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Abstract: Harmful algal blooms (HABs) caused by harmful cyanobacteria adversely impact the water
quality in aquatic ecosystems and burden socioecological systems that are based on water utilization.
Currently, Korea uses the Environmental Fluid Dynamics Code-National Institute of Environmental
Research (EFDC-NIER) model to predict algae conditions and respond to algal blooms through the
HAB alert system. This study aimed to establish an additional deep learning model to effectively
respond to algal blooms. The prediction model is based on a deep neural network (DNN), which
is a type of artificial neural network widely used for HAB prediction. By applying the synthetic
minority over-sampling technique (SMOTE) to resolve the imbalance in the data, the DNN model
showed improved performance during validation for predicting the number of cyanobacteria cells.
The R-squared increased from 0.7 to 0.78, MAE decreased from 0.7 to 0.6, and RMSE decreased from
0.9 to 0.7, indicating an enhancement in the model’s performance. Furthermore, regarding the HAB
alert levels, the R-squared increased from 0.18 to 0.79, MAE decreased from 0.2 to 0.1, and RMSE
decreased from 0.3 to 0.2, indicating improved performance as well. According to the results, the
constructed data-based model reasonably predicted algae conditions in the summer when algal
bloom-induced damage occurs and accurately predicted the HAB alert levels for immediate decision-
making. The main objective of this study was to develop a new technology for predicting and
managing HABs in river environments, aiming for a sustainable future for the aquatic ecosystem.

Keywords: harmful algal blooms; deep neural network; synthetic minority over-sampling technique;
number of cyanobacteria cells; HAB alert levels

1. Introduction

Due to river dredging and the construction of multi-function weirs as part of the
four major river restoration projects, riverine environments in South Korea (hereinafter
Korea) underwent drastic changes within a short period of time [1]. However, they are
deteriorating owing to the changes in meteorological and hydraulic conditions due to
recent climate change. Among the changes in the riverine environments, increased hy-
draulic residence time is a major factor exacerbating harmful algal blooms (HABs) in
summer every year. Furthermore, rainfall causes changes in the hydrodynamic condi-
tions of the river, leading to sediment resuspension. The resuspension of sediment can
re-suspend the bed sediments that are home to large nutrient loads in the river [2]. Ex-
cessive nutrient pollution causing eutrophication triggers the proliferation of HABs and
poses a negative impact on the environment. In the world’s largest inland lake, the Caspian
Sea, there are also challenges due to the increase in Chlorophyll-a (Chl-a) during warm
months, and the rate of eutrophication is increasing [3]. The eutrophication in Lake Erie
continues to worsen, and if this trend continues, it is projected that methane emissions
from the lake will account for 38 to 53% of the greenhouse gas emissions from fossil fu-
els [4]. From 2012 to 2023, based on the analysis of the total phosphorus (TP) observed
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by the Ministry of Environment in Korea, it was found that TP in the Nakdong River
exceeds the Organization for Economic Cooperation and Development (OECD) standard of
0.035, indicating a eutrophic condition. Eutrophication in the Great Lakes in North Amer-
ica, Lake Taihu in China, and Lake Victoria in Africa is indeed accelerating. Additionally,
the number of water bodies, including lakes and rivers, experiencing eutrophication is
increasing [5]. With the exacerbation of eutrophication and climate change, the occurrence
of toxic algae is increasing globally [6].

In Korea, algae start growing during spring when the water temperature begins to rise
and stops in late autumn. Cyanobacterial blooms are the dominant species in summer. In
terms of the net zero of the Sustainable Development Goals (SDGs), algae have the potential
to be utilized as an energy resource that minimizes greenhouse gas emissions [7]. However,
HABs produce toxic substances such as microcystins, negatively impacting the aquatic
ecosystem. Therefore, it is necessary to proactively manage and prepare for the occurrence
of HABs through prediction rather than utilizing them as bioenergy sources.

They rapidly proliferate in large quantities and develop into HABs when solar radi-
ation increases and water temperature is high [8]. Microcystis is a major cyanobacterium
that can cause harmful algal blooms not only in foreign countries but also in Korea, in-
cluding the Nakdong River. In particular, most HABs are caused by Microcystis in Korea.
Several studies have reported that an increase in toxic cyanobacteria, such as Microcystis,
can lead to elevated toxins in rivers, causing contamination of drinking water sources and
adverse effects on aquatic organisms. A research team from Tibet University and North
Carolina State University revealed that climate change is causing shifts in the composition
of cyanobacterial communities in lakes. Particularly, it was observed that Microcystis, as
a dominant species, has increased in response to climate change, leading to an elevation
of toxins in lakes [9]. Microcystis is known to produce toxins called microcystin [10,11]. In
other words, if the abundance of Microcystis, a toxic cyanobacteria, increases, the toxins in
the river also increase. According to [12], the Nakdong River in Korea experiences HABs
caused by Microcystis during the summer season due to the construction of eight weirs
that have led to water stagnation and thermal stratification. Furthermore, it is reported
that during the summer season, the majority of proliferating cyanobacteria are Microcystis,
and as their abundance increases, toxins also rise. Problems caused by HABs have a direct
impact on the lives of people who drink treated river water.

Korea uses EFDC-NIER, a physics-based model, to predict the number of cyanobacteria
cells. Next, an alert is issued according to the HAB alert criteria, which is divided into
levels from 0 to 4 based on the number of cyanobacteria cells. Physics-based models are
advantageous because the actual river environment can be built into the model; therefore, they
are widely used for algae prediction in various countries [13–15]. The prediction accuracy
of physics-based models varies with parameters [16–18]. However, building input data and
calibrating the parameters require extensive time and knowledge of the model [19].

An artificial intelligence (AI)-driven deep learning model can solve the problem of a
physics-based model. Data-based models may be used for solving the problem of excessive
time requirements of a physics-based model for prediction and parameter correction, pro-
vided that sufficient high-quality data are available as input data. This is because it learns
various types of prediction information and makes predictions with the trained algorithm.
AI-driven deep learning models have developed rapidly over the past 20 years owing to
advances in computers and other hardware and demonstrate excellent prediction perfor-
mance in diverse fields such as climate, atmosphere, economy, water resources, and water
quality [20]. Hardware advances have led to the development of AI-driven deep learning
models, such as artificial neural networks (ANNs), which can handle a large amount of
computation, including complex problems and big data that are difficult to solve mathe-
matically [21]. Different types of ANNs have been developed depending on their purpose.
These include deep neural networks (DNN) for processing complex data, convolution neural
networks (CNN) for extracting image features, recurrent neural networks (RNN) for learn-
ing time-series or sequential data, long short-term memory (LSTM), and gated recurrent
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unit (GRU). Thus, the users can select a model according to various conditions, such as the
characteristics of the data and the analysis objectives. Unlike water quality, algae are living
organisms and have diverse life patterns even under identical environmental conditions,
making data-based HAB prediction a very challenging field of research. Therefore, complex
learning is required to predict algae conditions, and research on harmful algae prediction
based on ANNs is underway. ANNs have been widely used for predicting algae in the past,
and their application is increasing as ANNs-based algorithms have advanced.

Jeong et al. [22] predicted Microcystis aeruginosa bloom dynamics using evolutionary
computation and ANN in the Nakdong River, Korea. Velo-Suarez and Gutierrez-Estrada [23]
predicted Dinophysis acuminata blooms for weekly intervals using ANN. Maier et al. [24]
conducted a study where they constructed an ANN model to predict Microcystis biomass in
rivers and evaluated its predictive performance. The neural network-based model provided
valuable insights into the dynamics and potential risks associated with algal blooms in river
environments. Indeed, the factors influencing algal blooms are diverse and complex, encom-
passing various water quality and meteorological variables. For highly complex datasets,
many researchers are utilizing upgraded models based on DNN to predict water quality [25].
The research on algae prediction is actively conducted using various models that have been
developed for different purposes based on the DNN algorithm. Pyo et al. [26] utilized a CNN
model to predict the spatial and temporal distribution of harmful cyanobacteria, specifically
Microcystis. Ni et al. [27] employed an LSTM model to estimate Chl-a concentration and used
it to predict the occurrence of CyanoHABs. Indeed, there are also cases where a new DNN
model has been built by combining DNN with statistical techniques to predict algal blooms.
A new model combining DNN, data decomposition, and fuzzy clustering was proposed to
predict water quality factors influencing algal blooms [28]. An SAE-DNN model, combining
the stacked autoencoder (SAE) technique with DNN, was developed to estimate the concen-
tration of phycocyanin in cyanobacteria [29]. In some regions, there is a shortage of data
or data imbalance, and recent research is being conducted to address this issue. To protect
water resources from contamination, Yang et al. [30] constructed a model called CNN-LSTM
with attention to predicting water quality variables such as pH and ammonia nitrogen. In
this study, missing data were interpolated using the linear interpolation method. Despite the
advancements in AI-based deep learning techniques, there has been recent research focused
on improving the predictive power of models with limited training data. For example, novel
frameworks based on the multivariate distributions (MVD)-based virtual sample generation
(VSG) method have been developed to generate virtual data samples and train the DNN
model using these synthesized data. The results of these studies are compared with real data
to assess their applicability [31]. In this research, it is mentioned that future studies are crucial
and important in creating optimal virtual datasets.

AI-driven deep learning models are rapidly advancing and widely used in predicting
natural environmental data. Indeed, there is a debate regarding whether this model can
replace traditional physics-based models. According to Sit et al. [32], they argue that the
automation of hydrological modeling using AI-based deep learning technology can raise
ethical concerns in disaster management and public planning. AI-driven deep learning
models are indeed simple and have good predictive power. However, it is difficult to
determine the learning structure of these models and understand or evaluate the uncertainty
of simulations [33]. Therefore, there is an opinion that if the suitability of simulations cannot
be predicted and reviewed, the responsibility for the results may also be unclear [34,35].
For example, if the prediction results are inaccurate due to weather anomalies such as
heavy rainfall, it can lead to incorrect flood predictions. This can result in potential risks to
human lives and property damage [36]. Despite these limitations, the demand for AI-driven
deep learning technology is continuously increasing in various fields worldwide [37,38].
Therefore, research on this technology is essential to keep up with this trend.

This study aims to develop an AI-driven deep learning model that can predict algae
conditions to effectively respond to algal blooms. As mentioned above, since algae are
living organisms, predicting their future behavior requires more knowledge and effort than



Water 2023, 15, 2293 4 of 16

in other fields. In particular, rivers are used as a source of drinking water in Korea, and
accurately predicting algae conditions is important for the health of citizens and safe water
use. From the perspective of researchers predicting algae conditions, it is crucial to apply
various HAB prediction models to respond to algal blooms when determining the alert
level. To this end, we constructed an AI-driven deep learning model that has proven its
prediction accuracy in various fields and evaluated its applicability.

The research objectives of this study are as follows:

1. The relationship between harmful algae and water quality is nonlinear. Of the various
ANN-based algorithms, DNN, in particular, has the advantage of enabling nonlinear
combinations between input variables. Additionally, it is a powerful tool for modeling
complex systems [39,40]. Furthermore, to address the data imbalance in the data of
cyanobacteria cell counts in the study area, a model combining DNN with SMOTE
was proposed, and its applicability was evaluated. In this study, the DNN algorithm
was used to simultaneously predict the number of cyanobacteria cells and the HAB
alert levels. To allow for the prediction of both continuous and categorical data, the
DNN algorithm was improved to support multiple outputs in this study.

2. In terms of prediction accuracy, we evaluated the results of the DNN algorithm, which
predicts cyanobacteria cells and HAB alert level, to assess their applicability in the
field and recommend research directions for future AI-based HAB prediction research.

2. Materials and Methods
2.1. Study Area

In this study, data-based HAB prediction was performed at Changnyeong-Haman weir,
located downstream of the Nakdong River (Figure 1). This site is affected by cyanobacterial
blooms formed by Microcystis every summer. In addition, this region is severely affected
by HAB-induced damage. In particular, downstream of the Nakdong River, a part of the
study area is used as a source of drinking water by residents of nearby cities such as Busan,
the second-largest city in Korea. In this area, systematic algal bloom management and
pre-emptive response are vital for the public’s health and safe water use.
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2.2. Water Quality, Algae, and HAB Alert Levels Data

After the construction of multi-function weirs in 2012, the government measured the
water quality and HABs in weir sections at weekly intervals to respond to and manage
HABs. The occurrence of HABs is affected by water quality and organic matter. The water
quality and organic matter items measured in the study area of Changnyeong-Haman
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weir were water temperature, pH, dissolved oxygen (DO), the 5-day biochemical oxygen
demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen
(TN), total phosphorus (TP), and total organic carbon (TOC), and the algae items were
chlorophyll-a (Chl-a) and the number of cyanobacteria (Table 1). Cyanobacterial blooms
proliferate in high-insolation and high-temperature conditions and are measured only in
summer. Due to the nature of cyanobacterial blooms to proliferate only during a specific
period in summer, it is difficult to obtain sufficient input data necessary for data-based
prediction models to analyze and learn the correlations between cyanobacterial blooms
and water quality (temperature and organic matter) associated with their proliferation and
growth. In general, the predictive power of data-based models varies from one prediction
model to another depending on the quantity and quality of the training set. The data were
collected from 2012 to 2022, excluding the item for the number of cyanobacteria cells. The
data from 2012 to 2021 were used for training and validation, and the data from 2022 were
used to evaluate the prediction accuracy of the constructed model. Cyanobacteria mainly
occur and proliferate during the summer season when the water temperature is high, and
there is a very strong correlation between these two factors (Figure 2).

Table 1. Range, averages, and standard deviations of variables related to water quality and algae
used for training and validation (2012–2021).

Variables
Changnyeong-Haman Weir

MIN–MAX 1 AVG ± SD 2

Water temperature (◦C) 2.0–35.1 16.6 ± 8.6
pH 6.7–9.7 8.1 ± 0.6

DO (mg/L) 6.4–21.5 11.2 ± 2.5
BOD5 (mg/L) 0.7–5.6 2.3 ± 0.8
COD (mg/L) 3.9–12.8 6.3 ± 1.1

SS (mg/L) 1.6–72.0 10.1 ± 6.9
TN (mg/L) 1.157–5.483 2.767 ± 0.771
TP (mg/L) 0.013–0.174 0.050 ± 0.029

TOC (mg/L) 2.6–11.1 4.3 ± 0.9
Chl-a (mg/m3) 2.2–134.4 26.6 ± 19.3

Number of Cyanobacteria (cells/mL) 13,557–715,993 13,557 ± 51,435

Notes: 1 Minimum to maximum. 2 Average and standard deviation.
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In Korea, HAB alerts are issued from levels 0 to 4 according to the number of cyanobac-
teria cells. In the dataset collected from 2012 to 2022, there were 314 cases for level 0, 126 for
level 1, 93 for level 2, 17 for level 3, and 0 for level 4 (Table 2). Therefore, excluding level 4,
which had no data, the dependent variable data were constructed with four alert categories
(levels 0 to 3).
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Table 2. HAB alert system in Korea.

Level 0 1 2 3 4

Cyanobacteria
(cells/mL) <1000 ≥1000

<10,000
≥10,000
<100,000

≥100,000
<1,000,000 ≥1,000,000

Counts 314 126 93 17 0

Selecting appropriate input variables is important to ensure prediction accuracy. In
particular, water temperature, pH, DO, BOD, COD, SS, TN, TP, TOC, and Chl-a are impor-
tant for algal growth, among which water temperature, DO, and TP are reported to have
the highest impact [41].

2.3. DNN Algorithm

Deep neural networks (DNN) are a type of ANN, an aspect of AI that focuses on
mimicking the human learning approach to acquire specific knowledge. Most real problems
have nonlinear characteristics. The amount of computation could be reduced, and the
nonlinear problems can be solved by adding a backpropagation algorithm and two or more
hidden layers. Learning various data, particularly big data, requires many hidden layers.
However, an increase in the number of hidden layers is associated with the vanishing
gradient problem, in which the errors in the output layer are not transmitted to the input
layer, and the exploding gradient problem, in which the values are updated rapidly, thus
making it difficult to train the neural network. Both vanishing and exploding gradient
problems were solved by applying an unsupervised pre-training method, which reduced
the errors at the output layer by preventing over-learning caused by the increase in hidden
layers while learning from big data [42].

To construct an optimal DNN model, the number of hidden layers and node distribu-
tion for each layer must be set. Because the variables used for training and validation are
weekly data, the data is relatively insufficient. To prevent a decrease in the learning rate
due to the lower availability of water quality data, the hierarchical structure of the DNN
model was appropriately designed.

2.4. Method for Analyzing the Predictive Performance

For training and validation sets, the water quality data from 2012 to 2021 were used,
whereby the training and validation periods were set at the ratio of 8:2. We calculated
the values of R2 (Equations (1)–(3)), mean of all absolute errors (MAE) (Equation (4)), and
root mean square error (RMSE) (Equation (5)) and estimated the accuracy of the models.
R2 indicates how well the predictive value explains the measured value, and the higher
the value of R2, the higher the prediction accuracy [43]. MAE is the difference between
estimated and measured values [44], and RMSE is an error metric used to assess the
difference between the estimated and measured values [45]. The lower the MAE and RMSE
values of a prediction model, the higher the prediction performance of the model.

R2 = 1−
(

SSR
SST

)
, (1)

SST =
n

∑
i=1

(yi − yi)
2, (2)

SSR =
n

∑
i=1

(yi − ŷi)
2, (3)

MAE =
n

∑
i=1
|yi − yi|, (4)
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RMSE =

√
(

1
n
)

n

∑
i=1

(yi − ŷi)
2. (5)

3. Construction of Deep Learning Model and Prediction Results
3.1. Data Preprocessing

Generally, when training a data-based prediction model, the range of data values must
be standardized. For example, TP ranges from 0 to 1, whereas the number of cyanobacteria
cells ranges from 0 to hundreds of thousands (Table 1). If the scale difference between the
values of each feature is too large in such a case, then a strong one-sided bias may occur,
which can degrade the learning ability. Therefore, the data must be preprocessed before
training. Prior to training, we standardized the magnitude of individual data by adjusting
the scale difference between variables through normalization. Even when normalizing
data, the distribution of each variable should not be modified; therefore, we selected the
normalization method MinMaxScaler, which converts the values of each data variable with
different maximum values to values between 0 and 1 to adjust their scale. Equation (6)
shows the conversion equation.

MinMaxScaler(x) =
x− xmin

xmax − xmin
. (6)

In contrast to the conventional analysis of algal time series data such as cyanobacteria,
this study constructed a DNN model with a multi-output structure to simultaneously
predict HAB alert levels. When predicting categorical data such as HAB alert levels, the
proportion of each class is important. When predicting imbalanced categorical data where
certain classes have skewed data, the prediction results can be distorted [46,47]. This is
because the prediction model may be trained based on the majority of categories in the
dataset. As shown in Table 2, it can be observed that the data are skewed towards level
0. Therefore, if these data are trained, the prediction results may be distorted and biased
towards level 0.

There are techniques for handling imbalanced data, such as undersampling and
oversampling. Undersampling is a technique to address imbalanced data by keeping
only significant data. Applying undersampling to HAB alert levels data can result in a
significant loss of the entire dataset and the loss of important normal data. This can lead to
a shortage of usable HAB alert levels data for training, which may result in poor training.
Oversampling is a technique used to handle imbalanced data by replicating data from
the minority class based on a predetermined ratio. By increasing the dataset in this way,
the proportion of minority class data is also increased, helping the training model handle
imbalanced data. Deep learning analysis generally requires a large amount of data, so
oversampling is commonly used to handle imbalanced data effectively.

In this study, the synthetic minority oversampling technique (SMOTE) algorithm
was applied. SMOTE is a popular algorithm used to address the class imbalance in deep
learning. In class imbalance, the number of samples in one class is much smaller than the
number of samples in another class, which can lead to poor model performance. SMOTE is
an oversampling technique that generates synthetic data by creating additional instances
of minority class samples, thereby balancing the dataset. This is carried out by randomly
selecting a minority class sample and finding its k-nearest neighbors. Then, new samples
are synthesized by interpolating between the minority sample and its neighbors [48].
The amount of interpolation is controlled by a parameter that specifies the degree of
oversampling required.

3.2. Hidden Layers and Nodes for Optimal DNN Model

The number of input and output nodes is determined by the type of input and output,
but there is no set formula for determining the number of hidden layers and nodes [49].
However, there are some criteria for determining the optimal number of hidden layers
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and nodes. In general, the complexity of the problem, the amount of data, and hardware
and time are commonly considered major factors in determining the optimal number of
hidden layers and nodes. In terms of the complexity of the problem, it depends on the
functionality or application, so the structure of the DNN network should be referenced
based on similar studies. The amount of data is an important criterion for determining
the optimal number of hidden layers and nodes [50]. When the amount of data, such as
weekly data, is not sufficient, having too many hidden layers can cause problems such as
poor training or overfitting. In addition, if the number of hidden layers and nodes is too
large, the execution time may become too long [51,52]. This study determined the optimal
number of hidden layers and nodes through trial and error.

When comparing various combinations of hidden layers and nodes, the training ac-
curacy was relatively higher in cases where the number of hidden layers was small, and
the number of nodes was large. Increasing the number of hidden layers resulted in a
decrease in training ability, which is believed to be due to the relatively small amount of
water quality and algae data used for analysis. On the other hand, since various input
data were analyzed simultaneously, models with a relatively large number of nodes had
better training ability. Furthermore, considering the model’s execution time and hard-
ware, a DNN with two hidden layers and 50 nodes was determined to be the optimal
structure for this study (Figure 3). In DNN learning, overfitting may occur by overlearn-
ing only certain explanatory variable features. To prevent this, an appropriate dropout
should be set [53]. Dropout refers to the ratio of nodes uniformly dropped from the units
of each hidden layer, and a dropout ratio of 0.2 is considered the optimal ratio [54].
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Next, a Rectified Linear Unit (ReLU) activation function was used to transform input
data into output signal. The other activation functions, sigmoid and tanh, have problems
such as a decrease in learning rate and vanishing gradient. The ReLU activation function is a
widely used function that solves the problems of sigmoid and tanh, yields high performance,
and has a very simple structure [49]. However, when most of the input values are negative, it
is difficult to conduct backpropagation by the gradient. As a result, the input values are not
updated, and their use becomes limited. As the water quality data used as input values in
this study does not have negative values, the ReLU function can be used.

Epoch refers to the number of times the entire dataset passes through the neural
network. Setting an appropriate number of epochs is important for the model’s predictive
power. The method for determining the optimal number of epochs involves selecting the
number at which the performance improves and then decreases due to overfitting in the
validation set [55]. Here, the performance is confirmed through the loss function. If the
number of epochs is too small, the model’s predictive power decreases, and if it is too
large, the model may become overfitted. In the training set, the loss decreased rapidly until
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2000 epochs, after which the loss values were similar. In the validation set, the minimum
loss occurred around 5000 epochs, after which the loss gradually increased. This indicates
that when using values larger than 5000, the prediction performance deteriorates due to
overfitting. Therefore, setting the number of epochs to 5000 is reasonable. To minimize
the loss function during DNN training, the Adam optimizer was used. It is an algorithm
that combines momentum and root mean square propagation (RMSProp) and has an
adaptive learning rate depending on the amount of change in the curvature of the former
landscape. It is the most widely used optimizer for deep learning models because of its
good performance in different neural networks with a very wide range of architectures [56].
When applying Adam, the mean absolute error (MAE) was used as the loss function. In
particular, if the optimizer is selected as Adam, the loss value can be minimized during
DNN training.

3.3. Improvement of DNN Architecture for Multi-Output of Continuous and Categorical Data

The DNN structure for multi-output problems is similar to that of a general DNN,
with only the number of nodes and activation functions in the output layer potentially
differing. In multi-output problems, the number of nodes in the output layer is set to
match the number of output variables, and the activation function may vary depending
on the characteristics of each output variable. For example, in regression problems where
continuous variables are output, a linear activation function is used in the output layer.
On the other hand, in classification problems where categorical variables are output, a
softmax activation function is used in the output layer. Therefore, the DNN structure for
multi-output problems is designed by adjusting the activation function and the number of
nodes in the output layer according to the characteristics of the output variables.

In this study, a multi-output structure targeting the continuous data of cyanobacteria
cells and the categorical data of HAB alert levels needed to be constructed. The activation
function should be selected as “linear”, and the output node should be set to 1 when
constructing the output layer for continuous data such as cyanobacteria cells. Additionally,
the activation function should be selected as “softmax”, and the output node should be
set according to the number of classes when constructing the output layer for multi-class
categorical data such as HAB alert levels (Figure 4).
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When SMOTE was added to the DNN algorithm, it showed satisfactory results in both
training and validation (Table 3). Without the addition of SMOTE, the validation results for
the HAB alert levels were very poor. It is considered that overfitting occurred due to a lack
of training data for the HAB alert levels and the data biased towards level 0. It is believed
that the validation performance improved as the training data increased and the data were
more evenly distributed at each alert level by applying SMOTE to the DNN algorithm.
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Table 3. Comparison of prediction performance.

Cyanobacteria HAB Alert Levels

DNN with
SMOTE

DNN
without
SMOTE

DNN with
SMOTE

DNN
without
SMOTE

Train
R2 0.82 0.76 0.92 0.93

MAE 0.5 0.7 0.1 0.1
RMSE 0.7 0.8 0.1 0.1

Validation
R2 0.78 0.7 0.79 0.18

MAE 0.6 0.7 0.1 0.2
RMSE 0.7 0.9 0.2 0.3

3.4. Result of Cyanobacteria Prediction

HABs caused by the growth of cyanobacteria mainly occur in the summer season
(between May and October) in Korea. Cyanobacteria are predicted during this period, and
the results are used to manage HABs. Therefore, for the deep learning model to be utilized
for managing HABs, it is crucial to accurately predict the number of cyanobacteria cells
from May to October. The deep learning algorithm-based prediction model developed in
this study demonstrates high prediction accuracy from May to October (Figure 5).
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Although the predictive power may be somewhat lower during periods other than
the summer season, the model has a high utility value as a HABs prediction model, as
most cyanobacterial damage occurs during the summer season. In particular, the predictive
accuracy of the model was very high for cyanobacteria cells above 10,000 cells/mL, which
is the threshold for occurring cyanobacterial blooms. In light of these aspects, the model
developed in this study is ideal for predicting and managing HABs.

3.5. Result of HAB Alert Levels Prediction

In the prediction results of HAB alert levels, even more, dramatic results were observed.
When SMOTE was not applied to DNN, the prediction accuracy was high for levels 0 and 1
but relatively low for levels 2 and 3 (Table 4). It is speculated that this is due to the fact that the
majority of the data are concentrated in levels 0 and 1. Therefore, the results indicate that there
was insufficient training for levels 2 and 3 due to the relative scarcity of data for these levels.
The poor prediction accuracy for levels 2 and 3 was improved by incorporating SMOTE within
the DNN algorithm. Technologies such as deep learning models can produce optimal results
when there are sufficient training data available. Therefore, when the amount of data for levels
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2 and 3 was very limited, the predictive power for these levels was low. However, it was found
that the predictive power for high-concentration cyanobacteria (levels 2 and 3) improved as
the amount of data increased by applying SMOTE (Table 4). These results demonstrate that
adding oversampling techniques such as SMOTE to deep learning algorithms for predicting
imbalanced data such as HAB alert levels is a reasonable approach. The detailed prediction
results are included in Table A1 of Appendix A.

Table 4. Accuracy of HAB alert levels prediction.

Counts Accuracy (%)

Observation
Simulation

without
SMOTE

Simulation
with

SMOTE

Without
SMOTE

With
SMOTE

Level

0 24 20 20 83.3 83.3
1 14 9 10 64.3 71.4
2 9 7 7 44.4 77.8
3 2 0 2 0.0 100.0

4. Discussion

In Korea, predicting the number of cyanobacteria cells has been used to respond to
HABs. This is because the majority of HAB damage is caused by cyanobacteria. These
predicted results are classified by the HAB alert system, and appropriate responses to
the HABs are carried out according to the corresponding manuals for each level. This
study proposed using a deep learning algorithm to predict both the HAB alert levels
and the number of cyanobacteria cells in order to respond quickly to the occurrence of
HABs. Various deep learning algorithms are being developed with recent technological
advancements. Developing deep learning-based prediction technology is essential for
responding to HABs. The predictive power of a deep learning model is significantly
influenced by the number of input data. To accurately estimate HABs, securing as many
high-quality data as possible is the most important challenge. The problem of imbalanced
and insufficient data was addressed by combining the DNN prediction model with the
SMOTE technique. It was observed that the predictive power of the insufficient data was
significantly improved.

Despite the improved predictive power of the DNN prediction model combined with
SMOTE, there are still issues that need to be addressed. Cyanobacteria data and water
quality data that affect the growth and activity of cyanobacteria are measured on a weekly
basis. However, the number of cyanobacteria cells varies greatly every day due to various
conditions such as daily changes in weather, changes in water quality, and changes in
discharge depending on the operation of hydraulic structures such as dams and weirs.
Due to these characteristics, it is practically impossible to simply interpolate the data and
create daily cyanobacteria data. If weekly data are used to input data, a deep learning
model yields results only on a weekly basis. This is a significant limitation of data-based
models such as deep learning models. Even with advanced deep learning algorithms
such as long short term memory and transformer, it is impossible to solve this problem as
long as there are limitations in input data. Even though the input data are obtained on a
weekly basis, a physics-based model can be predicted on a daily basis due to its internal
mechanism. Various conditions, such as weather, water quality, and discharge, that affect
the growth and activity of cyanobacteria are incorporated into the internal mechanisms of
physics-based models.

In this study, we proposed the following:
It is necessary to structurally combine the currently used physics-based and data-based

models or to partially utilize the results of physics-based models to solve the limitations
of data-based models, such as the lack of training data (Figure 6). Combining physics-
based models with data-based models is a very effective approach because it maintains the
accuracy of physical-based models while overcoming the limitations of data-based models.



Water 2023, 15, 2293 12 of 16

This approach is used in various fields, such as AI, machine learning, and physics. One way
to utilize some results from physics-based models is to modify or correct the output of the
prediction model. However, when using these methods, the interaction between models is
crucial. Physics-based models and data-based models cannot operate independently and
must be interconnected. In addition, the inputs and outputs of the models must match, and
the method of information transfer between the models must be clearly defined.
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Figure 6. Example of an algorithm combining a physics-based model and a data-based model.

5. Conclusions

We improved the DNN algorithm to predict both the continuous data of the number
of cyanobacteria and the categorical data of HAB alert levels simultaneously. The results of
the improved DNN with SMOTE and the DNN without SMOTE prediction were compared
and analyzed. The results of this study showed the applicability of the deep learning
models using AI algorithms as a viable alternative to the traditional physics-based model
for HAB prediction and management.

(1) The DNN algorithm showed sufficient predictive power to estimate the number of
cyanobacteria cells and HAB alert levels. It is essential to supplement the imbalanced
data on cyanobacteria and HAB alert levels and secure the lacking data in order to
ensure sufficient predictive power. The model combining the DNN algorithm with
SMOTE showed better performance than the model that did not combine them.

(2) High prediction accuracy was shown for the number of cyanobacteria cells during
summer and for the serious alert level of HABs categorized as levels 2 and 3. In this
aspect, it can be said that the developed HAB prediction deep learning model has
sufficient applicability in responding to and managing HABs.

(3) Algal blooms can be determined through algae concentrations and the HAB alert level.
Therefore, these study-built deep learning models that can predict algae concentrations
and HAB alert levels were used to prevent algal bloom-induced damage. To further
advance this study, it is necessary to utilize the deep learning model developed in this
study along with the existing physics-based model, EFDC-NIER, to respond to HABs.
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Appendix A

Table A1 shows the predicted HAB alert levels, indicating the predicted probability for
each level. It allows for comparison between the results with and without SMOTE applied.

Table A1. Result of the predicted HAB alert levels.

Date
Observation

Predicted Probabilities for Each Level (%)

Simulation without SMOTE Simulation with SMOTE

Level 0 1 2 3 0 1 2

3 January 2022 0 99.2 0.8 0.0 0.0 94.1 5.9 0.0 0.0
10 January 2022 0 99.9 0.1 0.0 0.0 89.5 10.5 0.0 0.0
17 January 2022 0 98.6 1.4 0.0 0.0 85.3 14.7 0.0 0.0
24 January 2022 0 100.0 0.0 0.0 0.0 99.9 0.1 0.0 0.0
3 February 2022 0 100.0 0.0 0.0 0.0 96.2 3.8 0.0 0.0
7 February 2022 0 99.8 0.2 0.0 0.0 96.5 3.5 0.0 0.0

21 February 2022 0 100.0 0.0 0.0 0.0 95.9 4.1 0.0 0.0
28 February 2022 0 100.0 0.0 0.0 0.0 98.9 1.1 0.0 0.0

7 March 2022 0 99.5 0.5 0.0 0.0 88.9 11.1 0.0 0.0
14 March 2022 0 100.0 0.0 0.0 0.0 99.7 0.3 0.0 0.0
21 March 2022 0 100.0 0.0 0.0 0.0 99.8 0.2 0.0 0.0
28 March 2022 0 99.9 0.0 0.1 0.0 96.6 3.4 0.0 0.0
4 April 2022 0 99.3 0.4 0.3 0.0 71.3 28.7 0.0 0.0

11 April 2022 0 99.9 0.1 0.0 0.0 92.9 7.1 0.0 0.0
18 April 2022 0 89.7 0.5 9.6 0.2 44.7 38.5 16.8 0.0
25 April 2022 0 96.5 3.5 0.0 0.0 95.0 4.9 0.1 0.0
2 May 2022 0 42.3 57.5 0.2 0.0 5.7 94.0 0.3 0.0
9 May 2022 0 98.6 1.4 0.0 0.0 95.3 4.0 0.7 0.0
16 May 2022 0 58.6 40.3 1.1 0.0 80.8 18.2 1.0 0.0
23 May 2022 0 75.2 18.6 5.4 0.8 74.8 21.7 3.5 0.0
30 May 2022 1 0.1 83.4 12.3 4.2 0.0 81.8 17.5 0.7
7 June 2022 1 1.0 96.7 1.8 0.5 12.2 56.6 31.2 0.0
13 June 2022 2 0.0 1.1 88.9 10.0 0.0 0.0 100.0 0.0
20 June 2022 2 0.0 0.1 90.2 9.7 0.0 0.0 100.0 0.0
27 June 2022 2 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
4 July 2022 2 0.0 0.3 99.2 0.5 0.0 0.0 100.0 0.0

13 July 2022 2 0.0 62.3 37.6 0.1 0.0 0.0 100.0 0.0
19 July 2022 2 0.0 87.2 7.6 5.2 0.0 0.0 100.0 0.0
25 July 2022 3 0.0 0.0 97.0 3.0 0.0 0.0 1.0 99.0

1 August 2022 2 0.0 72.0 28.0 0.0 0.0 11.6 42.6 45.8
8 August 2022 3 0.0 0.7 99.1 0.2 0.0 0.0 0.0 100.0
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Table A1. Cont.

Date
Observation

Predicted Probabilities for Each Level (%)

Simulation without SMOTE Simulation with SMOTE

Level 0 1 2 3 0 1 2

22 August 2022 1 7.0 93.0 0.1 0.0 0.6 99.4 0.0 0.0
29 August 2022 1 0.3 53.6 45.8 0.3 0.0 93.8 6.2 0.0

14 September 2022 0 38.3 61.7 0.0 0.0 9.5 90.5 0.0 0.0
20 September 2022 1 38.8 61.2 0.0 0.0 11.7 88.3 0.0 0.0
26 September 2022 1 96.0 3.9 0.1 0.0 17.5 40.1 42.4 0.0

4 October 2022 1 0.3 97.6 1.3 0.8 0.2 94.1 5.7 0.0
11 October 2022 1 75.8 17.1 0.7 6.4 0.3 0.5 99.0 0.2
17 October 2022 2 20.2 79.4 0.2 0.2 12.9 86.7 0.1 0.3
24 October 2022 1 28.1 8.5 61.8 1.6 3.0 3.2 93.7 0.1
31 October 2022 1 65.8 34.2 0.0 0.0 43.9 52.5 3.6 0.0

7 November 2022 1 52.5 47.5 0.0 0.0 50.2 49.8 0.0 0.0
14 November 2022 2 15.4 84.6 0.0 0.0 0.1 34.6 65.3 0.0
21 November 2022 1 35.6 64.4 0.0 0.0 48.8 51.2 0.0 0.0
28 November 2022 1 41.0 59.0 0.0 0.0 43.8 56.2 0.0 0.0
5 December 2022 1 29.0 71.0 0.0 0.0 41.6 58.4 0.0 0.0
12 December 2022 0 32.0 68.0 0.0 0.0 26.5 73.5 0.0 0.0
19 December 2022 0 36.5 63.5 0.0 0.0 36.9 63.1 0.0 0.0
26 December 2022 0 57.7 42.3 0.0 0.0 69.5 30.5 0.0 0.0

References
1. Kim, J.; Kwak, J.; Ahn, J.M.; Kim, H.; Jeon, J.; Kim, K. Oscillation flow dam operation method for algal bloom mitigation. Water

2022, 14, 1315. [CrossRef]
2. Ghiasi, B.; Noori, R.; Sheikhian, H. Uncertainty quantification of granular computing-neural network model for prediction of

pollutant longitudinal dispersion coefficient in aquatic streams. Sci. Rep. 2022, 12, 4610. [CrossRef] [PubMed]
3. Modabberi, A.; Noori, R.; Madani, K.; Ehsani, A.H.; Mehr, A.D.; Hooshyaripor, F.; Klove, B. Caspian Sea is eutrophying: The

alarming message of satellite data. Environ. Res. Lett. 2020, 15, 124047. [CrossRef]
4. Downing, J.; Polasky, S.; Olmstead, S.; Newbold, S. Protecting local water quality has global benefits. Nat. Commun. 2021,

12, 2709. [CrossRef]
5. Kleinman, P.; Sharpley, A. Eutrophication of Lakes and Rivers. In Encyclopedia of Life Sciences; Wiley Online Library, John Wiley &

Sons: Hoboken, NJ, USA, 2001. [CrossRef]
6. Cressey, D. Climate change is making algal blooms worse. Nature 2017. [CrossRef]
7. Sharma, P.; Sivaramakrishnaiah, M.; Deepanraj, B.; Saravanan, R.; Reddy, M.V. A novel optimization approach for biohydrogen

production using algal biomass. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
8. National Institute of Environmental Research. Operation Manual of Harmful Algal Blooms Alert System (2020); NIER:

Incheon, Republic of Korea, 2020.
9. Zhang, J.; Shi, K.; Paerl, H.W.; Ruhland, K.M.; Yuan, Y.; Wang, R.; Chen, J.; Ge, M.; Zheng, L.; Zhang, Z.; et al. Ancient DNA

reveals potentially toxic cyanobacteria increasing with climate change. Water Res. 2023, 229, 119435. [CrossRef]
10. Oh, H.-M.; Lee, S.J.; Jang, M.-H.; Yoon, B.-D. Microcystin Production by Microcystis aeruginosa in a Phosphorus-Limited chemostat.

Appl Env. Microbiol. 2000, 66, 176–179. [CrossRef]
11. Pimentel, J.; Giani, A. Microcystin Production and Regulation under Nutrient Stress Conditions in Toxic Microcystis Strains. Appl

Env. Microbiol. 2014, 80, 5836–5843. [CrossRef] [PubMed]
12. Jung, E.; Joo, G.-J.; Kim, H.G.; Kim, D.-K.; Kim, H.-W. Effects of seasonal and diel variations in thermal stratification on

phytoplankton in a regulated river. Biogeosci. Discuss. 2022, in press. [CrossRef]
13. Wu, G.; Xu, Z. Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake. Ecol. Model. 2011,

222, 1245–1252. [CrossRef]
14. Tang, C.; Li, Y.; Acharya, K. Modeling the effects of external nutrient reductions on algal blooms in hyper-eutrophic Lake Taihu.

China Ecol. Eng. 2016, 94, 164–173. [CrossRef]
15. Ahn, J.M.; Kim, B.; Jong, J.; Nam, G.; Park, L.J.; Park, S.; Kang, T.; Lee, J.-K.; Kim, J. Predicting Cyanobacterial Blooms Using

Hyperspectral Images in a Regulated River. Sensors 2021, 21, 530. [CrossRef]
16. Jiang, L.; Li, Y.P.; Zhao, X.; Tillostson, M.R.; Wang, W.C.; Zhang, S.S.; Sarpong, L.; Asmaa, Q.; Pan, B.Z. Parameter uncertainty and

sensitivity analysis of water quality model in Lake Taihu, China. Ecol. Model. 2018, 375, 1–12. [CrossRef]
17. Su, J.J.; Du, X.Z.; Li, X.Y. Developing a non-point source P loss indicator in R and its parameter uncertainty assessment using

GLUE: A case study in northern China. Environ. Sci. Pollut. Res. 2018, 25, 21070–21085. [CrossRef]
18. Wang, Y.; Cheng, H.; Wang, L.; Hua, Z.; He, C.; Cheng, J. A combination method for multicriteria uncertainty analysis and

parameter estimation: A case study of Chaohu Lake in Eastern China. Environ. Sci. Pollut. Res. 2020, 27, 20934–20949. [CrossRef]

https://doi.org/10.3390/w14081315
https://doi.org/10.1038/s41598-022-08417-4
https://www.ncbi.nlm.nih.gov/pubmed/35301353
https://doi.org/10.1088/1748-9326/abc6d3
https://doi.org/10.1038/s41467-021-22836-3
https://doi.org/10.1038/npg.els.0003249
https://doi.org/10.1038/nature.2017.21884
https://doi.org/10.1016/j.ijhydene.2022.09.274
https://doi.org/10.1016/j.watres.2022.119435
https://doi.org/10.1128/AEM.66.1.176-179.2000
https://doi.org/10.1128/AEM.01009-14
https://www.ncbi.nlm.nih.gov/pubmed/25038094
https://doi.org/10.5194/bg-2022-42
https://doi.org/10.1016/j.ecolmodel.2010.12.021
https://doi.org/10.1016/j.ecoleng.2016.05.068
https://doi.org/10.3390/s21020530
https://doi.org/10.1016/j.ecolmodel.2018.02.014
https://doi.org/10.1007/s11356-018-2113-0
https://doi.org/10.1007/s11356-020-08287-1


Water 2023, 15, 2293 15 of 16

19. Ahn, J.M.; Kim, J.; Park, L.J.; Jeon, J.; Jong, J.; Min, J.-H.; Kang, T. Predicting Cyanobacterial Harmful Algal Blooms (CyanoHABs)
in a Regulated River Using a Revised EFDC model. Water 2021, 13, 439. [CrossRef]

20. Korea Environment Institute. Development and Application of Algal Bloom Using Artificial Intelligence Deep Learning; KEI:
Seoul, Republic of Korea, 2020.

21. Lek, S.; Park, Y.S. Artificial Neural Network. In Encyclopedia of Ecology; Academic Press, Elservier Inc.: Amsterdam, The
Netherlands, 2008; pp. 237–245. [CrossRef]

22. Jeong, K.S.; Recknagel, F.; Joo, G.J. Prediction and Elucidation of Population Dynamics of the Blue-green Algae Microcystis
aeruginosa and the Diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir System (South Korea) by a Recurrent
Artificial Neural Network. In Ecological Informatics; Recknagel, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]

23. Velo-Suarez, L.; Gutierrez-Estrada, J.C. Artificial neural network approaches to one-step weekly prediction of Dinophysis acuminata
blooms in Huelva (Western Andalucia, Spain). Harmful Algae 2007, 6, 361–371. [CrossRef]

24. Maier, H.; Dandy, G.; Burch, M. Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray,
South Australia. Ecol. Model. 1998, 105, 257–272. [CrossRef]

25. Thai-Nghe, N.; Thanh-Hai, N.; Chi Ngon, N. Deep learning approach for forecasting water quality in iot systems. Int. J. Adv.
Comput. Sci. Appl. 2020, 11, 686–693. [CrossRef]

26. Pyo, J.C.; Cho, K.H.; Kim, K.; Baek, S.S.; Nam, G.; Park, S. Cyanobacteria cell prediction using interpretable deep learning model
with observed, numerical, and sensing data assemblage. Water Res. 2021, 203, 117483. [CrossRef]

27. Ni, J.; Liu, R.; Tang, G.; Xie, Y. An Improved Attention-based Bidirectional LSTM Model for Cyanobacterial Bloom Prediction. Int.
J. Control. Autom. Syst. 2022, 20, 3445–3455. [CrossRef]

28. Yu, J.-W.; Kim, J.-S.; Li, X.; Jong, Y.-C.; Kim, K.-H.; Ryang, G.-I. Water quality forecasting based on data decomposition, fuzzy
clustering and deep learning neural network. Environ. Pollut. 2022, 303, 119136. [CrossRef]

29. Yim, I.; Shin, J.; Lee, H.; Park, S.; Nam, G.; Kang, T.; Cho, K.H.; Cha, Y. Deep learning-based retrieval of cyanobacteria pigment in
inland water for in-situ and airborne hyperspectral data. Ecol. Indic. 2020, 110, 105879. [CrossRef]

30. Yang, Y.; Xiong, Q.; Wu, C.; Zou, Q.; Yu, Y.; Yi, H.; Gao, M. A study on water quality prediction by a hybrid CNN-LSTM model
with attention mechanism. Environ. Sci. Pollut. Res. 2021, 28, 55129–55139. [CrossRef]

31. Bilali, A.E.; Lamane, H.; Taleb, A.; Nafii, A. A framework based on multivariate distribution-based virtual sample generation and
DNN for predicting water quality with small data. J. Clean. Prod. 2022, 368, 133227. [CrossRef]

32. Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in
hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [CrossRef] [PubMed]

33. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A review of deep learning with special
emphasis on architectures, applications and recent trends. Knowl. Based Syst. 2020, 194, 105596. [CrossRef]

34. Campolo, A.; Crawford, K. Enchanted determinism: Power without responsibility in artificial intelligence. Engag. Sci. Technol.
Soc. 2020, 6, 1–19. [CrossRef]

35. Orr, W.; Davis, J.L. Attributions of ethical responsibility by Artificial Intelligence practitioners. Inf. Commun. Soc. 2020, 23, 719–735.
[CrossRef]

36. Ewing, G.; Demir, I. An ethical decision-making framework with serious gaming: A smart water case study on flooding. J.
Hydroinform. 2021, 23, 466–482. [CrossRef]

37. TRACTICA. Global AI Software Market Set to Rise Sixfold to Reach Nearly $100 Billion in 2025; TRACTICA: Boulder, Colorado, USA, 2020.
38. TRACTICA. Deep Learning Chipsets; TRACTICA: Boulder, CO, USA, 2020.
39. Barthwal, M.; Rakshit, D. Artificial neural network coupled building-integrated photovoltaic thermal system for Indian montane

climate. Energy Rep. 2021, 7, 1338–1348. [CrossRef]
40. Gopi, A.; Sharma, P.; Sudhakar, K.; Ngui, W.K.; Kirpichnikova, I.; Cuce, E. Weather Impact on Solar Farm Performance: A

Comparative Analysis of Machine Learning Techniques. Sustainability 2023, 15, 439. [CrossRef]
41. National Institute of Environmental Research. Development of a Quantification Technique for Water Quality Prediction Uncertainty

(I)—Global Sensitivity Analysis of EFDC-NIER Model; NIER: Incheon, Republic of Korea, 2019.
42. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
43. Miles, J. R Squared, Adjusted R Squared; Wiley Online Library, John Wiley & Sons: Hoboken, NJ, USA, 2014. [CrossRef]
44. Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing

average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]
45. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the

literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]
46. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. ICIC

2005, 3644, 878–887. [CrossRef]
47. Yang, W.; Pan, C.; Zhang, Y. An oversampling method for imbalanced data based on spatial distribution of minority samples

SD-KMSMOTE. Sci. Rep. 2022, 12, 16820. [CrossRef] [PubMed]
48. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
49. Calvo-Pardo, H.; Mancini, T.; Olmo, J. Optimal deep neural networks by maximization of the approximation power. Comput.

Oper. Res. 2023, 156, 106264. [CrossRef]

https://doi.org/10.3390/w13040439
https://doi.org/10.1016/B978-008045405-4.00173-7
https://doi.org/10.1007/3-540-28426-5_12
https://doi.org/10.1016/j.hal.2006.11.002
https://doi.org/10.1016/S0304-3800(97)00161-0
https://doi.org/10.14569/IJACSA.2020.0110883
https://doi.org/10.1016/j.watres.2021.117483
https://doi.org/10.1007/s12555-021-0802-9
https://doi.org/10.1016/j.envpol.2022.119136
https://doi.org/10.1016/j.ecolind.2019.105879
https://doi.org/10.1007/s11356-021-14687-8
https://doi.org/10.1016/j.jclepro.2022.133227
https://doi.org/10.2166/wst.2020.369
https://www.ncbi.nlm.nih.gov/pubmed/33341760
https://doi.org/10.1016/j.knosys.2020.105596
https://doi.org/10.17351/ests2020.277
https://doi.org/10.1080/1369118X.2020.1713842
https://doi.org/10.2166/hydro.2021.097
https://doi.org/10.1016/j.enconman.2021.114488
https://doi.org/10.3390/su15010439
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1002/9781118445112.stat06627
https://doi.org/10.3354/cr030079
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1007/11538059_91
https://doi.org/10.1038/s41598-022-21046-1
https://www.ncbi.nlm.nih.gov/pubmed/36207460
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.cor.2023.106264


Water 2023, 15, 2293 16 of 16

50. Thomas, A.; Walters, S.; Gheytassi, S.M.; Morgan, R.; Petridis, M. On the Optimal Node Ratio between Hidden Layers: A
Probabilistic Study. Int. J. Mach. Learn. Comput. 2016, 6, 241–247. [CrossRef]

51. Karsoliya, S. Approximating Number of Hidden layer Neurons in Multiple hidden layer BPNN Architecture. Int. J. Eng. Trends
Technol. 2012, 3, 714–717.

52. Gupta, T.K.; Raza, K. Optimizing Deep Feedforward Neural Network Architecture: A Tabu Search Based Approach. Neural
Process. Lett. 2020, 51, 2855–2870. [CrossRef]

53. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

54. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In
Proceedings of the 2013 IEEE International Conference on Acoustics Speech, and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 8609–8613. [CrossRef]

55. Afaq, S.; Rao, S. Significance of Epochs on Training a Neural Network. Int. J. Sci. Technol. Res. 2020, 9, 485–488.
56. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for

Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.18178/ijmlc.2016.6.5.605
https://doi.org/10.1007/s11063-020-10234-7
https://doi.org/10.1109/ICASSP.2013.6639346

	Introduction 
	Materials and Methods 
	Study Area 
	Water Quality, Algae, and HAB Alert Levels Data 
	DNN Algorithm 
	Method for Analyzing the Predictive Performance 

	Construction of Deep Learning Model and Prediction Results 
	Data Preprocessing 
	Hidden Layers and Nodes for Optimal DNN Model 
	Improvement of DNN Architecture for Multi-Output of Continuous and Categorical Data 
	Result of Cyanobacteria Prediction 
	Result of HAB Alert Levels Prediction 

	Discussion 
	Conclusions 
	Appendix A
	References

