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Abstract: The macro-invertebrate is an important part of the aquatic food web of urban rivers, and it
is of great significance in understanding its ecological suitability for the stability of river ecosystems.
Previous studies, such as those that have conducted suitability index and canonical correspondence
analyses (CCAs), have widely used a macro-invertebrate suitability analysis; however, these studies
can only confirm a few coupling relationships between the environment and macro-invertebrates. In
our study, one-way ANOVA, HCA, PCA and GAM models were used to explain the differences in
the spatial and temporal distribution of environmental factors, as well as to reduce data redundancy.
A response curve of the critical environmental factors and macro-invertebrates was constructed, and
the nonlinear relationship between these factors and benthic animals was quantified to analyze the
ecological threshold of the macro-invertebrates. The study area was the Majiagou River, Harbin,
China. The results show that COD had significant seasonal differences due to complex hydrological
conditions, and most of the water quality factors had spatial differences. The GAM model explained
60% of the Margalef diversity index (MDI) variance. The relationship between chlorophyll-a and
MDI was unimodal, and MDI and NH4

+-N essentially showed a negative correlation; when the total
nitrogen (TN) value reached 5.8 mg/L, MDI reached its peak. When MDI was higher than the mean
value, the chlorophyll-a range was 18.1 µg/L~83 µg/L. The NH4

+-N was less than 1.8 mg/L, and
TN was 1.8~6.8 mg/L. This study provides a reference for the comprehensive management of urban
river ecosystems.

Keywords: urban river; macro-invertebrate; ecological threshold; factor analysis; GAM model

1. Introduction

Urban river ecosystems can provide several ecological services for human beings and
also serve as rich habitats for various organisms [1]. Macro-invertebrates are important
components for maintaining the integrity of urban river ecosystems and providing a basis
for water quality monitoring [2–4]. In recent years, with the continuous development of
urbanization, urban river ecosystems have been exposed to great risks of point and non-
point source pollution, which has resulted in a decrease in macro-invertebrate diversity [5,6].
It is necessary to further investigate the habitat requirements of macro-invertebrates in
urban river ecosystems so as to maintain the stability of urban river ecosystems and provide
healthy ecological services to human beings. Therefore, it is of great ecological significance
to evaluate the habitat suitability for macro-invertebrates as part of the conservation of
urban rivers.

At present, the habitat requirements of urban macro-invertebrates have been re-
searched, and many analysis methods have been used to determine the coupling rela-
tionship between the benthic zone and the environment. For example, Gallardo et al. (2019)
used a non-parametric Kruskal–Wallis test and non-metric multidimensional scaling to
study the metrics of the macro-invertebrates’ response to urbanization [7]. Van et al. (2008)
and Andem et al. (2022) performed redundancy analyses (RDAs) to reveal the critical
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relationship between macro-invertebrates and environmental factors such as pH, as well as
the type of vegetation and substrates [8–10]. The water quality of urban rivers was evalu-
ated by the benthic community index and multiple indicators [11,12], such as the benthic
index of biotic integrity [13], EPT bio-indicators [14] and others, which were also further
investigated. However, there exist two issues in previous studies: (1) the multicollinearity
of environmental factors and data redundancies are always ignored, and this can affect the
accuracy of the results; (2) urban rivers are affected by complex human urbanization due
to a nonlinear relationship between macro-invertebrates and environmental factors. The
distribution characteristics of macro-invertebrates are affected by a variety of water quality
factors, especially in urban rivers. Furthermore, these habitats are more complex due to the
interaction of multiple factors, such as the discharge of domestic pollutants, which leads to
an increase in the total phosphorus (TP) and total nitrogen (TN) content [15]. Therefore, in
addition to the above two issues, the coupling relationship between multiple factors and
macro-invertebrates should be considered in the process of ecological suitability analysis.

A large number of models and multivariate statistical methods have been used to study
the coupling relationship between benthic macro-invertebrates and water environmental
factors. Kim J. S. et al. (2019) adopted an artificial neural network (ANN) combined with
a clustering technique, and they analyzed the relationship between chlorophyll-a (Chl-a)
and the explanatory variables in the Luodong River Basin. Bayesian network reasoning
was used to reconstruct the ecological networks and infer the changes regarding the
disappearance of taxa [16]. Yang L. et al. (2016) utilized the Bayesian method to calibrate the
parameters of an enhanced eutrophication model and to calculate the simulation results [17].
Cao et al. (2017) modeled freshwater mussel habitat suitability with Maxent in the wadable
streams of Illinois, USA, and the species richness was estimated by stacking the predictions
of individual models [18]. In previous studies, CCA has been widely used to analyze the
coupling relationship between functional groups and multiple environmental factors, as
well as to evaluate river water quality [19–21]. PCA and HCA were used to process the
environment and sample sites. Our study highlights the urbanization-induced difficulties
that some species may face in occupying their habitats. Furthermore, we combined the
advantages of PCA, HCA, one-way ANOVA and GAM approaches; thus, a niche model
was constructed that effectively solved the problems of data redundancy and nonlinear
relationships in habitat suitability assessments, and it revealed the ecological threshold of
urban river benthic fauna.

In this study, the Majiagou River was used to conduct a quantitative analysis of species’
responses to critical environmental factors. The river flows through the main urban area of
Harbin and eventually flows into the Songhua River [22]. Rapid urbanization has led to
increasing human disturbance, which has caused great pressure on the aquatic ecosystem.
Our study was carried out in four steps: (1) Monitoring stations were set up to investigate
the macro-invertebrate community composition and the environmental parameters of
bodies of water so as to provide a data reserve for subsequent research; (2) Single-factor
analysis of variance (one-way ANOVA) and hierarchical cluster analysis (HCA) were used
to explain the spatiotemporal variations in the environmental factors of the Majiagou River;
(3) PCA was used to identify the critical water environmental factors; (4) A general additive
model (GAM) was used to fit the response curve of critical environmental factors and
macro-invertebrates, as well as to further analyze ecological suitability. The purpose of
our study was to provide a reference for the integrated management of urban river water
ecosystems.

2. Materials and Methods
2.1. Study Area

The Songhua River is a major water system in Northeast China, and it has an extremely
important ecological service function. Our area of interest was the first-order tributary
located on the south bank of the Songhua River, i.e., the Majiagou River (126◦41′–126◦43′ E,
45◦32′–45◦49′ N), and it flows through the central districts of Harbin [22]. The total length
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of the Majiagou River is 44.3 km, including 34.7 km in the urban section. The river course
width is 20–100 m, and the average width is 34.8 m. The annual water runoff depth is 40–85
mm, and the flow rates are 0.3–1 m/s. The Majiagou River’s situation is unstable, and the
change cycle is obvious. The river basin’s main source of recharge is natural rainwater;
the water quantity only increases sharply in June, July, and August when the precipitation
is concentrated. The water discharge is very small in spring and winter. Upstream is a
reservoir called GongNong, and there are fishponds nearby. The Majiagou River flows
through the suburbs, rural areas and urban areas, and therefore, it is at risk from point
and non-point source pollution. Urbanization and human activities have seriously affected
the water’s ecological environment. In order to better maintain the integrity of the urban
river ecosystem, it is necessary to evaluate the habitat suitability for macro-invertebrates
in the Majiagou River (Figure 1). It has been affected by human influences to varying
degrees. Sampling sites included the reservoir (RI–R3), suburb (S4–S7), village (C8–C10),
revegetation area (V11–V13), urban area (U14–U20), estuary (I21–I22) and the SongHua
river (R23). The reservoir (RI–R3) in the upper reaches of Majiagou River is a mud habitat;
the upper reach (S4–S7, C8–C10, V11–V13) is a mud and grassy sediment bottom; the urban
reach river course (U14–U20) is hardening; and the estuary (I21–I22) and SongHua river
(R23) are mud sediment bottoms.
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Figure 1. Study area and sampling points location. 
Figure 1. Study area and sampling points location.

2.2. Sampling and Measurements

A total of 23 monitoring points were set in our study, and macro-invertebrates and
measurements of water quality factors were collected (Figure 1). Data were collected in
May, July and September, representing spring, summer and autumn, respectively, and the
samples were all taken during the day to avoid the influence of light on the experiment.
Among the total of 69 samples (23 samples per season), the shallowest and deepest samples
were taken at 0.5 m and 1.8 m deep, respectively. In accordance with the technical guidelines
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for biodiversity monitoring, we collected the river surface (water depth of 0.5 m) samples
which represented the average state of the water column (HJ 710.8-2014) and which could
reflect the living environment of benthic invertebrates effectively. A total of 10 items of
data were measured immediately using a water quality analyzer (YSI 6600) on-site. Water
samples (500 mL) were sent to the laboratory, where alkaline potassium persulfate digestion-
UV spectrophotometry, ammonium molybdate spectrophotometry and USEPA digestion
colorimetry methods were used to determine the total nitrogen (TN), total phosphorus (TP)
and chemical oxygen demand (COD), respectively.

When the D-shaped net was used to collect benthic animals, it was placed at the
bottom of the river so that the straight edge of the D-shaped net (about 0.3 m in length) was
close to the bottom of the river. The D-shaped net moved about 1 m from the downstream
to the upstream of the river in the direction of the upstream flow so that benthic animals
entered the net with agitation and the scouring of water. Three small quadrats with a
total area of about 1 m2 were collected. The samples were collected and screened at each
sample site, together with sundries, and were then all packed into plastic ziplock bags
to be sent for laboratory identification. Substrate samples were poured into a 40-mesh
screen and filtered with clean water. In this process, planktonic organisms were sifted
out, and benthic invertebrates were retained in the screen. The benthic organisms were
selected later. Subsequently, benthic animals were fixed in 75% alcohol. Morphological
taxonomic identification was carried out under laboratory conditions and was classified at
the species level.

The benthic macro-invertebrates’ diversity was characterized using the Margalef
diversity index (MDI). The MDI was used to reflect habitat suitability regarding benthic
macro-invertebrate requirements in the Majiagou River. This formula was used to calculate
the MDI of each sampling site as follows:

D = (S − 1)/ln N (1)

where D is the Margalef diversity index (MDI), S is the richness of benthic macro-invertebrates
and N is the number of benthic macro-invertebrate individuals.

2.3. Data Analysis Methods
2.3.1. One-Way Analysis of Variance

In order to test the spatial and temporal differences of key environmental factors
which are normally distributed, we performed a one-way analysis of variance (ANOVA)
and post hoc multiple comparisons using an LSD test [23]. When the test of Homogeneity
of Variances was less than 0.05, we adopted Kruskal–Wallis non-parametric tests instead.
Both ANOVA and Kruskal–Wallis tests were performed using R (version 4.2.1).

2.3.2. Factors Analysis Method

In our study, several multivariate statistic techniques were used: (1) Principal com-
ponent analysis (PCA) was used to identify key environmental factors and eliminate the
parameters that had a smaller influence on spatial and temporal variation to improve
the robustness of the model. We selected PCs with eigenvalues higher than that of the
unit [24–27] and filtered the environmental factors for which the correlation coefficient was
greater than 0.7 [24–28]. Then, we used a variance inflation factor (VIF) to determine that
there was no multicollinearity between the key factors (VIF < 10) [29,30]. (2) After the PCA
process, we used cluster analysis to reveal the similarity between points of sampling based
on the key factors in each season. Hierarchical cluster analysis (HCA) was performed to
group the monitoring points, using Euclidean distance as a measure of similarity in relation
to key parameters. Ward’s method was used to measure the distance between the clusters
in the agglomerative hierarchy [31,32]. All parameters were standardized to eliminate the
interference of measurement. These statistical techniques were performed using the SPSS
22 and R project (version 4.2.1).
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2.3.3. Generalized Additive Models (GAM)

Neither MDI nor its logarithms were normally distributed (p < 0.05). Therefore, only a
nonparametric test, such as generalized additive models (GAMs), could be applied. We
used minimal smoothness (k = 3) to calculate the regressions of GAMs [33] and reported
p-values (significance level p < 0.05) from the summaries of GAM regressions when the
residuals were normally distributed [34,35]. As a presumption for stepwise multiple
regression, independent variables were checked for GAM concurvity—we only reported
multiple relationships with a variance inflation factor (VIF) < 10 between the independent
variables. GAMs were constructed to quantify the response between MDI and critical water
quality factors [36,37]. First, we constructed GAMs between the critical water quality factors
and MDI, respectively, retaining those with high significance levels (p-value < 0.1) to verify
the significance of the critical water quality factors which were identified by the PCA. In the
second step, we used the Akaike information criterion (AIC) to compare GAMs’ goodness
of fit. This was constructed with multiple significant factors, considering the effects of
the interaction terms. We identified the model with the best structure; it was considered
reasonable that the residuals fitted or approximated a normal distribution [38,39]. Finally,
we fitted the response curves for each of the smoothing terms of the GAMs to determine
the relationship between the MDI and the critical water quality factors and identified the
appropriate range of the critical water quality factors.

GAM models were performed to reveal the coupling relation between the biodiversity
index and key environmental factors. The general GAM structure was as follows:

g(E(Y)) = β0 + f1(x1) + f2(x2) + . . . + fm(xm) (2)

where g(g(.)) is a link function, E(Y) is the response variable’s expected value, β0 is a
constant and fi(xi) is a smooth function. We used the “mgcv” package of the R Project to
implement GAMs.

3. Results
3.1. Macro-Invertebrate Diversity and Water Quality Factors
3.1.1. Distribution Characteristics of Macro-Invertebrates

According to the biological identification results, we collected a total of 73 species from
four phyla. The highest frequency of occurrence species (FOS) was Annelida (71.4%), the
second was Arthropoda (22.6%), and the third was Mollusca (12.6%). However, Arthropoda
constituted the largest number of species (52.1%). For the temporal distribution, FOS was
highest in autumn, but there were fewer species at this time; conversely, in spring, the
number of species was highest, and FOS was the lowest. Diptera were the largest group of
arthropods (63.2%) and were widely distributed in a variety of bodies of water. Annelida
were concentrated in regions greatly influenced by human activities, such as urban or
rural areas, and Oligochaeta was the dominant ecological niche; Mollusca were mainly
distributed in the upper reaches and the inlets of rivers. The main species (FOS > 10%) of
the Majiagou River in each season are shown in Table 1.

Table 1. Macrobenthos community composition in different seasons in the Majiagou River.

Season Phylum Class Species

Spring Arthropoda Insecta Chinonomus pallidivittatus
Dicrotendipes tritomus
Chironomus riparius

Malacostraca Exopalaemon modestus
Clitellata Glossiphonia lata

Annelida Oligochaeta Limnodrilus hoffmeisteri
Tubifex tubifex

Mollusca Gastropoda Bithynia fuchsiana
Lamellibranchia Sphaerium lacustre

Nemathelminthes Gordiacea



Water 2023, 15, 2269 6 of 16

Table 1. Cont.

Season Phylum Class Species

Summer Arthropoda Insecta Dicrotendipes lobifer

Glyptotendipes cauliginellus
Malacostraca Exopalaemon modestus

Clitellata Helobdella nuda
Annelida Oligochaeta Limnodrilus hoffmeisteri

Tubifex tubifex
Mollusca Gastropoda Radix swinhonei

Bithynia fuchsiana
Lamellibranchia Sphaerium lacustre

Nemathelminthes Gordiacea

Autumn Arthropoda Insecta Cricotopus sylvestris

Chinonomus pallidivittatus
Dicrotendipes tritomus

Malacostraca Exopalaemon modestus
Clitellata Helobdella stagnalis

Annelida Oligochaeta Branchiura sowerbyi
Limnodrilus hoffmeisteri

Tubifex tubifex
Mollusca Gastropoda Radix swinhonei

Bithynia fuchsiana
Lamellibranchia Sphaerium lacustre

Nemathelminthes Gordiacea

3.1.2. Spatial and Temporal Differences of Water Quality

• Seasonal differences in water quality

First, the test of Homogeneity of Variances and Shapiro–Wilk were performed to
ensure that ANOVA could be used. The test results showed that COD, salinity and pH
conformed to the precondition. Seasonal variation significantly affected the COD of the
Majiagou River, as indicated in Table 2 (F = 17.59, p < 0.001). The results of post hoc multiple
comparisons using the LSD method showed that the value was lower in September than in
the other seasons (Table 2) and that it differed significantly between spring and autumn and
summer and autumn. There were no significant seasonal differences in salinity (p > 0.05).

Table 2. Effects of seasonal variation in water quality factors; the significant effect of seasonal
variation on the index (p < 0.05) is in bold. (The significant post hoc results (p < 0.05) based on Fisher’s
LSD test are shown with different lowercase letters).

Season Effects of Season

May July September Statistics p-Value

COD 22.73 ± 7.25 a 20.13 ± 6.79 a 11.3 ± 6.48 b F = 17.59 <0.001
Salinity 0.39 ± 0.12 ab 0.48 ± 0.16 a 0.41 ± 0.11 a F = 2.896 0.062

pH 8.16 ± 0.28 a 8.17 ± 0.48 a 8.19 ± 0.39 a F = 0.031 0.97

• Hierarchical cluster analysis (HCA) of samples

The HCA was used to identify the similarity of the 23 sampling stations according to
their water quality factors. First, we used the sum of squared error (SSE) to determine the
optimal number of clusters; the value of the Total Within Sum of Square (WSS) method
decreased with the increase in the number of clusters. When the gradient decreased, it
was considered that further increasing the number of clusters would not enhance the
robustness, which determined the optimal number of clusters. In our study, the gradient
of WSS decreased after four clusters (Figure 2a); thus, the result of HCA identified four
clusters, which were similar to the principle of the sample setting, and confirmed the
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rationality of our sampling station setting. Cluster 1 was at a low level of interference from
human activities and consisted of stations R1–R3, C8–C10 and D23; Cluster 2 (moderate
human activity disturbance level) consisted of S4–S7 and V11–V13; Cluster 3 consisted
of U19–U20; and Cluster 4 consisted of U14–U18 and U21–U22, which both represented
serious human interference.
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• Spatial differences of water quality and MDI

Based on the HCA, the boxplots show the spatial variation in water quality in the
Majiagou River (Figure 3). Water quality factors with significant spatial differences included
MDI, salinity, pH, turbidity, CL−, chlorophyll-a, ammonium nitrogen, TP, TN and COD.
For MDI, Clusters 1 and 2 were significantly higher than Clusters 3 and 4. The MDI in the
outer suburbs of the city was similar to that in the upstream areas of the river and decreased
significantly after flowing into the urban area. TN in the lower reaches (Clusters 3 and 4)
was slightly higher than that in the upstream area; however, here, ammonium nitrogen
was obviously higher than that in the upstream area. This phenomenon was also reflected
in COD, TP and CL−: all of these differences were due to human interference. The upper
reaches were lower in salinity (Cluster 1, 0.22~0.38 psu) compared with the suburbs and
downstream areas (Cluster 4, 0.33~0.54 psu). The pH for all the monitoring sites was
alkaline, with urban reach being the highest (Cluster 4, 8.4~8.75), and the turbidity of the
urban samples was higher. There was no significant difference in dissolved oxygen (DO,
7~9 mg/L).

From the spatial-temporal distribution of the water quality factors, we found that each
monitoring site had ecological significance, and the characteristics regarding the ecological
suitability for macro-invertebrates could be analyzed accurately.
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3.2. Identification of Critical Environmental Parameters

The PCA results applied to data sets from spring, summer and autumn are shown in
Table 3. We assumed that when the weight of the factor was greater than 0.9, PC had a high
correlation with it (Figure 2).

In the spring, the PCA for water quality factors delivered four PCs, which, together,
accounted for 80.12% of the total variance (Table 3, Figure 4). PC1 accounted for 31.6%,
which had a strong positive correlation with NH4

+-N. For PC2 (total variance of 24.1%)
and PC3 (total variance of 14.4%), the weights for these factors were lower than 0.9, and
PC4 (total variance of 10.0%), which presented a strong positive correlation with pH. This
indicated that there were two critical environmental parameters (variance inflation factor
between the parameters (VIF) < 10) in the spring.

In the summer, all PCs together accounted for 86.5% of the total variance (Table 3,
Figure 4). PC1 accounted for 39.8%, which had a strong positive correlation with NH4

+-N;
PC2 (total variance of 16.7%) had a strong positive correlation with salinity and CL−; PC3
(total variance of 12.3%) had a strong positive correlation with Chl-a; PC4 (total variance of
9.4%) had a strong positive correlation with TN; and for PC5 (total variance of 8.3%), all
the weights for these factors were lower than 0.9. There were five critical environmental
parameters (variance inflation factor between the parameters (VIF) < 10) in the summer.

In the autumn, the PCA for water quality factors delivered four PCs, which, together,
accounted for 79.9% of the total variance (Table 3, Figure 4). PC1 accounted for 34.7%,
which had a strong positive correlation with NH4

+-N; for PC2 (total variance of 22.8%),
PC3 (total variance of 13.5%) and PC4 (total variance of 8.7%), all the weights were lower
than 0.9. This indicated that there was one critical environmental parameter in the autumn.
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Based on the identification of all seasonal critical factors, seven environmental factors
were eliminated, and a total of six critical factors entered the next step of model construction.

Table 3. (a) PCA results applied to dataset in the spring; PCs together accounted for 80.1% of the
total variance. (b) PCA results applied to dataset in the summer; PCs together accounted for 86.5% of
the total variance. (c) PCA results applied to dataset in the autumn; PCs together accounted for 79.8%
of the total variance.

PC
Initial Eigenvalues

Total % of Variance Cumulative %

(a)

PC1 4.108 31.604 31.604
PC2 3.127 24.053 55.657
PC3 1.877 14.436 70.093
PC4 1.303 10.025 80.118

(b)

PC1 5.177 39.823 39.823
PC2 2.164 16.648 56.471
PC3 1.603 12.332 68.802
PC4 1.222 9.401 78.203
PC5 1.075 8.273 86.476

(c)

PC1 4.517 34.743 34.743
PC2 2.970 22.843 57.586
PC3 1.754 13.491 71.077
PC4 1.137 8.745 79.822
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3.3. Response between Macro-Invertebrate MDI and Critical Quality Parameters Using GAM
3.3.1. Single-Factor Significance Test Used for Critical Water Quality Factors

The single-factor GAM model was constructed after being screened by PCA in order
to test the significance of critical water quality factors and MDI (Table 4). The single-factor
GAMs showed that NH4

+-N, TN and Chl-a passed the significance test (p-value < 0.1); then,
SAL, CL− and pH were eliminated. We constructed interaction terms between NH4

+-N, TN
and Chl-a and confirmed that they all had high significance (p < 0.01). This result showed
that the PCA and VIF test methods had strong robustness and critical environmental
parameters were accurately identified. The deviance explained (DE) represented variance
in the response variable explained by the model, as shown in Table 4. The DE of the
interaction terms was higher than that of the single-factor test. The result of effective
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degree (edf) indicated MDI and NH4
+-N had a strong linear relationship. In our study,

we considered the interaction between these parameters and adopted a multi-factor GAM
model to quantify the relationship between MDI and critical quality parameters.

Table 4. Single-factor and interaction term GAM models significance test (* p < 0.1, ** p < 0.01,
*** p < 0.001).

GAM Model edf p-Value GCV Deviance
Explained (DE) Significance

MDI~s (NH4
+-N, k = 3) 1 0.0278 * 0.34798 7.02%

√

MDI~s (TN, k = 3) 1.8 0.000843 *** 0.30319 20.9%
√

MDI~s (SAL, k = 3) 1.753 0.118 0.35416 7.48% ×
MDI~s (Chl-a, k = 3) 1.873 0.00632 ** 0.32474 15.5%

√

MDI~s (CL−, k = 3) 1.52 0.445 0.36775 3.26% ×
MDI~s (pH, k = 3) 1.214 0.901 0.37391 0.73% ×

MDI~te (NH4
+-N, TN, k = 3) 5.187 0.00219 ** 0.30451 28.5%

√

MDI~te (NH4
+-N, Chl-a, k = 3) 4.751 0.00187 ** 0.30473 27.4%

√

MDI~te (TN, Chl-a, k = 3) 4.765 8.8 × 10−5 *** 0.26659 36.5%
√

3.3.2. Multi-Factor GAM Optimization

We used the final remaining three critical water quality factors to construct a GAM
model (Model 1); the model results showed that it explained 52.2% of the variance. To
improve the DE, we added three interaction items to the model (Model 1, 2, 3); the GAM
results showed that all DE improved after the addition of interaction items, and the AICs
(Akaike information criteria) of all optimization models were lower than that of Model 1
(Table 5). Among the three optimization models, Model 2 had the highest DE value, and
both GCV (Generalized Cross Validation) and AIC were low; therefore, Model 2 had the
highest goodness of fit and was the best model in our study. According to the histogram of
model residuals, the rationality of the model was tested; Figure 5 shows that the model
residuals essentially conformed to a normal distribution, and thus, the model was robust.
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Table 5. GAM model of critical water quality factors and optimal structures.

GAM Model GCV AIC Deviance Explained
(DE)

DE Variation with
Model 1

Model 1: MDI~s (TN) + s (NH4
+-N)

+ s (Chl-a) 0.248 99.20836 52.2%

Model 2: MDI~s (TN) + s (NH4
+-N)

+ s (Chl-a) + te (NH4
+-N, TN) 0.24637 96.2688 60% +7.8%

Model 3: MDI~s (TN) + s (NH4
+-N)

+ s (Chl-a) + te (NH4
+-N, Chl-a) 0.24457 97.26073 56.2% +4%

Model 4: MDI~s (TN) + s (NH4) + s (Chl-a)
+ te (TN, Chl-a) 0.24847 96.93572 59.4% +7.2%

3.3.3. Response between MDI and Critical Quality Parameters

The response curves of Model 2 indicate a nonlinear relationship between the MDI
and critical quality parameters (Figure 6). According to the results of the response curves:
(1) The relationship between chlorophyll-a and MDI was unimodal; when the value of
chlorophyll-a was less than 48, MDI was positively correlated with chlorophyll-a; con-
versely, there was a negative correlation when the value of chlorophyll-a was more than
48. (2) MDI and NH4

+-N essentially showed a negative correlation; when NH4-N was
3.2 mg/L, MDI was at its lowest value and then rose slowly. (3) TN represented the trophic
degree of the river; when the TN value reached 5.8, MDI reached its peak and then slowly
declined with the increase in the total nitrogen value. (4) When MDI was higher than
the mean value, the chlorophyll-a range was 18.1 µg/L~83 µg/L. NH4

+-N was less than
1.8 mg/L; TN was 1.8~6.8 mg/L.
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For the urban river, the eutrophication of some reaches was very serious because
of human activities, especially with the accumulation of nitrogen and phosphorus at the
inlet of the river. In our study, although TP was not a critical water quality factor, it had
a strong correlation with TN. Therefore, a GAM model was established for TP to analyze
its relationship with MDI (Figure 6). It was found that the response curve shapes of MDI
on TN and TP were very similar; when the value of TP was 4.9 mg/L, MDI reached its
highest value.

4. Discussion
4.1. Response of Benthic Macro-Invertebrates to Critical Water Quality Factors

In our study, beginning with the seasonal and spatial differences of environmental
factors, we analyzed the critical environmental factors in each season and the spatial
clustering of each monitoring site and constructed an ecological suitability model of macro-
invertebrates, confirming the response of macro-invertebrates to the critical environmental
factors, and finally determining the ecological threshold for critical water quality factors.
Combined with the HCA results of these sites, this study provides an important reference
for habitat management in different reaches.

Macro-invertebrates have a unique ecological niche in rivers and are sensitive to
changes in water quality environmental factors; thus, MDI is regulated by environmental
factors. In previous studies on macro-invertebrates in urban rivers, it was believed that
water quality factors had potential impacts on benthic fauna, especially regarding the
levels of nutrients such as total phosphorus and total nitrogen, which limited the survival
of macro-invertebrates and led to the niche loss of macro-invertebrates [40]. However,
due to the differences in study areas, the environmental factors that played key roles in
the habitats of macro-invertebrates varied by situation; with different degrees of human
disturbance, the basic hydrological conditions of urban rivers varied greatly, leading to
changes in some limiting factors. For example, previous studies have shown that dissolved
oxygen (DO) has a negative effect on macro-invertebrates [41], but due to the shallow water
depth, fast velocity and low plankton density at some monitoring sites, the level of DO
was high, and this was not a limiting factor for macro-invertebrates in the Majiagou River.
Blanka Gal et al. (2020) undertook an interesting study in Europe on benthic fauna at a
typical site of urbanization (road crossings), and an assessment of environmental variables
showed that road crossings caused habitat changes; it was suggested that these changes
were the main drivers of biodiversity patterns. However, Luciana Irene Gallardo et al.
(2019) showed that seven benthic indices were responsive to urbanization, and benthic
community structures were similar to different levels of anthropogenic disturbances in
Argentina. In our study, some sampling points were also involved in road crossings, and
it was confirmed that human disturbance had a certain effect on the benthic community
structure, which was contrary to the study in Argentina, probably because the ecosystem
of the Majiagou River is severely shaped by human disturbance, the river length is longer,
and the environmental factors are different from those of lakes.

The same situation also occurred for water temperature environmental factors; the
spatial difference analysis of the monitoring sites after HCA showed that spatial differences
in water temperature environmental factors were not significant because the Majiagou
River was small scale and the samplings were carried out over the same time period.
Shen et al. (2022) considered salinity to be the most important factor affecting macro-
invertebrate biodiversity and identified a positive correlation [42]. The results of a one-
way ANOVA of environmental factor seasonality differences confirmed that the seasonal
variation in salinity in our study was not significant, and it was difficult to judge the
coupling relationship between salinity and macro-invertebrates. In conclusion, the study
on the response of macro-invertebrates to environmental factors needed to consider the
actual situation of rivers.

For urban rivers, we should not only consider the potential impact of nutrients on
diversity but also consider the coupling relationship between the interactions of various
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critical environmental factors and the macro-invertebrate community [43]. In our study, we
determined the ecological suitability of benthic animals by fitting the responses of critical
environmental factors and macro-invertebrates and demonstrated that benthic responses to
multiple critical environmental factors were nonlinear, confirming the findings of previous
studies [44,45]. We found that under human disturbances, the density of pollution-resistant
species such as chironomid larvae and oligochaetes increased exponentially and that in
such circumstances, the benthic community became homogenized. Finally, based on the
response characteristics of macro-invertebrates to these critical factors, we could determine
ecological suitability for species survival.

4.2. Construction of GAM Model Based on HCA and PCA

When there are too many monitoring sites, the analysis process always becomes
more complicated. HCA can effectively cluster the sites with the same characteristics [46].
Excessive numbers of environmental factors reduce the weight of critical factors, leading to
data redundancy [47]; however, we achieved a data dimension reduction through PCA,
expecting to interpret target variables with the smallest amount of variable interaction.
Using PCA, VIF and a significance test (p-value < 0.1), we finally selected three critical
water quality parameters from thirteen environmental factors, reducing data redundancy
by 76.9%, which provided a basis for more accurately determining the response of species
to critical factors. GAM could fit the nonlinear relationship robustly, which was valuable
for the quantitative study of species’ niche requirements. In our study, the GAM model was
used to analyze macro-invertebrate responses to environmental parameters and accounted
for 60% of species diversity differences. In conclusion, the GAM model based on HCA
and PCA could effectively improve the robustness of the model and provide references for
macro-invertebrate habitat suitability evaluation.

4.3. The Limitations and Prospects of Our Study

In our study, a GAM model based on HCA and PCA was used to analyze the ecological
suitability of urban rivers for benthic fauna. The study showed that it had high robustness
but that further studies were still needed in the future. (1) As a part of the food web of
aquatic organisms, a study of macro-invertebrates could be combined with a study of the
plankton community to carry out more comprehensive and in-depth research. (2) Our
study used a GAM model to quantify the response of MDI to critical environmental factors;
if various functional groups or species composition need to be considered, CCA or RDA
could be used. (3) The problem of overfitting could also be solved by increasing the sample
size. (4) For urban rivers, we could pay attention to the nutrient concentration in the
sediment and the influence of river channel hardening so as to better support the ecological
suitability study of benthic macro-invertebrate habitats.

5. Conclusions

In our study, one-way ANOVA and HCA were used to explain the spatiotempo-
ral differences in water environmental factors in the Majiagou River. PCA was used to
reduce data redundancy, identify critical factors, and in constructing a GAM model of
macro-invertebrates and critical factors, we confirmed the ecological threshold for benthic
organisms. The main conclusions were as follows:

1. The macro-invertebrate community in the Majiagou River had differences in their
spatiotemporal distribution. Due to human disturbance, the macro-invertebrate
community tended to be homogeneous and resistant to pollution, with a decrease in
the biodiversity index.

2. In this study, one-way ANOVA and hierarchical cluster analysis (HCA) were used to
analyze the temporal and spatial variations in water quality factors in the Majiagou
Watershed. The results showed that COD in the Majiagou River had obvious seasonal
differences, and the water quality in different reaches had spatial distribution differ-
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ences; CL−, NH4
+-N, TP, TN and COD in the downstream area were higher than they

were in the upstream area.
3. Principal component analysis was used to identify the key water environmental

factors and three environmental factors with a significant impact on benthic animals
were finally selected through a significance test, which reduced data redundancy.

4. A GAM model fitted the nonlinear relationship between MDI and critical water
environmental factors and fitted the response curve for the critical environmental
factors and macro-invertebrates. This could be used to further analyze ecological
suitability. The purpose of our study was to provide a reference for the integrated
management of urban river water ecosystems.
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