMSE) was also computed to provide the standard
deviation of the residuals or prediction errors of the model. Using Euclidean distance,
RMSE shows how far predictions are from measured values [75], as shown in Equation (2).

RMSE =

√√√√∑N
i=1

∥∥∥y(i)− ŷ
(

i)‖2

N
(2)

where N is the number of data points, y(i) is the i-th measurement, and ŷ(i) is the predicted
value.

Willmott’s Index was also used as an extra criterion to assess how well the created
ANN models performed, as shown in Equation (3). Willmott’s Index, which ranges from
0 to 1, with 1 being the optimum value signifying an excellent match, is a metric of the
agreement for the systematic evaluation of the extent of model prediction error. The index is
able to calculate the proportional and cumulative differences between actual and forecasted
averages and variances, but it is also excessively susceptible to extreme values because of
squared disparities [76,77].

WI = 1−


N
∑

i=1

(
Mnpredicted −Mnobserved

)2

N
∑

i=1

(∣∣∣Mnpredicted −Mnobserved

∣∣∣+ ∣∣Mnobserved −Mnobserved
∣∣)2

 (3)

3. Results
3.1. Spatial Grid Maps for Soil and SW

Figures 6 and 7 present the spatially interpolated grid maps for soil and SW Mn
concentrations, respectively. Each grid node illustrates the associated Mn concentration,
ranging from low (light purple) to high (dark blue). Figure 5 shows that soil Mn concen-
tration is higher in parts of Boac compared to Mogpog and highly concentrated near the
pits. Figure 6 shows a higher concentration of SW Mn in the upstream regions and near
the two pits. With this simple spatial analysis, it could be perceived that two mining pits
are contributing a lot to the elevation of Mn in both soil and SW. The concentration of Mn
in SW was also compared to the simulation performed using the MIKE Eco lab model as
shown in Figures A4 and A5 (Appendix A).

Results showed that accumulation happens mostly in the bends of the river and near
the mining pits, providing more significance in considering the morphology of the river
as an input parameter. While not shown here, each grid node also contains each input
parameter with these datasets used in the ANN model. These datasets associated with the
grid maps are summarized by descriptive statistics in Tables 2 and 3.
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Table 2 presents the descriptive statistics for the 12 selected input parameters for soil
that have potential correlation to Mn. Soil pH and EC have previously been correlated
to increased metal concentrations [78], with higher pH shown to promote higher Mn
concentration in soils since alkalinity of soils reduces Mn availability to plants [79]. In
this study, soil pH ranged from 3.19 to 6.28, while the average EC for the whole area was
308.565 mS/cm, with a higher standard deviation (SD) indicating higher variability of EC
throughout the area. Soil temperature can greatly affect the accumulation of metals in
plants and also affect the availability of metals in soil during this process. According to
Lee et al. [80], increasing soil temperatures also increases the soil-to-plant transfer of heavy
metals. The average soil temperature in Mogpog and Boac was 28.0 ◦C, with a SD of 1.3.
Ground elevation and ground slope were also considered as input parameters since the
terrain of an area can affect the spatial distribution of heavy metals in soils [81]. The highest
elevation in the study was 526.59 masl, while the highest slope was 29.3◦. As these values
are based in the terrain, they do not really change with time.
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Table 2. Summary of descriptive statistics for all input parameters in the ANN model for soil.

Parameters Max Min Mean SD Skewness Kurtosis

Soil pH 6.282 3.193 5.251 0.641 −0.870 −0.246
Soil EC 593.715 98.758 308.565 65.105 1.101 2.623

Soil Humidity 124.069 12.654 27.682 12.700 3.100 15.554
Soil Temp 31.938 25.239 27.965 1.291 0.887 0.188
Soil MC 100.000 8.548 27.540 13.671 3.316 13.798

Ground Slope 29.284 2.252 13.610 5.587 0.041 −0.474
Ground Elevation 526.593 8.378 183.195 124.954 0.461 −0.695

CN 92.139 35.923 79.817 7.553 −1.803 5.835
Flood Level 3.000 1.000 1.086 0.288 3.192 9.333
Soil Texture 3.000 1.000 1.139 0.445 3.345 10.053

Rainfall 188.973 178.079 183.829 2.912 −0.146 −1.119
Atm. Temp 25.834 25.745 25.782 0.024 0.381 −0.944

Soil Mn 1222.710 450.750 757.698 111.224 0.584 1.580

Table 3. Summary of descriptive statistics for all input parameters in the ANN model for SW.

Parameters Max Min Mean SD Skewness Kurtosis

SW pH 8.381 3.652 6.903 0.944 −1.684 2.566
SW EC 4094.130 113.617 781.436 455.648 3.550 16.932

SW TDS 2032.230 51.636 380.204 227.379 3.545 16.862
SW Temp 34.320 29.118 31.313 0.954 0.298 0.066

Ground Slope 28.052 2.601 11.751 6.692 0.380 −1.056
Ground Elevation 365.968 8.978 97.859 83.287 1.097 0.369

River Bends 4.000 0.000 1.971 1.008 0.197 −0.624
Width 261.750 57.213 138.472 67.436 0.416 −1.227

Sinuosity 1.924 1.000 1.339 0.254 0.709 −0.461
CN 92.973 36.193 73.982 14.235 −0.988 −0.242

Flood Level 3.000 1.000 1.371 0.518 0.917 −0.364
Soil Texture 3.000 1.000 1.549 0.783 0.972 −0.800

Rainfall 473.605 354.518 411.147 50.359 0.023 −1.961
Atm. Temp 27.773 26.670 27.222 0.521 −0.001 −2.008

SW Mn 3.884 0.002 1.714 1.409 −0.134 −1.833

The CN and flood level have also been correlated to Mn in soil [82], with CN related
to the capability of soil to be infiltrated by water, and flood level indicating the extent and
level of floods that these soils are subjected to. Average CN in the study area was 79.82,
while the average normalized value for flood level was 1.09, which is equivalent to 0.136 m.
The corresponding actual value of flood level is shown in Table A1 in Appendix A. Soil
texture is also a normalized value that corresponds with 1-clay loam, 2-sand, and 3-sandy
loam. Average soil code in the study area was 1.14, indicating that the majority of soil in
Mogpog and Boac is clay loam. Climate change occurs everywhere and can affect metal
transport in catchment areas [32]. This study includes the possible effect of climate change
by considering both rainfall and atmospheric temperature. The highest rainfall in the area
was 188.97 mm, with a small SD. Similarly, atmospheric temperature in the area showed
little deviation, with its highest value of 25.8 ◦C and lowest value of 25.7 ◦C. Finally, Table 3
shows that the highest concentration of Mn in soil was 1222.7 mg/kg, with an average
concentration of 757.7 mg/kg for the whole area.

Table 3 presents the descriptive statistics for the 14 input parameters for SW that
may be correlated to SW Mn. The physicochemical properties of water, such as pH,
temperature, EC, and TDS, have long been used in studies due to their relationship to metal
contamination [12,83]. The pH is critical as metals are more soluble in acidic water [84],
while the pH also affects the adsorption–desorption process in sediments [85]. In this study,
the lowest SW pH was 3.65, which was located in areas nearest to the open mine pits [82].
EC and TDS have values directly correlated to one another, with average readings for EC
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and TDS equal to 781.4 mS/cm and 380.2 mg/L, respectively [86]. Ground elevation and
ground slope have also been shown to affect SW quality. Ground elevation ranged from
8.98 masl to 365.968 masl, highlighting the difference in elevation between upstream and
downstream portions of the rivers, which can strongly influence its flow velocity. Ground
slope has an average value of 11.75◦, which can also affect the velocity of flow and retention
of SW in the river channel.

In contrast to the ANN model for soil, the ANN model for SW is applied to river
systems and influenced by its hydrodynamics. The morphological parameters of the river,
such as river bends, width, and sinuosity, were measured for this study. River bends [87]
and sinuosity [23] control how sediments can accumulate along a river channel and act like
a storage facility for metals that can be stored and released depending on environmental
conditions. The average number of river bends within each grid node in this study was
1.97, with an average sinuosity of 1.34, with these values considered significant to induce
sediment accumulation. The average river width was 138.5 m. Similar to the ANN model
for soil, CN, flood level, soil code, rainfall average, and atmospheric temperature were also
considered for the SW model, with average values of 73.98, 1.371 (0.1–0.5 m), 1.549 (clay
loam), 411.15 mm, and 27.2 ◦C, respectively. The average concentration of Mn in SW was
1.71 mg/L, with a maximum value of 3.88 mg/L located nearest to the mine pits.

3.2. Correlation Analysis

Figure 8 presents the degree of correlation for each of the 12 input parameters for soil
to the output parameter (soil Mn). Each parameter has a different degree of correlation,
whether it is direct or inverse. Ground slope has the highest correlation value of 0.499,
while humidity has the lowest with−0.091. It is noted that correlation of soil pH (0.252) and
rainfall (0.254) are very similar, as soil pH is known to decrease over time due to leaching
caused by high amounts of rainfall that produce acidification [86]. As shown in Figure 7,
the degree of correlation from highest to lowest for all parameters is as follows: Ground
Slope > Flood Level > Soil MC > Ground Elevation > EC > Soil Temperature > Atmospheric
Temperature > Rainfall > Soil pH > CN > Soil Texture > Humidity. All correlation values
for each parameter are provided in Table A2.
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Figure 9 presents the degree of correlation between each of the 14 SW input parameters
and the Mn concentration in SW. Average rainfall received in the area was found to have the
highest correlation of 0.928 since it can be related to the overflow from the two open mine
pits during rainfall events [21]. This crucial parameter can also control future contamination
in the area due to the continuous existence of the pits. SW pH also has a significant
correlation of −0.428 since it is known that acidic water can induce desorption of metals
from sediments, making them more soluble [84,85]. The lowest correlation was SW TDS
(−0.019) since TDS can also be affected by saltwater intrusion unrelated to Mn and/or
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discharge from the open pits. It is also evident from Table A3 that river morphology
affects Mn accumulation in SW, with sinuosity and river bend values of 0.223 and 0.255,
respectively. The degree of correlation from highest to lowest is Rainfall > Atmospheric
Temperature > SW pH > River Bends > Sinuosity > SW Temperature > CN > Ground
Elevation > Flood Level > Ground Slope > Soil Texture > River Width > SW EC > SW TDS.
The correlation values for each parameter are shown in Table A3.
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3.3. ANN Modelling and Feature Reduction
3.3.1. ANN Model for Soil and Feature Reduction Analysis

The ANN model for soil Mn was first trained for the scenario with 12 input parame-
ters, with the training of the model continually repeated until the minimum gradient was
reached and the result stopped changing. The model was then validated with an unbiased
comparison of the trained model results (output Mn) with actual results (field-measured
Mn). Figure 10a presents the performance evaluation results of the ANN model for
12 inputs (leftmost bars) in terms of MAPE for training (orange) and validation (blue).
The MAPE value was lower for training (1.34%) than validation (3.01%). It is logical that
the MAPE value is lower for training since the training datasets were directly used in the
actual training itself and had a model bias, unlike the validation datasets.

The ANN model training and validation were then repeated for decreasing numbers of
input parameters. The order for the one-by-one removal of input was based on the degree
of correlation values in Tables A3 and A4 (i.e., ground slope had the lowest correlation and
was removed first to run the scenario with 11 input parameters). Figure 10a also presents
the MAPE performance evaluation results for each of the reduced input parameter model
scenarios. It shows that the training and validation of the ANN model gradually decline in
performance with the reduction in input parameters, with the highest MAPE and values
for training (9.58%) and validation (9.69%) occurring when only one input parameter is
used. There is no specified allowable MAPE value to evaluate prediction models; it will
always be dependent on the intended application of the model. Shi et al. [86] developed
machine learning models with seven input parameters for heavy metal estimation in soils,
and despite having an average MAPE of 12.14%, the prediction model was wholly sufficient
for metal estimation in their study [86].
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Figure 10. Performance evaluation of the ANN model for soil Mn, in terms of (a) MAPE and
(b) RMSE for the training and validation steps.

RMSE was also computed for each model scenario to identify how much predicted
values deviate from the actual value [75], with lower RMSE values indicating higher model
estimation accuracy [86]. As shown in Figure 10b, the lowest RMSE computed in the train-
ing and validation steps for the model with 12 input parameters was 21.54 mg/kg and
23.98 mg/kg, respectively. As shown in Table 2, the average Mn in soil was 757.7 mg/kg,
so obtaining an RMSE of 23.98 in external validation can be considered acceptable given the
high range of values. The highest RMSE was found in the model scenario with a single input
parameter, with only values of 98.96 and 91.53 for training and validation, respectively.

These ANN model results indicate that Mn in soil can be best predicted using the
model with all 12 input parameters. However, the models with 11, 10, 9, and 8 input
parameters still provide MAPE values of <5% in the external validation. This suggests
that even if humidity, soil texture, CN, and soil pH are not available, the model could still
provide sufficient estimates of Mn concentration in soil. The detailed results of the soil
ANN model are presented in Table A4.

3.3.2. ANN Model for SW and Feature Reduction Analysis

The ANN model for predicting SW Mn from all 14 input parameters did not initially
produce a good prediction model, with MAPE values of 38.34% and 154.00% in the training
and validation steps, respectively. Due to this poor performance, two ANN models for SW
Mn were developed based on ranges of SW Mn values, which has been shown to provide
better results if combining all SW values together did not work [87]. The SW data were
divided into two groups for these two models based on the range of Mn in SW. The first
model used SW Mn values within the 0–1 mg/L range, obtaining MAPE values of 13.55%
and 85.95% for the training and validation steps, respectively. The second model used SW
Mn values >1 mg/L, achieving MAPE values of 2.59% and 4.61%, respectively.

Figure 11 presents the performance evaluation results of the ANN model for predicting
SW Mn, where only Mn values >1 mg/L were considered. Similar to the soil Mn model,
the lowest MAPE and RMSE were achieved with all 14 input parameters. This indicates
how important both the chemical properties of SW and the physical properties of the river
are to best predict Mn concentration in SW. The MAPE for this scenario was 2.59% and
4.61% for the training and validation steps, respectively. Again, the model with a single
input parameter had the lowest performance, with the MAPE for training and validation
equal to 10.52% and 10.18%, respectively. The full details of the ANN model for SW Mn are
presented in Table A5.
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Figure 11. Performance evaluation of the ANN model for SW Mn, in terms of (a) MAPE and
(b) RMSE for the training and validation steps.

Utilizing the observed and predicted values of the Mn concentrations for the soil
and SW models, the WI values for the soil Mn and SW Mn models are 0.996 and 0.998,
respectively. These values indicate the efficiency and reliability of the developed soil and
SW Mn models since the calculated values were approaching the ideal value of 1. This
provides an additional layer of validation for the prediction model developed in this study.

4. Discussion

ANN models have become highly popular in environmental studies [12,88] due to their
extensive capabilities to solve complex problems [89]. In this study, ANN was employed
to create prediction models for Mn in soil and SW. Previous studies have developed
prediction models but only included a limited number of input parameters that did not
combine chemical with physical parameters. In this study, extensive data were collected
and analyzed to create datasets that can be used for the training and validation of the two
ANN models for soil Mn and SW Mn.

The soil Mn model used 12 input parameters varying in their degree of correlation to
Mn, with ground slope having the highest correlation (r = 0.500) and humidity having the
lowest (r = −0.091). Similarly, the 14 input parameters for the SW Mn model were arranged
according to their correlation with SW Mn. SW Mn is highly correlated to rainfall in the
area (r = 0.928), which can be associated with the overflow of the contaminants from the
open mine pits to the Mogpog and Boac Rivers [21,35,36,45,46]. SW pH was also highly
correlated to Mn concentration (r = −0.428). According to Saalidong et al. [84], lower pH
could stimulate the desorption of metals from sediments in rivers [84]. This also highlights
the importance of river morphology as it controls sediment deposition [22], which can also
contribute to elevated Mn in the area.

Performance evaluation of both models [74,90,91] confirmed their prediction accuracy,
with MAPE values of <5%, even lower than acceptable values in other studies [86,91–93].
The feature reduction for each ANN model helped to identify how each model responded
when certain input parameters were removed. Previous studies have used this approach
to assess whether and which parameters can be removed to improve model accuracy [94].
The two ANN models for soil Mn and SW Mn achieved the highest performance when
all possible input parameters were included, highlighting the influence of each parame-
ter on Mn accumulation that has been demonstrated in a wealth of studies [21,32,78–81].
Nevertheless, the feature reduction did demonstrate that the prediction models can still
provide sufficient accuracy even if 4–5 input parameters were excluded from the model
training. The trained and validated ANN models can provide a more accessible and
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less expensive strategy for environmental monitoring. The ANN models developed in
this study are useful to LGUs, communities, researchers, engineers, and scientists who
are monitoring the SW and soil quality. Moreover, these models are beneficial in areas
and neighboring countries with similar environmental conditions that need to be moni-
tored. Basic and easier-to-measure in situ parameters, such as pH, EC, river morphology,
and rainfall, can be used to predict Mn concentrations. These models are important to
communities in remote and less developed areas, such as the study site on the island of
Marinduque. Adjusting input parameter values and predicting their effect on Mn concen-
trations can be very beneficial to help local authorities design and implement more efficient
mitigation strategies.

The model developed in this study should be continually refined, especially with
future advances in machine-learning approaches [95]. New algorithms in neural networks
are expected to improve the prediction accuracy of the models. Furthermore, the model
approach in this study can be extended to predict the concentration of other heavy metals
and contaminants in the environment and could also be used for projections that consider
the effect of climate change since climate data are one of the inputs of the model. Future
work could consider developing a model for different species of Mn as it could react
differently with other identified parameters.

5. Conclusions

The areas surrounding the Mogpog and Boac Rivers on the island of Marinduque in the
Philippines have been contaminated with toxic mine tailings from the two abandoned open
mine pits. The Mn concentrations in soil and SW were well above standard limits, with
values of 1222.7 mg/kg and 3.884 mg/L, respectively. Unfortunately, local communities
were unaware of the associated risks and continue to rely on SW from the rivers and
adjacent agricultural lands for everyday needs. Soil and SW quality should be better
monitored; however, expertise and funds to support the needed monitoring activities of
more complex parameters of heavy metals is a challenge in many areas including the
islands of the Philippines. This motivated the need to develop a model with ANN to
predict Mn concentrations in the environment, specifically in soil and SW, from correlated
parameters that can be measured more easily.

ANN models were developed to predict Mn in soil and SW, using 12 and 14 input
parameters, respectively, that were extracted from spatial grid maps of the study area.
The ANN model for soil Mn achieved MAPE values of 1.34% and 2.01% for the training
and external validation steps of the model development, respectively. The SW Mn model
was split into two models based on SW concentrations ranges of 0–1 mg/L and >1 mg/L.
The model for the 0–1 mg/L SW Mn range achieved MAPE values of 13.55% and 85.95%
for training and validation, respectively, while the model for the >1 mg/L SW Mn range
achieved MAPE values of 2.59% and 4.61% for training and validation, respectively. The
ANN models were also trained and validated with successive reductions in the number
of input parameters to investigate whether such an extensive list of parameters is always
necessary. To determine the order in which the input parameters were removed, the degree
of correlation between each parameter and the concentration of Mn in soil and SW was
first calculated. For soil Mn, ground slope had the highest correlation (r = 0.500), followed
by flood level (r = 0.425), while the lowest correlation was found with soil humidity. For
SW Mn, rainfall had the highest correlation (r = 0.928), which can be expected as it directly
contributes to overflow from the mine pits, with EC and TDS having the lowest correlation,
which may occur due to the influence of salinity from saltwater intrusion. The ANN models
with reduced input parameters did diminish the accuracy of the model predictions relative
to the initial scenarios with 12 and 14 input parameters; however, sufficient accuracy can
still be obtained if certain parameters are removed or retained. For example, the ANN
model for soil Mn maintained a MAPE value <5% even when the input parameters were
reduced from 12 to 8.
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performance evaluation results from the ANN model training and validation.
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Table A1. Summary of the flood level codes related to flood height.

FL Code Flood Height

0–1 No flood
1–2 0.1–0.5 m
2–3 0.5–1.5 m

Above 3 Above 1.5 m

Table A2. Degree of correlation between each soil input parameter and soil Mn.

pH EC Hum Temp Mo Sl El CN Fl ST Rave Tave So Mn

pH 1.000
EC 0.476 1.000
Hum 0.175 0.508 1.000
Temp −0.632 −0.397 −0.342 1.000
Mo 0.355 0.815 0.485 −0.386 1.000
Sl −0.093 −0.441 −0.142 −0.172 −0.452 1.000
El −0.348 −0.639 −0.391 0.241 −0.496 0.587 1.000
CN −0.301 −0.043 0.012 0.373 −0.061 −0.086 0.125 1.000
Fl 0.130 −0.036 −0.050 −0.177 −0.028 0.075 0.063 −0.034 1.000
ST 0.235 0.211 0.026 −0.220 0.252 −0.393 −0.345 −0.548 −0.062 1.000
Rave −0.677 −0.727 −0.369 0.477 −0.555 0.405 0.738 0.265 0.069 −0.342 1.000
Tave 0.677 0.666 0.287 −0.409 0.485 −0.391 −0.709 −0.263 −0.086 0.324 −0.989 1.000
Soil
Mn 0.252 −0.314 −0.091 −0.292 −0.345 0.500 0.319 −0.242 0.425 −0.166 0.254 −0.261 1.000

Table A3. Degree of correlation between each SW input parameter and SW Mn.

pH EC TDS Temp Sl El CN RB W Si Fl ST Tave Rave SW Mn

pH 1.000
EC −0.168 1.000
TDS −0.164 0.998 1.000
Temp 0.352 −0.124 −0.108 1.000
Sl −0.327 0.025 0.017 −0.447 1.000
El −0.403 0.077 0.091 −0.427 0.751 1.000
CN −0.487 0.024 0.023 −0.147 0.216 0.229 1.000
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Table A3. Cont.

pH EC TDS Temp Sl El CN RB W Si Fl ST Tave Rave SW Mn

RB −0.482 0.105 0.099 −0.080 0.128 0.143 0.438 1.000
W 0.409 −0.282 −0.277 0.403 −0.314 −0.361−0.390−0.458 1.000
Si −0.404 0.137 0.131 −0.165 0.243 0.222 0.384 0.602 −0.396 1.000
Fl 0.156 −0.228 −0.220 0.168 −0.432 −0.315−0.098−0.031 0.141 −0.075 1.000
ST 0.470 0.002 −0.006 0.228 −0.389 −0.393−0.871−0.465 0.442 −0.426 0.107 1.000
Tave −0.266 −0.052 −0.062 0.190 0.021 −0.010 0.077 0.164 0.120 0.145 −0.067 0.005 1.000
Rave −0.041 −0.108 −0.112 0.280 −0.047 −0.053−0.059 0.065 0.176 0.006 −0.003 0.083 0.903 1.000
SW
Mn −0.428 −0.022 −0.020 0.168 0.131 0.154 0.168 0.255 −0.116 0.233 −0.145 −0.121 0.914 0.928 1.000

Table A4. Summary of results for the feature reduction analysis in the ANN model for soil Mn.

Input Parameters
Train Validation

%Error RMSE %Error RMSE Features Reduced

12 1.343 21.535 2.01 23.979 None
11 1.779 22.327 3.016 28.303 Hum
10 1.637 23.656 2.494 25.210 Hum, ST
9 3.423 33.236 4.231 43.133 Hum, ST, CN
8 3.223 22.360 4.025 39.728 Hum, ST, CN, pH
7 3.459 39.980 5.351 68.714 Hum, ST, CN, pH, Rave
6 4.430 46.577 5.130 58.294 Hum, ST, CN, pH, Rave, Tave
5 7.114 81.418 9.020 92.894 Hum, ST, CN, pH, Rave, Tave, Temp
4 7.271 75.205 7.843 73.951 Hum, ST, CN, pH, Rave, Tave, Temp, EC

3 7.710 82.912 7.871 83.253 Hum, ST, CN, pH, Rave,
Tave, Temp, EC, El

2 9.187 94.868 9.756 90.994 Hum, ST, CN, pH, Rave, Tave,
Temp, EC, El, Mo

1 9.581 98.963 9.694 91.525 Hum, ST, CN, pH, Rave, Tave, Temp, EC,
El, Mo, Fl

Table A5. Summary of results for the feature reduction analysis in the ANN model for SW Mn.

Input Parameters
Train Validation

%Error RMSE %Error RMSE Features Reduced

14 2.590 0.113 4.609 0.166 None
13 3.012 0.146 6.808 0.261 TDS
12 4.795 0.174 7.933 0.283 TDS, EC
11 4.298 0.158 7.506 0.295 TDS, EC, W
10 4.828 0.168 8.075 0.301 TDS, EC, W, ST
9 4.106 0.169 7.334 0.210 TDS, EC, W, ST, Sl
8 4.415 0.151 7.387 0.213 TDS, EC, W, ST, Sl, Fl
7 5.126 0.168 7.391 0.223 TDS, EC, W, ST, Sl, Fl, El
6 4.212 0.140 7.086 0.221 TDS, EC, W, ST, Sl, Fl, El, CN
5 5.266 0.185 8.625 0.221 TDS, EC, W, ST, Sl, Fl, El, CN, Temp
4 6.762 0.236 8.330 0.230 TDS, EC, W, ST, Sl, Fl, El, CN, Temp, Si

3 6.862 0.271 8.045 0.269 TDS, EC, W, ST, Sl, Fl, El, CN, Temp,
Si, RB

2 10.512 0.330 10.986 0.359 TDS, EC, W, ST, Sl, Fl, El, CN, Temp, Si,
RB, pH

1 10.521 0.363 10.175 0.354 TDS, EC, W, ST, Sl, Fl, El, CN,
Temp, Si, RB, pH, Rave

References
1. Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Monitoring Soil for Sustainable Development and Land Degradation

Neutrality. Environ. Monit. Assess. 2018, 190, 57. [CrossRef] [PubMed]
2. Why Monitor Water Quality? Available online: https://water.usgs.gov/owq/WhyMonitorWaterQuality.pdf (accessed on

22 February 2023).

https://doi.org/10.1007/s10661-017-6415-3
https://www.ncbi.nlm.nih.gov/pubmed/29302746
https://water.usgs.gov/owq/WhyMonitorWaterQuality.pdf


Water 2023, 15, 2318 20 of 23

3. Ahuja, S. Monitoring Water Quality: Pollution Assessment, Analysis, and Remediation, 1st ed.; Elsevier: Amsterdam, The Netherlands,
2013.

4. Bhagwat, V.R. Safety of Water Used in Food Production. In Food Safety and Human Health; Elsevier: Amsterdam, The Netherlands,
2019; pp. 219–247.

5. Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of Soil Quality for Agricultural Production Using Visible–near-Infrared
Spectroscopy. Geoderma 2015, 243–244, 80–91. [CrossRef]

6. FAO Initiative Brings Global Land Cover Data under One Roof for the First Time. Available online: https://www.fao.org/news/
story/en/item/216144/icode/#:~:text=artificial%20surfaces%20(which%20cover%200.6,grasslands%20(13.0%20percent)
(accessed on 22 February 2023).

7. Where Is Earth’s Water? Available online: https://www.usgs.gov/special-topics/water-science-school/science/where-
earths-water#:~:text=Almost%20all%20of%20it%20is,serves%20most%20of%20life\T1\textquoterights%20needs (accessed on
22 February 2023).

8. Environmental Monitoring. Available online: https://unece.org/environmental-monitoring (accessed on 22 February 2023).
9. Biber, E. The Challenge of Collecting and Using Environmental Monitoring Data. Ecol. Soc. 2013, 18, art68. [CrossRef]
10. Kirschke, S.; Avellán, T.; Bärlund, I.; Bogardi, J.J.; Carvalho, L.; Chapman, D.; Dickens, C.W.S.; Irvine, K.; Lee, S.; Mehner, T.; et al.

Capacity Challenges in Water Quality Monitoring: Understanding the Role of Human Development. Environ. Monit. Assess. 2020,
192, 298. [CrossRef]

11. Huynh, T.-M.-T.; Ni, C.-F.; Su, Y.-S.; Nguyen, V.-C.-N.; Lee, I.-H.; Lin, C.-P.; Nguyen, H.-H. Predicting Heavy Metal Concentrations
in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques. Int. J. Environ.
Res. Public. Health 2022, 19, 12180. [CrossRef]

12. De Jesus, K.L.M.; Senoro, D.B.; Dela Cruz, J.C.; Chan, E.B. Neuro-Particle Swarm Optimization Based In-Situ Prediction Model
for Heavy Metals Concentration in Groundwater and Surface Water. Toxics 2022, 10, 95. [CrossRef]

13. Saxena, N.; Varshney, D. Smart Home Security Solutions Using Facial Authentication and Speaker Recognition through Artificial
Neural Networks. Int. J. Cogn. Comput. Eng. 2021, 2, 154–164. [CrossRef]
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