
Citation: Ai, P.; Ma, L.; Wu, B.

LI-DWT- and PD-FC-MSPCNN-Based

Small-Target Localization Method for

Floating Garbage on Water Surfaces.

Water 2023, 15, 2302. https://

doi.org/10.3390/w15122302

Academic Editors: Caterina Valeo

and Mohammad Ehteram

Received: 23 March 2023

Revised: 6 June 2023

Accepted: 16 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

LI-DWT- and PD-FC-MSPCNN-Based Small-Target
Localization Method for Floating Garbage on Water Surfaces
Ping Ai 1,2, Long Ma 2,* and Baijing Wu 3

1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; aip@hhu.edu.cn
2 College of Computer and Information Engineering, Hohai University, Nanjing 211100, China
3 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;

12211816@stu.lzjtu.edu.cn
* Correspondence: malong@mail.lzjtu.cn; Tel.: +86-13919333385

Abstract: Typically, the process of visual tracking and position prediction of floating garbage on
water surfaces is significantly affected by illumination, water waves, or complex backgrounds,
consequently lowering the localization accuracy of small targets. Herein, we propose a small-
target localization method based on the neurobiological phenomenon of lateral inhibition (LI),
discrete wavelet transform (DWT), and a parameter-designed fire-controlled modified simplified
pulse-coupled neural network (PD-FC-MSPCNN) to track water-floating garbage floating. First, a
network simulating LI is fused with the DWT to derive a denoising preprocessing algorithm that
effectively reduces the interference of image noise and enhances target edge features. Subsequently, a
new PD-FC-MSPCNN network is developed to improve the image segmentation accuracy, and an
adaptive fine-tuned dynamic threshold magnitude parameter V and auxiliary parameter P are newly
designed, while eliminating the link strength parameter. Finally, a multiscale morphological filtering
postprocessing algorithm is developed to connect the edge contour breakpoints of segmented targets,
smoothen the segmentation results, and improve the localization accuracy. An effective computer
vision technology approach is adopted for the accurate localization and intelligent monitoring of
water-floating garbage. The experimental results demonstrate that the proposed method outperforms
other methods in terms of the overall comprehensive evaluation indexes, suggesting higher accuracy
and reliability.

Keywords: image segmentation; target location; water-floating garbage; discrete wavelet transform;
pulse-coupled neural network; human visual lateral inhibition network

1. Introduction
1.1. Background

With extensive population growth and rapid economic and social developments along
rivers, lakes, and coastal areas worldwide, water-floating garbage has severely threatened
anthropogenic and other natural ecosystems. Here, water-floating garbage refers to man-
made solid waste or natural objects floating on rivers, lakes, and seas [1]; it differs from
other types of floating objects in terms of its shape and floating movement characteristics.
In this study, we consider small-target [2] water-floating garbage as our research object. We
use computer vision technology to address poor localization accuracy under conditions of
illumination, water waves, and complex backgrounds; moreover, we improve the ability of
the visual tracking and position prediction of small-target water-floating garbage [3].

Thus far, research on water-floating garbage monitoring using computer-vision tech-
nology has primarily focused on intelligent real-time target localization and classification
to accurately obtain the category and location information of water-floating garbage. Fol-
lowing this, the intelligent tracking, localization, pollution assessment, salvaging, and
treatment of water-floating garbage are performed based on this information. With the
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advent of big data, neural-network-based image vision and machine-learning techniques
have been applied extensively to the research on intelligent positioning and classification
of water-floating garbage [4–6]. These techniques can be classified into image-detection-
and image-segmentation-based localization. Among these, image-detection-based localiza-
tion is a computational processing method that uses image pixel blocks as the minimum
processing units, and substantial recent research in the field has primarily focused on deep
learning. For instance, Yi et al. [7] improved the faster regions with convolutional neural
network (Faster R-CNN) method by incorporating a class activation (CA) network. The
CA network could reduce localization errors without affecting the recognition accuracy,
while effectively detecting and locating floating objects on water surfaces. Similarly, van
Lieshout et al. [8] proposed a system capable of automatically monitoring plastic pollution
through deep learning in five different rivers. Li et al. [9] proposed a garbage detection
method based on the “You Only Look Once” (YOLO) version 3 backbone network to
improve the accuracy of water-floating garbage detection. The authors employ a new
approach of setting the corresponding anchor frame size on a homemade dataset and
applying it to a water-floating robot. Armitage et al. [10] proposed a YOLOv5-based model
for marine plastic garbage detection and distribution assessment to more effectively assess
the abundance and distribution of global macroscopic oceanic floating plastic. The results
reveal that their method could effectively detect plastic garbage with different sizes and
obtain its location information.

Conversely, image-segmentation-based localization is a computational processing
method that uses image pixel points as the smallest processing units. This localization
method obtains more accurate target contour and position coordinate information, which
is particularly advantageous for the high-precision localization problem of small-sized
water-floating garbage. Notably, latest research on this method are focused on machine
learning and neural networks. For example, Arshad [11] proposed an algorithm capable of
effectively detecting and monitoring multiple ships in real time using morphological opera-
tions and edge information to segment and locate ships for ship detection and tracking, in
addition to a smoothing filter and Sobel operator for edge detection. Imtiaz et al. [12] used
the intensity and temporal probability maps of input image frames; these are then combined
to determine the threshold for segmenting driftwood targets in water using the temporal
connection method, thereby effectively overcoming the effects of illumination changes and
wave interference for rapid driftwood target detection in videos. Similarly, Ribeiro et al. [13]
used the YOLACT++ segmentation network with ResNet50 as the backbone feature extrac-
tion network and implemented a 3D constant rare factor (CRF) to improve frame loss and
ensure the temporal stability of the model. Moreover, they constructed a synthetic floating
ship dataset that aided the localization of ship targets; however, it increases the computa-
tional burden. Li et al. [14] proposed an improved Otsu method based on the uniformity
measure to segment water surfaces, achieving adaptive selection of thresholds through
the uniformity metric function to better segment water surfaces. Jin et al. [15] proposed an
improved Gaussian mixture model (GMM) based on the automatic segmentation method
(IGASM) to monitor water surface floaters. The IGASM improves the background update
strategy; maps the GMM results based on the hue, saturation, and value of the color space;
and applies the light and shadow discriminant function to solve the light and shadow
problem. The extracted foregrounds are smoothed using morphological methods, and the
IGASM method is verified on six video datasets. Water surface floaters in the videos are
detected rapidly and accurately by mitigating the effects of light, shadow, and ripples on
the water surface.

1.2. Related Research

The image segmentation-based location method has always been a focus of image
vision and machine learning applications, and represents an important component of
image processing analysis methods. Compared with other fields of image segmentation,
the small-target images of floating garbage on water surfaces are characterized by complex
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backgrounds and external environmental interference such as light and water waves [16]
in the segmentation process. As opposed to large/medium-sized targets, the small-size
target edge segmentation offset produced by one pixel point has a significant impact on the
segmentation and localization accuracy; however, edge segmentation is more difficult in
this case.

In this study, we use the discrete wavelet transform (DWT), which is known to be
robust and to effectively suppress noise in both the time and frequency domains. We
perform discrete wavelet decomposition and the reconstruction of images with complex
backgrounds and interference from illumination and water waves, which could be effec-
tively filtered out. In a previous study, Fujieda et al. [17] performed wavelet multilevel
decomposition of the original image and spliced the low-frequency, high-frequency, and air
domain features. Following fusion, these features are added to a CNN to compensate for the
lost spectral information, in turn improving the texture classification accuracy. Li et al. [18]
used the Daub5/3 algorithm to improve the multilevel decomposition processing of the
wavelet transform on images and achieve multiscale image enhancement. Zhang et al. [19]
combined the DWT with two-dimensional multilevel median filtering and proposed an
adaptive remote-sensing image denoising algorithm that could adaptively select the thresh-
old and improve the denoising ability of the wavelet transform. Fu et al. [20] combined
the DWT with a generative adversarial network to construct a two-branch network for
image enhancement. The proposed method prevented the loss of texture details, reducing
convergence difficulty during training in haze image enhancement, and obtaining good
evaluation results on the RESIDE dataset. To reduce the interference of changes in illumi-
nation on image recognition, Liang et al. [21] proposed a new framework based on the
wavelet transform and principal components to improve the accuracy of face recognition
under illumination changes. They used a particle swarm optimization neural network for
face recognition and experimentally demonstrated robust visual effects under different
illumination conditions, along with significantly improved recognition performance.

The pulse-coupled neural network (PCNN) model has been used extensively in image
segmentation and other processing fields [22–25]. The nonlinear computation and neural
ignition method of the PCNN model can refine target edge features during water-drifting
garbage image segmentation and achieve more accurate segmentation. However, previous
research on this method has primarily focused on medical applications while largely
ignoring its applications in the field of water-drifting garbage image segmentation. For
example, Guo et al. [26] improved the PCNN by integrating a spiking cortical model to
achieve coarse-to-fine mammography image segmentation. Yang et al. [27] changed the
popular simplified PCNN (SPCNN) model to an oscillating sine–cosine pulse-coupled
neural network (SCHPCNN) and obtained good image quantization results. However, the
complex mechanism and parameter settings of the PCNN are known to considerably limit
the PCNN algorithm. In response, Deng et al. [28] analyzed the relationship between PCNN
network parameters and mathematical coupling in fire extinguishing, coupling of adjacent
neurons, and convergence speed of the PCNN. Consequently, they proved the basic law of
neuron extinguishing in the PCNN, achieved the best comprehensive performance, and
overcame the associated limitations. However, as the conventional PCNN model uses
grayscale features of images as stimuli inputs, it cannot satisfy the requirements of image
processing on the human vision system (HVS); thus, adoption of the HVS can result in more
refined image processing [29]. Lian et al. [30] combined the characteristics of the PCNN
and HVS and proposed an MSPCNN that could segment medical images of gallstones
more accurately by changing the stimulus input. Similarly, Yang et al. [31] proposed
a saliency-motivated improved simplified PCNN (SM-ISPCNN), which was validated
on mammograms from the Gansu Cancer Hospital. The results indicate that the model
demonstrated significant potential for clinical applications.
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2. Materials and Methods
2.1. Dataset and Description

In the absence of publicly available datasets, we prepare a dataset for our experiment
by recording data at the Yanbai Yellow River Bridge in Chengguan District, Lanzhou City
(latitude 36.07484583, longitude 103.8843389). As a representative inland river, the Yellow
River is characterized by a rapid flow, low visibility, and a complex riparian environment; it
is also subject to water wave motion and illumination. Furthermore, owing to the complex
and diverse riparian environment, a large drop between the river surface and river bank,
and given the relatively wide river surface, the litter floating on its surface often appears
as a small target in monitoring images. Therefore, the collection environment exhibits the
typical characteristics of the problem that is investigated in this study and is suitable for
this experiment.

As shown in Figure 1, seven data collection points are established. A model Canon
PowerShot SX730 HS camera with a fixed angle is set up for the entire process of filming
water-floating garbage at all points. The collected video data are extracted as jpg images
according to the frames, filtered out into three different filming background datasets, and
divided into datasets 1, 2, and 3 with 200 images each, where dataset 3 is a multitarget
dataset of water-floating garbage. The image size is 5184 × 2912 pixels, with a horizontal
as well as vertical resolution of 180 dpi, bit depth of 24, and a resolution unit of an inch.
The trash target size accounted for a relatively small percentage relative to the image
background size. The target percentage in the dataset images ranged from 0.13% to 0.60%,
which belongs to the category of small targets [2], and is disturbed by riverbank reflections,
lighting, and water waves to different degrees, in order to represent the floating garbage
more clearly, the floating garbage is marked with a yellow box. As illustrated in Figure 2.
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The latitude and longitude were acquired using the Galaxy 1-GNSS of the Southern
Satellite Navigation Instrument Company, which adopts the RTK measurement system,
with the following parameters: equipment positioning accuracy horizontal: 0.25 m + 1 ppm;
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RMS vertical: 0.50 m + 1 ppm RMS SBAS; differential positioning accuracy: typical <5 m
3DRMS Static GNSS; measurement plane accuracy: ±2.5 mm + 1 ppm; elevation accuracy:
±5 mm + 1 ppm; real-time dynamic measurement plane accuracy: ±8 mm + 1 ppm; and
elevation accuracy: ±15 mm + 1 ppm.

2.2. Methods

The proposed LI-DWT- and PD-FCMSPCNN-based localization method for small-
target images of water-floating garbage comprises three steps: preprocessing, segmentation,
and postprocessing, as shown in Figure 3. The algorithm consists of the following steps.
See Appendix A.
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Step 1: The input image is pre-processed by denoising to obtain high- and low-
frequency components after DWT (where HL2, LH2, and HH2 are the high-frequency
components in the horizontal, vertical, and diagonal directions after two wavelet trans-
forms, respectively; and LL2 is the low-frequency component after two wavelet transforms).
The low-frequency component image is filtered by a low-pass Gaussian filter combined
with an LI network, which enhances the edge features of the low-frequency component
during denoising. Subsequently, the image is recovered using wavelet inverse transform.

Step 2: The denoised image is input into the PD-FC-MSPCNN segmentation model.
The attenuation factor α, auxiliary parameter P, and amplitude parameter V are calculated
and dynamically fine-tuned to generate a synaptic weight matrix Wijkl with a normal
distribution for image segmentation.

Step 3: Finally, the segmentation results are processed using multiscale morpholog-
ical filtering (MMF), which computes the structural elements (SEs) at different scales,
connects the segmentation breakpoints, smooths the results, and obtains the target pixel
coordinates (upper left, lower right, and center coordinates) to complete the segmentation
localization process.

2.3. Preprocessing: LI-DWT Denoising

With K input source images, Ik, k ∈ [1, K] performs DWT decomposition, as shown in
Equations (1) and (2):

IL
k (i, j) =

1√
XY

∑X−1
i=0 ∑Y−1

j=0 Ik(i, j)ϕ(x, y), (1)
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IG
k (i, j) =

1√
XY

∑X−1
i=0 ∑Y−1

j=0 Ik(i, j)ΨG(x, y), G ∈ {H, D, V}. (2)

where IL
k , IG

k represents the low-frequency component and high-frequency component,
while H, D, and V represent the horizontal, vertical, and diagonal directions. X and Y
represent the length and width of image pixels, (i, j) represents the coordinate values of
the transformed pixels, (x, y) represents the coordinate values of the input source image
pixels, ϕ(x, y) is a scaling function, ΨG(x, y) is a wavelet function, and ε denotes the
scaling magnitude.

ϕ(x, y) = 2
ε
2 ϕ
(

2
ε
2 x− i, 2

ε
2 y− j

)
, (3)

ΨG(x, y) = 2
ε
2 Ψ
(

2
ε
2 x− i, 2

ε
2 y− j

)
, G ∈ {H, D, V}. (4)

Thus, low- and high-frequency component images can be generated. The low-frequency
image contains rich information and is processed by the LI network using Gaussian filtering.
Subsequently, a wavelet inversion provides the denoised depth map. The Gaussian filtering
proceeds as follows:

Q(i, j) =
1

2πσ2 e−
i2+j2

2σ2 , (5)

where σ2 is the variance, and m, n are the input pixel point coordinates, where m, n ∈ [M, N].
The Gaussian kernel size is (2t + 1)× (2t + 1), and in this paper t = 2. The Gaussian kernel
function is calculated as

Q(i, j) =
1

2πσ2 e−
(i−t−1)2+(j−t−1)2

2σ2 , (6)

The LI network is modeled as

ri,j = ei,j −∑m=t
m=−t ∑n=t

n=−t Cmme(i + m, j + n), (7)

where ei,j is the input of a pixel at a point, ri,j is the output of the point, t is the size of
the inhibition field, and Cmm is the matrix of the LI coefficients, which uses the Euclidean

distance dist =
√
(i− x)2 + (j− y)2 between two receptors a(i, j)b(x, y) as the formula for

the LI coefficients, such that they have the characteristics of a normal distribution. After
calculation and normalization, the parameters are set as follows:

Cmm =


0.4000 0.3162 0.2828 0.3162 0.0400
0.3162 0.2000 0.1414 0.2000 0.3162

0.2828 0.1414 0 0.1414 0.2828
0.3162 0.2000 0.1414 0.2000 0.3162
0.4000 0.3162 0.2828 0.3162 0.0400

. (8)

To enable Gaussian filtering to better handle low-frequency-component images and
achieve target edge enhancement, LI is incorporated into the Gaussian kernel as follows:

QLI = P(i, j)TCmm, (9)

Any image from the dataset is tested, and after LI-DWT denoising, the low- and high-
frequency components after two wavelet transforms and the wavelet reconstructed image
are obtained, as shown in Figure 4.
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(b) low-frequency components after two wavelet transforms, (c) high-frequency components after
two wavelet transforms, and (d) wavelet reconstruction after two wavelet transforms. The yellow
box is the marker box for floating garbage.

2.4. Segmentation: PD-FC-MSPCNN

The PCNN is based on synchronous pulse issuance on the cerebral cortex of cats
and monkeys. Compared to deep learning, the PCNN can extract important informa-
tion from complex backgrounds without learning or training and has the characteristics
of synchronous pulse issuance and global coupling. Moreover, its signal form and pro-
cessing mechanism are more consistent with the physiological basis of the human visual
nervous system.

The original PCNN model has complicated parameter settings that require manual
settings. The SPCNN model proposed by Chen et al. [32] has been widely used for image
segmentation. Its kinetic equations are:

Fi,j[n] = Si,j, (10)

Lij[n] = VL∑
kl

WijklYkl [n− 1], (11)

Uij[n] = e−α f Uij[n− 1] + Sij(1 + βVL∑kl WijklYkl [n− 1]), (12)

Yij[n] =
{

1, i f Uij[n] > Eij[n− 1]
0, else

, (13)

Eij[n] = e−αE Eij[n− 1] + VEYij[n], (14)

where Fi,j[n], Lij[n], Uij[n], and Eij[n] denote the feedback input, link input, internal activity,
and dynamic threshold of the neuron after iteration, respectively. Furthermore, Si,j denotes
the input excitations, VL is the magnitude coefficient of the link input, VE is the magnitude
coefficient of the variable threshold function, α f and αe are the decay constants, β is the link
strength, and Wijkl is the synaptic connectivity coefficient. The five important parameters
of the SPCNN model, Wijkl , α f , β, VE, and αe, are set as follows:

Wijkl =

0.5 1 0.5
1 0 1

0.5 1 0.5

, (15)

α f = log
(

1
σ(S)

)
, (16)

β =
(S max/Ś

)
− 1

6VL
, (17)

VE = e−α f + 1 + 6βVL, (18)

VL = 1, (19)
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αe = ln

 VE

1−e
−3α f

1−e
−α f

+ 6βVLe−α f

. (20)

Lian et al. [33] improved the SPCNN and proposed a fire-control MSPCNN model
(FC-MSPCNN), which provides a parameter setting method to control the fire-control
neurons within an effective pulse period. Consequently, good performance was achieved
in color image quantization and gallbladder image localization. In this study, we further
simplify the model parameters and computational process based on the FC-MSPCNN
model and propose a parameter-designed FC-MSPCNN (PD-FC-MSPCNN), wherein the
parameter can be set adaptively, as depicted in Figure 5. First, the two decay constants, α f
and αe, are unified and defined as the parameter α. Second, to simplify the operation, the
parameter link strength β in the internal activity term of Uij is removed. Third, to reduce
the complexity that is associated with parameter setting, an auxiliary parameter P and
amplitude parameter V are introduced into the dynamic threshold Eij to achieve dynamic
fine-tuning of the threshold and to calculate the synaptic weight matrix Wijkl with normal
distribution characteristics.

Uij[n] = e−2αUij[n− 1] + e−αSij + ∑kl WijklYkl [n− 1]Sij, (21)

Yij[n] =
{

1, i f Uij[n] > Eij[n− 1]
0, else

, (22)

Eij[n] = e−αEij[n− 1] + P + VYij[n]. (23)
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Figure 5. PD-FC-MSPCNN structure diagram.

An improved formula for calculating the attenuation factor α is presented below,
where O′ is the normalized Otsu algorithm segmentation threshold.

α = ln
1

O′
. (24)

The synaptic weight matrix Wijkl is calculated with reference to the calculation pro-
vided in the existing literature [33]. In setting this parameter, it highlights that the weight
matrix has a normal distribution with a standard deviation of one.

Wijkl =


0.00296 0.01331 0.02194 0.01331 0.00296
0.01331 0.05963 0.09832 0.05963 0.01331
0.02194 0.09832 0.16210 0.09832 0.02194
0.01331 0.05963 0.09832 0.05963 0.01331
0.00296 0.01331 0.02194 0.01331 0.00296

. (25)
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The expressions for the amplitude parameter V and auxiliary parameter P of the
dynamic threshold are as follows:

V = e−α + e−2α (26)

P = e−3α + e−4α. (27)

The role of the auxiliary parameter P is to fine-tune the threshold dynamically, thereby
widening the adjustment range of the PD-FC-MSPCNN model.

The LI-DWT image is fed into the improved PD-FC-MSPCNN model and the segmen-
tation results are obtained, as shown in Figure 6.
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2.5. Postprocessing: MMF

Notably, noise with different scales exists in the segmentation results; the PD-FC-
MSPCNN uses morphological filtering for optimization, connection of the breakpoints,
and smoothing. The grayscale expansion of the morphological filtering for the segmented
image (i, j) is expressed as:

( f ⊕ SE)(i, j) = max
{

f
(
i− i′, j− j′

)
+ SE

(
i′, j′

)∣∣(i′, j′
)
∈ DSE

}
, (28)

where DSE is the definition domain of the SE (i.e., a square matrix herein). Subsequently,
the grayscale closing morphological filtering operation is defined as

f ·SE = ( f ⊕ SE)ΘSE. (29)

This closing operation is performed based on the expansion operation to eliminate
darker details that are smaller than the SEs. In general, erosion and the closing operation
are mixed and matched to achieve operation filtering effects. However, in certain cases,
multiscale noise interference cannot be effectively removed if a single SE is used for filtering.
Therefore, to achieve better denoising, we set the SE scales to 3× 3 and 5× 5, and normalize
them according to the LI-DWT coefficients and the eight domain correlation properties of
the image.

SE3×3 =

1 0 1
0 1 0
1 0 1

, (30)

SE5×5 =


1 0 0 0 1
1 1 0 1 1
1 0 1 0 1
1 1 0 1 1
1 0 0 0 1

. (31)
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The improved MMF is expressed as follows:

f (i, j) = ( f ⊕ SE3×3)ΘSE5×5. (32)

The resulting segmentation map is used as the input and MMF is performed. The
results are presented in Figure 7.
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3. Results

The experiments are conducted using the deep-learning framework PyTorch, Python 3.8,
CUDA 9.0, a GPU of NVIDIA GeForce RTX 2080 Ti, 11 GB of graphics memory, 62 GB of
RAM, and Windows 10 as the operating system.

3.1. Evaluation Indicators

Eight evaluation metrics, namely the perceptual hash similarity (phash), error rate
(VOE), target area variance (RVD), mean absolute error (MAE), Hoffman distance (HF),
sensitivity (SEN), time complexity (T), and coordinate error (CD), are selected for this
experiment to observe the segmentation extraction results more intuitively. A new overall
evaluation score known as the overall comprehensive evaluation (OCE) is set to represent
the overall comprehensive evaluation of the algorithm using the eight metrics. The OCE
provided the final score based on a particular weight distribution of the eight evalua-
tion metrics.

• Perceived hash similarity (phash):

phash(Ik1, Ik2) =

z

∑
i=1

√(
i1,i − ρi2,i)

2 +
(

j1,i − ρj2,i)
2

Z
, (33)

where X1 denotes the segmented image output by the algorithm and X2 denotes the
manually segmented image; ρ = φ2(i, j)/φ1(i, j), i, j denotes the corresponding pixel point.
The perceived hash similarity quantifies the overall similarity between the segmented
image output by the algorithm and the manually segmented image by calculating the
Euclidean distance between the two. A phash value that is closer to one indicates greater
similarity between the two inputs.

• Volumetric overlap error (VOE):

VOE =

∣∣∣∣2× (Ik1 − Ik2)

Ik1 + Ik2

∣∣∣∣. (34)

The VOE measures the accuracy of the target edge pixel segmentation; a lower error
rate indicates that the algorithm pixel segmentation is more accurate and the algorithm is
more reliable.

• Relative volume difference (RVD):
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RVD =

∣∣∣∣ Ik1
Ik2
− 1
∣∣∣∣. (35)

The RVD measures the area difference of the segmented image output by the algorithm
compared with the manually segmented image; a value that is closer to zero indicates more
accurate algorithm segmentation and a better segmentation effect.

• MAE:

MAE =
1

XY

X

∑
i=1

Y

∑
j=1

(
jIk1 − jIk2

)
(iIk1 − iIk2). (36)

The MAE measures the deviation of the segmented image output by the algorithm
from the manually segmented image. A smaller MAE value indicates a smaller overall
error in the segmentation result output by the algorithm compared with the manually
segmented image.

• Hausdorff distance (HF):

HF = max(h(Ik1, Ik2), h(Ik2, Ik1)). (37)

The HF indicates the maximum distance between two sets of segmented images output
by the algorithm and manually segmented images; a smaller HF value indicates that the
segmentation results output by the algorithm are closer to the manually segmented images.

• Sensitivity (SEN):

SEN =
Ik1 ∩ Ik2

Ik2
. (38)

The SEN indicates the ratio of the algorithm segmentation relative to the manual
segmentation results and that the region of the target is correctly judged as the target.
SEN values close to one indicate a good overall applicability of the algorithm and high
segmentation accuracy on different data types.

• Time complexity (T):

T quantifies the efficiency of the algorithm in terms of time; time complexity in deep
learning determines the predictive inference speed of the network.

• Coordinate distance error (CD):

CD =
3

∑
n=1

√(
iIk1,n − iIk1,n0

)2
+ (j Ik1,n

− jIk1,n0

)2
, (39)

where in, jn indicate the pixel coordinates of the target output by the algorithm; n = 1 is
the upper-left pixel coordinate of the target, n = 2 is the lower right pixel coordinate of the
target,n = 3 is the center pixel coordinate of the target, and in0,jn0 indicate the pixel coordi-
nates of the target point output by the manual marker. The CD measures the localization
accuracy of the algorithm, where smaller values indicate higher localization accuracies.

• Overall comprehensive evaluation (OCE):

We demonstrate that the overall segmentation achieved using the proposed algorithm
was superior to that achieved by conventional strategies. Accordingly, the above eight
evaluation indexes were normalized separately and combined into the OCE.

OCE =
1
3
(1− T) +

1
3

(
phash + SEN

2

)
+

1
3

[
(1−VOE) + (1− RVD) + (1−MAE) + (1− HF) + (1− CD)

5

]
. (40)
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The OCE comprises three sets of equally weighted metrics that are divided into the
overall error, overall similarity, and time complexity scores. The overall error score consists
of 1-VOE, 1-RVD, 1-MAE, 1-HF, and 1-CD with the weight set to 1

5 to verify the overall
image segmentation error. The overall similarity score comprises phash and the SEN with
the weight set to 1

2 to evaluate the overall similarity of the segmented images output by the
algorithm to the manually segmented images. The time complexity score comprises 1 − T
and measures the inference speed of the algorithm. Notably, phash, VOE, RVD, MAE, HF,
SEN, T, and CD in Equation (40) are linearly normalized values.

3.2. Ablation Experiments

Ablation experiments are performed using dataset 1 with the following configura-
tions: (1) LI-DWT + PD-FCMSPCNN, (2) PD-FCMSPCNN + MMF, and (3) LI-DWT + PD-
FCMSPCNN + MMF, as illustrated in Figure 8, to quantify the modular contributions of
the model components. The comparison results are shown in Table 1.
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Table 1. Comparison of index ablation for different strategies.

Method Phash VOE RVD MAE HD SEN

(1) 89.97% 0.1389 0.1679 0.1492 15.03 0.8382
(2) 57.81% 1.8923 35.1342 0.4220 144 0.0271

(3) Ours 95.32% 0.0322 0.0323 0.0017 7.37 0.9432

A comparison of configurations 3 and 2 reveals that the preprocessing method of
LI-DWT significantly improves the segmentation results; in particular, the phash value
increases from 57.81% to 95.32%, VOE decreases from 1.8923 to 0.0322, RVD decreases
from 35.1342 to 0.0323, MAE decreases from 0.422 to 0.0017, HD decreases from 144 to
7.37, and SEN increases from 0.0271 to 0.9432. These results indicate that the preprocessing
method can effectively filter out interference from illumination, water waves, and complex
backgrounds, thereby making the segmentation results more consistent with the visual
characteristics of human eyes and improving the segmentation accuracy. A comparison of
configurations 3 and 1 demonstrates that the phash value increases from 89.97% to 95.32%,
VOE decreases from 0.1389 to 0.0322, RVD decreases from 0.1679 to 0.0323, MAE decreases
from 0.1492 to 0.0017, HD decreases from 13.03 to 7.37, and SEN increases from 0.8382
to 0.9432. These results indicate that the postprocessing method of MMF also improves
the segmentation effect. Thus, the rationality and reliability of the proposed method are
verified through the ablation experiments.

3.3. Comparative Analysis of Split Extraction Algorithms

The proposed method is compared with the Transformer-based U-Net (TransUNet)
framework, a lightweight DeepLabv3+ model, the high-resolution medical image segmen-
tation network (HRNet), and the lightweight pyramid scene-parsing network (PSPNet).
Figure 9a–g presents the plots of the segmentation results for the original image using
PSPNet, DeepLabv3+, HRNet, TransUNet, the proposed method, and manual labeling, re-
spectively; these segmentation results correspond to the application of different algorithms
on the three datasets.
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Figure 9. Algorithms used for comparison on three types of datasets: (a) original image, (b) PSPNet,
(c) DeepLabv3+, (d) HRNet, (e) TransUNet, (f) ours, and (g) manual marker. The yellow box is the
marker box for floating garbage.

The evaluation results of the different algorithms used for comparison on the three
data sets are listed in Table 2. In dataset 1, the evaluation indicators are as follows: the phash
value of the proposed algorithm is 95.32%, which is better than the phase values of the
comparison algorithms, indicating that the segmentation results of the proposed method are
most similar to the manual segmentation results. The VOE value of the proposed algorithm
is 0.0322, which is lower than the VOE value of the comparison algorithms, indicating
that the segmentation error rate of the proposed method is lower than the comparison
algorithms and the proposed method has the best target edge pixel segmentation ability.
The RVD value of the proposed algorithm is 0.0323, which is lower than the RVD value of
the comparison algorithms, indicating that the target segmentation area of the proposed
method is the closest to the manual target segmentation area and the proposed method
achieves better target edge differentiation. The MAE value of the proposed algorithm is
0.0017, which is lower than the MAE value of the comparison algorithm, indicating that
the segmentation result of the proposed method has the smallest average absolute error
compared with the manual segmentation result and the proposed method has the best
target edge differentiation quality. The SEN value of the proposed algorithm is 0.9432,
which is better than the SEN value of the comparison algorithms, indicating that the target
segmentation result of the proposed method has the smallest intersection ratio with the
manual target segmentation result; furthermore, the boundary of the proposed algorithm
is sensitive and the edge segmentation effect is optimal. The CD value of the proposed
algorithm is 4.38, which is lower than the CD value of the comparison algorithms, indicating
that the proposed method has the smallest localization error. Moreover, the values of HD
for HRNet (6.71) and the T value for DeepLabv3+ (84.6) are slightly better than those of the
proposed method. However, the remaining indexes for the proposed method are better
than those of the comparison algorithms.

For dataset 2, the VOE, RVD, MAE, SEN, and CD values of the proposed method are
0.0466, 0.0476, 0.0015, 0.9224, and 4.47, respectively, which are all outperform the values
of the comparison algorithm. Although the values of phash (92.83%), HD (7.57), and T
(163.7) of the proposed method are slightly inferior to those of the comparison algorithms,
in general, the proposed algorithm achieves more accurate segmentation of the target area
edges in dataset 2, segmented the target areas closer to the manually segmented area, and
achieved the lowest error rates and high segmentation efficiency while maintaining low
complexity; thus, it is more conducive to high-precision target positioning.

The data of dataset 3 comprised multiple objectives, which causes a certain degree
of error accumulation; thus, the proposed algorithm exhibits lower values of phash, VOE,
RVD, MAE, HD, and SEN compared to its values for datasets 1 and 2. The values of phash,
VOE, RVD, SE, and CD of the proposed algorithm are 92.31%, 0.0615, 0.0648, 0.9168, and
4.56, respectively, which all outperform the values of the comparison algorithms. However,
the MAE is 0.0028, HD is 8.24 and T is 164.0, which is between the MAE, HD, and T values
of the comparison algorithms. Overall, the proposed algorithm has better segmentation



Water 2023, 15, 2302 14 of 18

results that are closer to the manual segmentation results with the minimum computational
time and localization error.

Table 2. Comparison of evaluation results of different algorithms.

Dataset Method Phash VOE RVD MAE HD SEN T (ms) CD

Dataset 1

PSPNet 91.34% 0.0409 0.0426 0.0018 7.94 0.9283 107.2 8.63
DeepLabv3+ 92.21% 0.0428 0.0438 0.0022 7.73 0.9290 84.6 6.88

HRNet 91.40% 0.0557 0.0585 0.0023 6.71 0.8954 166.7 8.50
TransUNet 94.91% 0.0406 0.0428 0.0018 7.19 0.9343 211.1 5.75

Ours 95.32% 0.0322 0.0323 0.0017 7.37 0.9432 163.1 4.38

Dataset 2

PSPNet 91.85% 0.0495 0.0517 0.0017 7.90 0.9063 108.6 8.71
DeepLabv3+ 91.85% 0.0542 0.0562 0.0018 7.26 0.9103 88.5 6.92

HRNet 92.55% 0.0468 0.0484 0.0016 7.85 0.9093 164.2 8.54
TransUNet 94.16% 0.0489 0.0491 0.0016 6.83 0.9216 212.3 5.83

Ours 92.83% 0.0466 0.0476 0.0015 7.57 0.9224 163.7 4.47

Dataset 3

PSPNet 91.71% 0.1069 0.1131 0.0029 8.35 0.8627 107.9 8.67
DeepLabv3+ 91.71% 0.0867 0.0907 0.0028 8.16 0.8703 89.3 6.90

HRNet 91.82% 0.0803 0.0812 0.0028 8.12 0.8814 166.2 8.63
TransUNet 92.27% 0.0711 0.0726 0.0025 8.06 0.8943 211.4 5.60

Ours 92.31% 0.0615 0.0648 0.0028 8.24 0.9168 164.0 4.56

4. Discussion

In this research, we validate the effectiveness and reliability of the proposed algorithm
in the field of small target floating garbage localization through ablation experiments and
comparative experiments with other mainstream algorithms.

In the ablation experiments, we observe that the LI-DWT preprocessing method and
MMF post-processing method play a significant role in filtering noise, improving image
quality, and enhancing segmentation effect, significantly improving the accuracy of small
target water-floating garbage localization. Especially, LI-DWT improves the phase and SEN
values, reduces VOE, RVD, MAE and HF values. These results indicate that LI-DWT can
effectively filter out interference from light, water waves, and complex backgrounds, making
the segmentation results more in line with human visual characteristics and improving seg-
mentation accuracy. The MMF post-processing method can smooth the segmentation results
of PD-FC-MSPCNN and improve the accuracy of small target floating garbage localization.

In order to better unify and verify the comprehensive performance of the proposed
algorithm, a new OCE index is designed for comparative experiments. The values of OCE
is calculated according to Equation (40) are depicted in Figure 10. The OCE values of the
proposed method are 0.7574, 0.6555, and 0.7074 on the three datasets, which are better
than those of the comparison algorithms. Owing to the normalized index, the variability
between algorithms is large. The superiority of the proposed algorithm is measured by the
OCE according to three aspects: the overall error score, overall similarity score, and time
complexity score. From our experimental results, it is apparent that the proposed algorithm
exhibits negligible difference in the segmentation localization performance between single
and multiple target scenarios. This claim is supported by the minimal disparity in OCE
values observed between datasets 1 and 3, suggesting the proposed algorithm’s proficient
adaptation to the positioning requirements of diverse target scenes. Interestingly, the
positioning precision for a single target appears superior to that of multiple targets. This
phenomenon can be attributed to possible interference among targets in multiple target
scenarios, warranting further investigation in our future work. When applied to dataset
2, the OCE values of our algorithm revealed significant discrepancies as opposed to the
results obtained from datasets 1 and 3. This compellingly underlines the profound impact
of intricate background interference on the positioning precision of our proposed algorithm.
Overall, the proposed method exhibits the advantages of accurate edge segmentation,
a small error, a low computational complexity, and high localization accuracy on three
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datasets. It shows good evaluation results, thereby effectively overcoming the interference
of complex backgrounds, illumination, and water waves. Furthermore, it could more
effectively solve the problem of small target floating garbage on water surfaces with low
localization accuracy. In subsequent research, our aim will be to further refine the proposed
algorithm, with the aim of mitigating the disturbance caused by intricate backgrounds and
enhance the comprehensive interference-resistant capabilities of the algorithm. This will
involve exploring sophisticated strategies for both pre-processing and post-processing to
augment the algorithm’s adaptability across varied complex scenarios, thereby bolstering
its robustness.
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5. Conclusions

A small-target image segmentation and localization method based on the LI-DWT and
PD-FC-MSPCNN has been proposed for water-floating garbage. This method improves
the localization accuracy of the intelligent tracking and position prediction of small-sized
floating garbage. By integrating LI with the DWT, the method reduces the interference of
illumination, water waves, and complex backgrounds on the image segmentation. The
proposed PD-FC-MSPCNN segmentation model efficiently achieves high-precision small-
target segmentation. Moreover, the improved MMF connects the segmentation breakpoints
and smoothens the segmentation results.

Nine evaluation metrics and four algorithms for comparison are selected for the
experimental analysis on three different datasets collected from the Lanzhou section of the
Yellow River. The OCE metrics of the proposed method on the three datasets are 0.7574,
0.6555, and 0.7074. The PD-FC-MSPCNN model achieve optimal segmentation results as
well as high localization accuracy and good computational performance. The proposed
method uses floating garbage on water surfaces as the study object and does not consider
other types of floating objects on water surfaces, such as ships, floating duckweed and
oil slicks. In the future, we will improve algorithms to improve positioning accuracy in
complex backgrounds, and expand the research category of floating debris on the water
surface, further improving the applicability and generalization ability of the algorithm.
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Abbreviations

LI lateral inhibition network
DWT discrete wavelet transform
MMF multi-scale morphological filtering
FC-MSPCNN a fire-controlled MSPCNN model
PD-FC-MSPCNN parameter-designed-FC-MSPCNN
Faster R-CNN faster Regions with Convolutional Neural Network
CA Class Activation
Yolo You Only Look Once
CNN Convolutional Neural Network
GAN Generative Adversarial Network
PCNN Pulse Coupled Neural Network
SPCNN simplified PCNN
SCM spiking cortical model
SCHPCNN oscillating sine–cosine pulse coupled neural network
HVS Human Vision System
SM-ISPCNN saliency motivated improved simplified pulse coupled neural network

Appendix A

Algorithm A1 A Small Target Location Method for Floating Garbage on Water Surface Based on
LI-DWT and PD-FC-MSPCNN
Implementation Steps

Input
Color image of floating garbage on water surface, image size x× y,
normalized Otsu threshold S′, number of iterations t, structure element SE.

Pre-processing

For: T = 2
Generating high- and low-frequency component images by T times discrete
wavelet transform by (1) and (2).
By (3) and (4), the Gaussian low-pass filter is G(u, v).

For: f(u, v) = 5× 5
Using (5), the Gaussian kernel f(u, v) is calculated, and the lateral
inhibition network is introduced using (6)–(9), the lateral inhibition
network is fused, and the wavelet reconstruction outputs the denoised
image.

End
End

https://github.com/jingcodejing/PD-FCM-SPCNN
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Algorithm A1 Cont.

Segmentation

For i = 1:x
For j = 1:y
Using (21)–(23), the parameter values of PD-FCMSPCNN are calculated,
including feed input, link input, internal activity, excitation state, and
dynamic threshold.
End

End
For t = 30
Using (24)–(27), the attenuation factor α,weight matrix Wijkl, magnitude
parameter V of the dynamic threshold, and the auxiliary parameter P are
calculated.
If Uij[n] > Eij[n]

Yij[n] = 1
Else Yij[n] = 0
End
By (23), the dynamic threshold is calculated Eij[n].
End

Post-processing

For SE = 3× 3
Set by (30) SE3×3
For SE = 5× 5
Set by (31) SE5×5
End
Using (32), the morphological filtering results are calculated
Calculate the pixel coordinates of the segmented target (top left, bottom
right and center)
End

Output
Image and coordinates of floating garbage segmentation results on water
surface
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