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Abstract: Multisource meteorological re-analyses provide the most reliable forcing data for driving
hydrological models to simulate streamflow. We aimed to assess different hydrological responses
through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded
meteorological datasets, Climate Forecast System Re-analysis (CFSR) and the China Meteorological
Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS).
We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root mean square
error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial
distributions of the statistical indicators in CFSR and CMADS, namely, the R, PBIAS, and RMSE
values, were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was
used to perform hydrological modeling based on CFSR and CMADS meteorological re-analyses
in the upper LMRB. The different meteorological datasets resulted in significant differences in
hydrological responses, reflected by variations in the sensitive parameters and their optimal values.
The differences in the calibrated optimal values for the sensitive parameters led to differences in
the simulated water balance components between the CFSR- and CMADS-based SWAT+ models.
These findings could help improve the understanding of the strengths and weaknesses of different
meteorological re-analysis datasets and their roles in hydrological modeling.

Keywords: CFSR; CMADS; meteorological variables; hydrological simulations; SWAT+; upper
Lancang-Mekong River Basin (LMRB)

1. Introduction

Hydrological modeling is critical to understanding hydrological processes and analyz-
ing their changes under a changing environment, which is the goal of global hydrological
communities [1]. The process of hydrological modeling involves preparing meteorologi-
cal forcings, constructing hydrological models, and validating these models to simulate
realistic hydrological processes [1]. The research on hydrological modeling has focused
on different spatial scales, from the watershed or regional scale [2–6] to the continental
or global scale [7–9], and different temporal scales, such as hourly [10], daily [3,4,11,12],
monthly [3–5,11,13], and yearly [14]. Meteorological data are a crucial input in the hy-
drological modeling process, and accurate and reliable meteorological data help improve
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hydrological modeling accuracy [2,4,5,13,15]. Reliable hydrological modeling could facili-
tate the simulation of streamflow under climate change [16] and anthropogenic activities,
mainly dam construction [17,18], and the prediction of medium- to long-term hydrolog-
ical streamflow, which could further promote the efficient development and utilization
of water resources as well as the formulation of effective flood control and drought re-
lief measures [19,20]. The problem currently encountered in the hydrological modeling
process of the upper LMRB is the poor spatial coverage of gauge stations, leading to un-
certainties in hydrological modeling [11]. The solution provided by many studies is to
use meteorological re-analysis datasets to perform hydrological modeling at large spatial
scales [2,3,11,13]. Re-analysis datasets are comprehensive grided meteorological datasets
derived from in situ observations, remote-sensing data, and model outputs through an
assimilation system [13,21]. Re-analysis datasets contain a wide variety of climate variables
such as precipitation, maximum/minimum temperature, relative humidity, wind speed,
and solar radiation. They also feature long-term continuity and high spatial coverage,
making them reliable forcing inputs for hydrological modeling in areas with sparsely dis-
tributed gauge stations [22,23]. Nonetheless, re-analysis performance varies among basins
due to differences in data sources, assimilation techniques, and model equations [3,4,12,24].
Therefore, the investigation of re-analyses is essential in the upper LMRB.

In order to investigate the potential applicability of meteorological forcing re-analyses
to hydrological simulation and prediction, several studies have evaluated meteorological
forcing re-analyses following one of two procedures: (1) the comparison of re-analysis
products with corresponding observations on a daily spatiotemporal scale [3,11,24–26],
or (2) the comparison of meteorological forcing re-analyses based on daily and monthly
simulated streamflows with hydrological observations [2,3,11,25–27]. Several studies have
compared the precipitation and temperature data of global atmospheric re-analyses with
gridded observed data [11,24]. The authors compared precipitation and temperature data
from various global and regional meteorological re-analyses with gridded observations
and found that there were large differences between the re-analyses and the gridded
observations. The temperature values of CFSR were more realistic than the precipitation
values, while the precipitation values of the climate forecast system re-analysis (CFSR)
were higher than those of the observed data. Owing to the sparse and discontinuous
meteorological data from East Asia, CMADS was developed to provide regional gridded
meteorological re-analyses [28]. With the wide application of CMADS in East Asia [29],
many studies have compared the meteorological variables of CFSR and CMADS with
observed data [3,25,26,30]. Gao et al. [25] and Wang et al. [30] evaluated the performance
of CMADS and CFSR with gauge observations for two time steps (daily and monthly).
They found that CFSR tended to overestimate precipitation, while CMADS tended to
underestimate it for both time steps. CMADS exhibited greater accuracy in detecting
precipitation events [30]. Two studies evaluated CMADS and CFSR in different regions of
China [26]. Liu et al. [3] found that the performance of precipitation prediction by CFSR
and CMADS was poor, and CFSR overestimated precipitation in the Qinghai-Tibet Plateau,
while Zhang et al. [26] found that the performance of precipitation prediction by CFSR
and CMADS was good in Northeast China. Both studies found that the performance
of max/min temperature prediction was good, but the CFSR temperature values were
underestimated. The performance of humidity and wind speed prediction by CFSR was
inferior to that of CMADS, with a low correlation and high bias [3].

Differences in meteorological forcing re-analyses can lead to different hydrological
responses, due to the fact that the errors in the meteorological inputs can be propagated
through the hydrological models into runoff simulations [31,32], such as parameter sensitiv-
ity and optimization [33,34]. We summarized the different configurations of hydrological
modeling presented in published papers in Table 1, including the meteorological datasets,
meteorological variables, time steps, number of parameters used for calibration and cali-
bration method, calibration strategy, research area, which datasets performed well, and the
reasons for this. The meteorological variables focused on by these studies were precipita-
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tion and temperature. The time steps used for hydrological modeling were mainly daily
and monthly. However, the number of parameters used for parameter calibration varied
widely, while the calibration method applied was basically the SUFI-2 algorithm. The
main calibration strategy was separate SWAT model calibrations for each meteorological
dataset; however, the research of Dile and Srinivasan [27] used uncalibrated SWAT model
parameters. Most authors concluded that CFSR-based streamflow simulation performed
worse than CMADS-based simulation, conventional observed weather data, or remotely
sensed streamflow simulation, except for Fuka et al. [2]. The reason for this was that
CFSR overestimated precipitation. Importantly, previous studies focused mainly on the
evaluation of streamflow simulations, without fully describing the different hydrological
responses.

Our study aimed to validate the applicability of the re-analysis datasets and assess
the different hydrological responses in the SWAT+ model simulations. In addition to
the analysis of important meteorological variables, such as precipitation and tempera-
ture, as conducted in previous studies, we analyzed other meteorological variables of the
re-analysis datasets, including relative humidity, wind speed, and solar radiation. The
spatiotemporal characteristics of these meteorological variables were validated for the
period 2008–2013. We used the newly developed SWAT+ hydrological model and SWAT+
parameter sensitivity/optimization toolbox and algorithms to calculate the different hydro-
logical responses based on the different meteorological re-analysis datasets for the upper
LMRB. The findings could help to improve the understanding of the roles of meteorological
re-analysis datasets and hydrological model structures in hydrological processes.
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Table 1. Different configurations of hydrological modeling in published papers.

Paper Meteorological
Datasets

Meteorological
Variables Time Step

The Number of
Parameters Used for

Calibration and
Calibration Method

Calibration
Strategy Country Good

Performance Reasons

Dile and
Srinivasan

(2014)
[27]

CFSR vs.
conventional

observed weather
data

Precipitation and
temperature Monthly No parameters to

calibrate
Uncalibrated
SWAT model Ethiopia

Conventional
observed weather

data

CFSR
underestimated

streamflow

Fuka et al.
(2014)

[2]

CFSR vs.
conventional

observed weather
data

Precipitation and
temperature Daily

20 parameters;
differential evolution

optimization

Separate SWAT
model calibrations

United States and
Ethiopia CFSR

CFSR represented
the watershed area

better than the
weather station

Lauri et al.
(2014)
[11]

CFSR vs. remotely
sensed

precipitation
(ERA-Interim)

Precipitation and
temperature Daily and monthly Unclear VMod model,

unclear

Mekong, China,
Burma, Thailand,
Cambodia, Laos

PDR, and Vietnam

Remotely sensed
precipitation

CFSR dataset
included an area
of high annual
precipitation

Gao et al.
(2018)
[25]

CFSR vs. CMADS Precipitation Daily and monthly Unclear

Separate SWAT
model calibrations

for each
meteorological

dataset

Yangtze River,
China CMADS

CFSR
overestimated
precipitation

Wang et al.
(2020)
[30]

CFSR vs. CMADS Precipitation Monthly

12 parameters;
Latin hypercube and
one-factor-at-a-time
sampling methods

with sequential
uncertainty fitting ver.
2 algorithm (SUFI-2)

SWAT model was
calibrated only by
gauge-observed
meteorological

elements

Yellow River,
China

Gauge-based
precipitation data

CFSR
overestimated
precipitation;

CMADS
underestimated

precipitation
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Table 1. Cont.

Paper Meteorological
Datasets

Meteorological
Variables Time Step

The Number of
Parameters Used for

Calibration and
Calibration Method

Calibration
Strategy Country Good

Performance Reasons

Liu et al.
(2018)

[3]
CFSR vs. CMADS

Precipitation,
temperature,
wind speed,
and relative

humidity

Daily and monthly 12 parameters; unclear

Separate SWAT
model calibrations

for each
meteorological

dataset

Yellow River
Source Basin,

China
CMADS

Gauge-observed
meteorological

stations were not
representative

Zhang et al.
(2020)
[26]

CFSR vs. CMADS Precipitation and
temperature Monthly

14 parameters; SWAT
calibration uncertainty
program (SWAT-CUP)

Separate SWAT
model calibrations

for each
meteorological

dataset

Hunhe River
Basin, Northeast

China
CMADS

CFSR
overestimated and

underestimated
precipitation

Guo et al.
(2022)

[5]

CMADS vs.
TRMM 3B42

version 7
Precipitation Daily and monthly

17 parameters; SUFI-2
algorithm in
SWAT-CUP

Separate SWAT
model calibrations

for each
meteorological

dataset

Yangtze River,
China CMADS

Gauge SWAT data
were

overestimated

Zhang et al.
(2020)
[13]

CFSR vs. CMADS Precipitation and
temperature Monthly

13 parameters; SUFI-2
algorithm in
SWAT-CUP

Separate SWAT
model calibrations

for each
meteorological

dataset

Muda River Basin,
Malaysia CMADS

CFSR
overestimated the

low flows and
included a time
lag in peak flow

estimation

Dao et al.
(2021)
[12]

Cau River Basin
(CRB), northern

Vietnam

Precipitation and
temperature Daily and monthly

14 parameters; SUFI-2
algorithm in
SWAT-CUP

Separate SWAT
model calibrations

for each
meteorological

dataset

Cau River Basin
(CRB), northern

Vietnam
CMADS

CFSR
overestimated

actual
precipitation

values
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2. Materials and Methods
2.1. Study Area

The upper Lancang-Mekong River is one of the main rivers located in southwest
China and is the most typical north–south river in the world (Figure 1), with a length
of approximately 2129 km and a drainage area of 1.87 × 105 km2. The LMRB spans the
tropical, subtropical, and temperate climate zones and possesses unique hydrological
characteristics, owing to its great regional variety. Due to the monsoon, the upper LMRB is
dry and cold in winter and hot and humid in summer, and the annual precipitation in the
region is distributed unevenly. The precipitation in the wet season in the LMRB accounts for
the majority of the annual precipitation, and the seasonal changes are significant. Therefore,
floods and droughts are the major natural disasters in the upper LMRB. According to
statistical data acquired from the Yunnan Water Resources Department (http://wcb.yn.gov.
cn/html/shuiziyuangongbao/, accessed on 30 December 2022), the average recurrence
of floods in the upper LMRB is 9 years for major floods and 3 years for minor ones, and
most floods occur between June and August. The average flooding frequency in this
region is 3–5 years. These natural disasters have caused huge losses to agriculture in the
downstream areas of the Mekong River, which include several developing countries. All
these countries are highly dependent on agriculture, fishing, and hydropower; therefore,
the forecasting, governance, and management of floods and droughts in these areas are
extremely important.
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2.2. Data

The NCEP CFSR represents a new generation of re-analysis product, which provided
the best estimates of the land surface state from 1979 to 2014 and was developed from
the global high-resolution atmosphere–ocean–land surface–sea ice coupling system and
data assimilation system [35]. Notably, the CFSR datasets have a high resolution globally
(T382L64). The CFSR datasets provide six meteorological variables for hydrological models,
including precipitation, maximum/minimum temperatures, relative humidity, wind speed,
and solar radiation. We downloaded daily meteorological variables in the SWAT file
format from the SWAT data website (https://swat.tamu.edu/data/cfsr, accessed on 16
December 2021). In order to perform grid-to-grid comparison between CFSR and CMADS
meteorological re-analyses, the coordinates of CFSR were interpolated into those of CMADS
by the bilinear interpolation method. Although the resolution difference between CMADS
and CFSR is small, their data coordinates deviated slightly, and there was a certain level of
spatial error in the interpolated CFSR data.

In contrast to the global CFSR datasets, CMADS is a regional re-analysis dataset de-
veloped by Dr. Meng Xianyong, mainly covering East Asia (0◦–65◦ N, 60◦–160◦ E). The
CMADS product was constructed through the assimilation and correction of meteoro-
logical observations (automatic stations, satellites, and radars) and the European Centre
for Medium-Range Weather Forecasts background field using multiple technologies and
scientific methods, including resampling, bilinear interpolation, and the loop nesting of
data [36]. The assimilation process of CMADS was mainly achieved through LAPS and
STMAS. CMADS is available to the public, which is beneficial for the areas of East Asia,
especially the regions with relatively scarce meteorological data. CMADS includes multiple
versions of the datasets with different resolutions (1/3◦, 1/4◦, and 1/8◦) to meet different
user needs. We used CMADS version 1.0 (1/3◦) in this study, which is freely available
(http://www.cmads.org/, accessed on 5 March 2022). We chose the common 6-year period
(i.e., 2008–2013) to evaluate the CFSR meteorological datasets for the upper LMRB.

In addition to meteorological forcings, other land surface data were needed for de-
lineating the watershed, including DEMs, land use, and soil type. The 90 m DEMs were
acquired from the National Aeronautics and Space Administration and the Department
of Defense’s National Imagery and Mapping Agency. The land use data were obtained
from the Earth Resources Observation and Science Center, which adopts the USGS LULC
24 classification standard. The soil type data were required from the Food and Agriculture
Organization of the United Nations [37] and were published in 2003 (https://www.fao.org,
accessed on 20 December 2021). The gauged streamflow at the Chiang Sean hydrological
station was obtained from the Mekong River commission.

There are eight main LULC types in the upper LMRB (Table S1): grassland, mixed
forest, evergreen broad-leaved forest, tundra, savanna, deciduous broad-leaved forest,
shrub land, and irrigated farmland and pasture. The coverage areas of grasslands and
mixed forests exceed half of the total watershed area and are mainly distributed in the
upstream and downstream regions, respectively. Eleven soil types and two dominant soil
textures (loam and sandy clay loam) have been identified in the upper LMRB (Table S2).
More information on the soil types is provided in Table S2 of the Supplementary Materials.
Based on these geographical data, the upper LMRB was delineated to achieve a stream
network based on the QGIS interface for SWAT+ 2.0. We created four subbasins from the
DEM by specifying area thresholds and the outlet. To ensure accurate HRU landscape units
to separate floodplain and upslope areas, we created 110 landscape units by demarcating
the floodplain simply as a buffer drawn around the stream reaches. For each landscape
unit, the largest potential HRU was chosen to be the dominant HRU, sharing the same land
use, soil, and slope range [38]. The streamflow was generated from each HRU separately,
and then the route to obtain the total streamflow for the watershed was determined, which
provided a much better physical description of the water balance [39,40].

https://swat.tamu.edu/data/cfsr
http://www.cmads.org/
https://www.fao.org


Water 2023, 15, 2209 8 of 24

2.3. Evaluation Index

The performance of the CFSR meteorological datasets was evaluated for the common
6-year period (2008–2013) using R, PBIAS, and RMSE. R was used to measure the correlation
between the variables of CFSR and CMADS; if the R value was close to 1, the two variables
were considered to be linearly related. Furthermore, PBIAS was employed in this study
as a measure of the average trend of CFSR greater or less than CMADS [41,42]. The
optimal PBIAS value was considered as 0 (%). Low absolute values indicated an accurate
model simulation; for example, ±25% represented good performance. A positive PBIAS
value indicated an overestimation (by the model), whereas a negative value indicated an
underestimation. Finally, the RMSE was used for measuring the differences between the
values predicted by the model and the observed values, with a smaller value indicating
better model performance.

R =
∑
(
Xt − X

)(
Yt − Y

)√
∑
(
Xt − X

)2
√

∑
(
Yt − Y

)2
, (1)

PBIAS =
∑(Xt − Yt)×100

∑ Yt
, (2)

RMSE =

√
1
N ∑ (X t − Yt)

2, (3)

where Xt indicates the meteorological variables of the CFSR datasets; Yt indicates the
meteorological variables of the CMADS datasets, including six mereological elements; and
X and Y indicate the average values of the CFSR and CMADS meteorological variables,
respectively.

The Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R2),
and PBIAS were used to evaluate the hydrological model simulations based on the CFSR
and CMADS meteorological datasets for the common 6-year period (2008–2013). The NSE
reflected the degree of fit between the monthly simulated and observed streamflow at
the Chiang Sean hydrological station [43]. If the NSE approached 1, it indicated the most
accurate hydrological simulation. Moriasi et al. [44] recommended the use of performance
ratings to measure SWAT performance. For the monthly time step, 0.75 < NSE < 1 and
PBIAS < ±10% indicated that the hydrological simulations were very good. Values of
0.65 < NSE < 0.75 and ±10% ≤ PBIAS ≤ ±15% indicated that the hydrological simulations
were good; 0.50 < NSE < 0.65 and ±15% ≤ PBIAS ≤ ±25% indicated that the hydrological
simulations were satisfactory; and NSE ≤ 0.5 and PBIAS ≥ ±25% indicated that the
hydrological simulations were unsatisfactory. Note that R2 was used to measure the
accuracy of the simulated streamflow. The equations used to calculate the statistical indexes
are shown below:

NSE = 1−
∑ (Q t

o −Qt
m

)2

∑ (Q t
o −Qt

o

)2 , (4)

R2 =

(
∑(Q t

o −Qt
o

)
∑(Q t

m −Qt
m))

2

∑ (Q t
o −Qt

o

)2
∑ (Q t

m −Qt
m

)2 , (5)

PBIAS =
∑
(
Qt

m −Qt
o
)
×100

∑ Qt
o

, (6)

where Qt
o, Qt

m, Qt
o, and Qt

m denote the monthly observed, simulated, observed average,
and simulated average streamflows at time t, respectively.
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2.4. Hydrological Models

The SWAT model aims to predict the long-term effects of land management practices
on the production of water, sediment, and agricultural chemicals in large complex water-
sheds with different soil, land use, and management conditions [40]. Note that SWAT+
is a completely restructured version of SWAT. As a semi-distributed hydrological model,
SWAT+ can effectively simulate the flow and pollutant transport of rivers under different
conditions and scenarios across a wide range of spatiotemporal scales. Bieger et al. [39]
concluded that the SWAT+ model is more flexible in terms of the delineation and interac-
tion of the spatial objects in a watershed, offering users the opportunity to achieve a more
realistic spatial representation of their target watershed areas.

In this study, we used a new and free SWAT+ version 2.0.6 model to perform hy-
drological modeling in the upper LMRB based on the QSWAT+ platform, which was the
Quantum GIS 3.16 Interface for SWAT+. The SWAT+ model provided diverse options
for physical processes at the watershed level. To drive the SWAT+ model, we used the
Penman/Monteith method, the Soil Conservation Service’s curve number method, and
the variable storage routing method to calculate the PET, estimate surface runoff, and
determine the route of streamflow in the channel, respectively.

2.5. SWAT+ Parameter Sensitivity Analysis and Calibration Tool

In our study, we used the new and free SWAT+ toolbox v1.0 to carry out the parameter
sensitivity analysis (SA), as well as calibration and validation, for the upper LMRB. The
Sobol method, a quantitative SA method available in the SWAT+ toolbox, was used in this
study for the upper LMRB and could indicate the degree of sensitivity of the parameters
according to the contributions of each parameter to the final output results [45,46]. SA is
the identification of parameters that are sensitive to the hydrological processes in different
study areas [47,48]. Based on several studies [45,49,50], we considered 24 commonly used
parameters, along with their previously established reference ranges, for the parameter
sensitivity analysis. For Sobol’s quantitative SA, we specified 100 random sample points for
24 tunable parameter ranges, resulting in 5000 parameter samples [51,52]. We obtained the
first-order sensitivity results of each parameter after 5000 SWAT+ model simulation runs.
The sensitivities of the parameters were ranked by the absolute value of the first-order
sensitivity. After determining the model-sensitive parameters, we calibrated them using the
observed streamflow obtained from Chiang Sean station as a reference. In order to represent
the realistic physical process in the SWAT+ model, we used the calibration procedure
to improve the fitting degree between simulated and observed streamflow [53]. The
SWAT+ toolbox provided a dynamically dimensioned search (DDS) automatic calibration
algorithm [54], which could automatically expand the search to find a good solution
without tuning the algorithm parameters. The DDS automatic calibration algorithm has
outstanding performance in terms of both convergence speed and parameter set searching
ability [55,56]. Finally, we validated the optimal parameter values of the SWAT+ model
for the streamflow simulation. According to the time length of the meteorological datasets
and the observed streamflow from the Chiang Saen station, we chose 2008 as the warm-up
period, 2009–2010 as the calibration period, and 2011–2013 as the validation period.

3. Results
3.1. Spatial Annual Average Distribution of CFSR Dataset and the Difference for LMRB

We evaluated six meteorological variables of the CFSR dataset using a multi-source
meteorological dataset (CMADS). For grid-to-grid comparisons, we consistently interpo-
lated the spatial resolution of the two datasets to 0.3◦, about 33.3 km. The difference maps
were computed by subtracting the average annual meteorological variables of the CMADS
dataset from the average annual values of the CFSR dataset. Figure 2 portrays the annual
average of the six meteorological variables from 2008 to 2013 and the differences between
the average annual values of the CFSR and CMADS datasets. The spatial distributions
of the annual mean precipitation values of these two datasets were highly similar, indi-
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cating less precipitation in the northwest region and more precipitation in the southeast
region. However, the average annual precipitation of the CFSR dataset was generally
300–600 mm higher than that of the CMADS dataset across the whole basin, with the range
being 252–1488 mm in the CMADS dataset and 429–2495 mm in the CFSR dataset. Some
studies have found that the precipitation is often overestimated by CFSR datasets [3,30,57].
These studies indicated that the degree of overestimation of the CFSR data for 2008–2013
was more noticeable than that of other precipitation products; the increase in the precip-
itation was significant circa 2006. These phenomena may be attributed to single-point
observation errors [30,57]. However, there was an exception in that the CFSR dataset con-
tained an area of less than 300 mm annual precipitation in the upper part of the basin. Lauri
et al. [11] also presented data showing a lower average annual precipitation in the upper
LMRB over the 1999–2005 period. Lorenz and Kunstmann [24] also concluded that there
seemed to be a significant bias in the estimation of precipitation at mid to high latitudes by
CFSR, which could be explained by the excessive activity in the daily cycle of atmospheric
composition over North America [58]. Additionally, some studies found that CMADS
often underestimates precipitation, because the daily precipitation recorded by CMORPH
satellites always underestimates light rainfall events (due to the interference of surface
reflectivity) [3,26,59]. Furthermore, complex orographic features, as well as the effects of
the Pacific and Indian Ocean monsoons, may influence the high spatial heterogeneity of
precipitation, thus reducing the accuracy of the precipitation predictions by both CMADS
and CFSR [3].
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The spatial distributions of the annual mean max/min temperatures in the CFSR and
CMADS datasets were highly similar; the temperature increased gradually from the upper
to lower reaches of the basin. However, both the average annual max and min temperatures
of the CFSR dataset were generally lower than those of the CMADS dataset; notably, the
maximum temperature of the CFSR dataset was lower in the upper part of the basin, with
a negative 6 °C bias. The minimum temperature of the CFSR dataset was generally lower
across the whole basin, and there were no significant regional differences. Lauri et al. [11]
also found that the average annual temperature was lower in the upper LMRB over the
1999–2005 period. Liu et al. [3] found that the maximum and minimum temperatures of
CMADS and CFSR were both underestimated in the Qinghai-Tibet Plateau. Wang et al. [57]
found that the CFSR temperature anomaly in tropical regions was greater than that at mid
to high latitudes.

Notably, the spatial distribution of the annual relative humidity was consistent with
that of the annual precipitation, with lower relative humidity in the northwest and higher
relative humidity in the southeast. The relative humidity of the CFSR dataset was gen-
erally higher than that of the CMADS dataset across the whole basin. Precipitation and
temperature are the key factors that affect relative humidity, which may be the main reason
why the CFSR dataset had a higher relative humidity than the CMADS dataset. Some
studies found that the relative humidity values in the CFSR dataset were inaccurate [3,60],
as they were higher than the observed values [60]. The spatial distributions of the annual
wind speed in the CFSR and CMADS datasets were similar, but the wind speed in the
CFSR dataset was significantly higher than that in the CMADS dataset in the upper part
of the basin, by approximately 2 m/s. We noted that the wind speed was high in the
plateau area and decreased gradually with decreasing elevation. It has been demonstrated
that wind speed is overestimated by CFSR and CMADS compared with observed wind
speeds in high-altitude regions [3,61]. Another significant difference between the CFSR
and CMADS datasets was solar radiation. The annual solar radiation of the CFSR dataset
was significantly lower than that of the CMADS dataset; in particular, the solar radiation
was 1500 MJ/m2 lower in the downstream region.

3.2. Evaluating the Meteorological Variables of CFSR in the Upper LMRB

After comparing the annual average spatial distribution of the CFSR dataset in the
upper LMRB, we evaluated the applicability of the meteorological variables of the CFSR
when CMADS was considered as the observational reference. The evaluation indices
included R, PBIAS, and RMSE, and the calculation was based on the daily meteorological
variables for 1 January 2008 to 31 December 2013. The spatial distributions of the R, PBIAS,
and RMSE values of the six meteorological variables in CFSR and CMADS are shown in
Figure 3. In terms of precipitation, the R values increased from the upstream region to the
downstream region from 0.14 to 0.56, indicating that the precipitation values in the CFSR
dataset were more accurately modeled in the downstream region. The values of PBIAS were
positive across almost the whole basin, which implied that the amount of precipitation in
the CFSR dataset was higher than that in the CMADS dataset. The highest positive PBIAS
values (above 500) were in the upper part of the basin. However, negative PBIAS values
were also identified in the upper part of the basin, implying that the amount of precipitation
in the CFSR dataset was lower than that in the CMADS dataset. Future research is needed
to explain this contradiction. The RMSE values increased from the upstream region (2.6) to
the downstream region (16.7), indicating that there was a larger deviation in precipitation
in the downstream region and a smaller deviation in the upstream region.
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In terms of the max/min temperatures, the R values were positive and high over
the entire LMRB, reaching a maximum of 0.95. This indicated that the maximum and
minimum temperatures of the CFSR dataset were accurate for most areas. However, there
were deviations in the PBIAS and RMSE values. The PBIAS values for the maximum
temperature were negative in the upstream region but positive in the downstream region,
indicating that the maximum temperatures of the CFSR dataset were lower than those of
the CMADS dataset in the upstream region but higher than those of the CMADS dataset
in the downstream region. Notably, the greatest positive (706.9%) and negative (–821.1%)
PBIAS values for maximum temperature were observed in the middle and upper reaches of
the upper LMRB, implying a great deviation in the maximum temperature values between
CFSR and CMADS. The PBIAS values for the minimum temperature were negative across
the whole basin, indicating that the minimum temperatures of the CFSR dataset were lower
than those of the CMADS dataset. The most negative PBIAS values were observed in the
upstream region and decreased gradually from the upstream to the downstream regions.
The RMSE values for the maximum and minimum temperatures were similar to the PBIAS
results, but the RMSE of the maximum temperature was generally smaller than that of the
minimum temperature (10.0 compared to 23.5).

The R values of the relative humidity in the two datasets portrayed a stronger positive
correlation in the downstream regions, and the PBIAS and RMSE values of the relative
humidity were small in the downstream regions, indicating that the two datasets were
highly similar in the downstream regions. However, the deviations in the relative humidity
were rather large in the upstream regions, with the CFSR values being higher than the
CMADS values. The R values of the wind speed were moderate, while the PBIAS and
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RMSE values were small in the upstream regions, indicating that the wind speed of the
CFSR dataset was closer to that of the CMADS dataset in the downstream regions. However,
the deviations in wind speed were positive and large in the upstream regions, where the
wind speed of the CFSR dataset was higher than that of the CMADS dataset. The R value
of the solar radiation between the CFSR and CMADS datasets was high over the entire
basin, and the PBIAS and RMSE values were small in the upstream regions, indicating
that the solar radiation of the CFSR dataset was closer to that of the CMADS dataset in the
upstream regions. However, the deviations in solar radiation were negative and large in
the downstream regions, where the solar radiation of the CFSR dataset was lower than that
of the CMADS dataset.

The area average values of the statistical indicators for the six CFSR meteorological
variables are shown in Table 2. Note that the indicators for maximum temperature, relative
humidity, and solar radiation of the CFSR dataset were close to those of the CMADS
dataset, with strong correlations (R ≥ 0.65) and small negative deviations (PBIAS ≤ 25%),
but the precipitation and wind speed of the CFSR dataset presented low correlations
(R ≤ 0.50) and large positive deviations (PBIAS ≥ 25%) compared to those of the CMADS
dataset. The minimum temperatures of the CFSR dataset had a high correlation (R is
0.65) and large negative deviations (PBIAS = –127.71%) compared to those of the CMADS
dataset. The temperature data portrayed the highest RMSE values, in the range of 9–16.
The precipitation and solar radiation portrayed moderate values, and the relative humidity
and wind speed parameters exhibited the smallest errors.

Table 2. Area average values of the statistical indicators for the six meteorological variables between
CFSR and CMADS.

Meteorological Variables R PBIAS RMSE

Precipitation 0.35 85.47 6.68
Maximum temperature 0.68 −18.45 9.39
Minimum temperature 0.65 −127.71 15.71

Relative humidity 0.65 20.01 0.18
Wind speed 0.47 103.36 1.52

Solar radiation 0.72 −12.11 5.45

3.3. Comparison of the Hydrological Features between CFSR-Based SWAT+ and
CMADS-Based SWAT+
3.3.1. Model Parameter Sensitivity Based on CFSR and CMADS

In order to compare the hydrological features based on the two different meteorological
re-analyses in the upper LMRB, we first needed to compare the model parameter sensitivity.
We used Sobol’s method to screen the sensitive parameters. Figure 4 portrays the first-order
sensitivities of a total of 24 commonly used parameters based on the two different meteoro-
logical re-analyses, CFSR and CMADS. We noted that the sensitive parameters based on
CFSR for which the first-order sensitivity was greater than 0 were highly consistent with
those based on CMADS. However, the sensitivities of these parameters (in terms of both
datasets) were different. Overall, we determined 17 consistent sensitive parameters: esco, k,
snomelt_tmp, awc, lat_ttime, snofall_tmp, perco, slope, alpha, snomelt_lag, snomelt_min,
revap_co, surlag, canmx, epco, cn2, and snomelt_max. Two sensitive parameters were
inconsistent: flo_min, which was sensitive based on CFSR only, and revap_min, which
was sensitive based on CMADS only. Finally, we chose all 19 sensitive parameters, both
consistent and inconsistent, for which the first-order sensitivity was greater than 0 for both
CFSR and CMADS to carry out parameter calibration and validation.
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Figure 4. First-order sensitivity of 24 commonly used parameters for streamflow simulation based on
the two different meteorological re-analyses, CFSR and CMADS, under Sobol’s method. Note: soil
evaporation compensation factor (esco), saturated hydraulic conductivity of soil layer (k), snowmelt
temperature (snomelt_tmp), available water capacity of soil layer (awc), lateral flow travel time
(lat_ttime), snowfall temperature (snofall_tmp), percolation coefficient (perco), average slope steep-
ness in HRU (slope), alpha factor for groundwater recession curve (alpha), snowmelt lag factor
(snomelt_lag), minimum snowmelt temperature (snomelt_min), fraction of pet to calculate revap
(revap_co), minimum aquifer storage to allow return flow (flo_min), surface runoff lag time (surlag),
maximum canopy storage (canmx), plant water uptake compensation factor (epco), soil conserva-
tion service (SCS), runoff curve number adjustment factor (cn2), maximum snowmelt temperature
(snomelt_max), threshold depth of water in shallow aquifer required to allow revap to occur (re-
vap_min), effective hydraulic conductivity of main channel alluvium (chk), Manning’s “n” value
for the main channel (chn), Manning’s “n” value for overland flow (ovn), average slope length for
erosion (slope_len), and fraction of transmission losses from main channel that enter the deep aquifer
(trnsrch).

3.3.2. Model Calibration and Validation Based on CFSR and CMADS

To further assess the capability of the SWAT+ hydrological model for streamflow
simulations based on the two different meteorological re-analyses in the upper LMRB, we
employed DDS for model parameter calibration and streamflow simulation for validation
using the monthly streamflow observed at Chiang Sean hydrological station. The hydro-
logical simulation period was from January 2008 to December 2013. We chose the year
2008 as the warm-up period; the two years from 2009 to 2010 as the calibration period; and
the three years from 2011 to 2013 as the validation period. Table 3 portrays the calibrated
optimal values and the value range and change types of the 19 sensitive parameters for each
meteorological re-analysis. The calibrated optimal values of the 19 sensitive parameters
were very different for the two meteorological re-analyses, with these differences reflected
mainly in the most sensitive parameters, including esco, slope, epco, and surlag. Notably,
the optimal values of the parameters were positive for CFSR but negative for CMADS. This
was seen, for example, in awc. Note that esco, revap_min, and awc all affected the process
of evaporation. To adjust for the higher precipitation in CFSR, the evaporation based on
CFSR may have required a greater value. However, the calibrated optimal values of some
parameters were consistent, including revap_co, cn2, lat_time, and perco. Based on the
results comparison of the re-analyses, as explained in Sections 4.1 and 4.2, the differences
in the meteorological re-analyses may have been the reason for the different calibrated
optimal values.
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Table 3. The calibrated optimal values of the 19 sensitive parameters for SWAT+ based on the two
meteorological re-analyses, namely, CFSR and CMADS.

Parameter Description Min Max
Change
Type *

Parameter
Group

Optimal Value

CFSR CMADS

esco Soil evaporation compensation factor (-) 0 1 replace HRU 0.274 0.072

slope Average slope steepness in HRU (m/m) −50 50 relative HRU 2.377 47.689

revap_co Fraction of pet to calculate revap (-) 0.02 0.2 replace Aquifer 0.184 0.198

epco Plant water uptake compensation (-) 0 1 replace HRU 0.046 0.717

canmx Maximum canopy storage (mm_H2O) 0 100 replace HRU 46.584 30.641

surlag Surface runoff lag time (days) 0.05 24 replace Basin 2.738 13.966

alpha Alpha factor for gw recession curve
(1/days) 0 1 replace Aquifer 0.075 0.264

awc Available water capacity of soil layer
(mm_H2O/mm_soil) −25 25 relative Soil 15.516 −15.443

cn2 SCS runoff curve number adjustment
factor SCS (%) −20 20 relative HRU −19.682 −18.928

flo_min Minimum aquifer storage to allow return
flow (mm) 0 5000 replace Aquifer 1704.311 3329.009

k Saturated hydraulic conductivity of soil
layer (mm/hr) −80 80 relative Soil 78.688 42.922

lat_ttime Lateral flow travel time (days) 0.5 180 replace HRU 118.878 126.252

revap_min
Threshold depth of water in shallow

aquifer required to allow revap
to occur (mm)

0 500 replace Aquifer 451.913 231.766

snofall_tmp Snow fall temperature (°C) −5 5 replace HRU 3.482 4.602

snomelt_lag Snowmelt lag factor (-) 0 1 replace HRU 0.591 0.976

snomelt_max Maximum snow melt factor (mm/(d·°C) 0 10 replace HRU 3.314 0.235

snomelt_min Minimum snow melt factor (mm/(d·°C) 0 10 replace HRU 8.177 4.773

snomelt_tmp Snow melt temperature (°C) −5 5 replace HRU −2.919 −3.637

perco Percolation coefficient 0 1 replace HRU 0.901 0.773

Note: * Relative change—increases/decreases the current value by a specified value; replace—the specified value
takes the place of the old parameter value.

Two simulated monthly streamflows, based on the corresponding calibrated SWAT+
model parameters forced by the two different meteorological re-analyses, with the monthly
streamflow observed at the Chiang Sean hydrological station during the calibration period
(2009–2010) and validation period (2011–2013), are shown in Figure 5. The statistical
measures used to evaluate the simulated streamflow included the NSE coefficient, PBIAS,
and R2. The higher the values of the NSE and R2, the smaller the PBIAS value and the
more accurate the simulated streamflow. Both monthly streamflow simulations performed
well during the calibration period, with NSE values greater than 0.8, R2 values greater
than 0.88, and PBIAS values lower than 15%. The performances were still good during
the validation period, with NSE values greater than 0.65, R2 values greater than 0.70, and
PBIAS values lower than 11%. Overall, the model performance driven by the CFSR dataset
was better than that driven by the CMADS dataset, with higher NSE and R2 values and
smaller PBIAS values. According to the hydrograph in Figure 5, the CFSR-based and
CMADS-based SWAT+ streamflow simulations could essentially predict the observed
peak and low streamflow, but the CMADS-based SWAT+ streamflow simulation tended
to underestimate the peak and low streamflow. Therefore, we noted that CFSR met the
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demands for simulating streamflow through the SWAT+ hydrological model in the upper
LMRB.
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Figure 5. Comparison of the simulated monthly streamflow based on the corresponding calibrated
SWAT+ model parameters forced by the two different meteorological re-analyses with the observed
monthly streamflow and precipitation from the Chiang Sean hydrological station during the calibra-
tion (2009–2010) and validation (2011–2013) periods.

To understand the mechanism behind the simulated monthly streamflow, we ana-
lyzed the simulated water balance based on the corresponding calibrated SWAT+ model
parameters forced by the two different meteorological re-analyses, as shown in Figure 6,
which were obtained from the model check component in the SWAT+ editor. Although
the precipitation in the CFSR-based SWAT+ simulation was much higher than that in the
CMADS-based SWAT+ simulation across the entire basin, only 49% of the CFSR precipita-
tion was converted to streamflow, while 82% of the CMADS precipitation was converted.
Furthermore, the evaporation and transpiration (ET) in the CFSR-based SWAT+ simulation
were also higher than those in the CMADS-based SWAT+ simulation, which may have been
another reason why the CFSR-based and CMADS-based SWAT+ streamflow simulations
did not differ greatly. The higher percolation in the CMADS-based SWAT+ simulation may
have led to the lower simulated peak and low streamflow. Several factors could have caused
different responses between the meteorological estimates and hydrological outputs, includ-
ing the sensitive parameters and their calibrated optimal values in the SWAT+ hydrological
model. Gao et al. [25] concluded that the conversion of precipitation to runoff is a highly
complex nonlinear process. Therefore, the discrepancies between the two meteorological
forcings did not transfer linearly to runoff. This may have resulted in significant differences
in the simulated streamflow forced by the two different meteorological re-analyses, CFSR
and CMADS.
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Figure 6. Simulated water balance based on the corresponding calibrated SWAT+ model parameters
forced by the two different meteorological re-analyses, CFSR and CMADS. Note: ET, evapotranspira-
tion, is a collective term that includes all processes by which water on the Earth’s surface is converted
to water vapor [40], including evaporation from the plant canopy, transpiration, sublimation, and
evaporation from the soil, which are calculated individually in SWAT+; PET, potential evapotran-
spiration, is the rate at which evapotranspiration would occur from a large area uniformly covered
with growing vegetation that has access to an unlimited supply of soil water and is not exposed to
advection or heat storage effects [40], calculated by the Penman–Monteith method.

4. Discussion

The discussion will revolve around three topics. First, we discuss the similarities and
differences in the two gridded meteorological forcings between our results and other results
in Section 4.1. Then, we discussed the factors that may affect hydrological modeling and
hydrological responses in Section 4.2, including the time span of meteorological forcings,
the length of model calibration and validation periods, the parameter sensitivity values,
and the criteria for parameter selection. Finally, we summarize the limitations of this study
and the future research directions in Section 4.3.

4.1. Differences in Meteorological Forcings

Several previous studies have compared the meteorological elements of global or local
re-analyses with gauge-observed data [11,24–26,30]. Such comparisons may introduce
errors and uncertainties between the re-analyses and the gauged observations due to spa-
tial scale differences. However, a comparison between re-analyses and grided observed
data, such as CMADS data, can improve our understanding of how meteorological ele-
ments behave [62]. After comparing the precipitation and temperature values between
global atmospheric re-analyses and observed data, Tian et al. [62] concluded that the pre-
cipitation values of CFSR were higher than the observed data and CMADS, while the
maximum/minimum temperatures of CFSR were generally lower than the observed data
and CMADS. These findings are also consistent with the results of another study on the
Mekong River Basin [11].

The comprehensive meteorological CMADS datasets rendered the comparison of the
other meteorological variables (wind speed, relative humidity, and solar radiation) for
the CFSR in the upper LMRB possible. Our results showed that the precipitation, relative
humidity, and wind speed of CFSR were higher than those of CMADS, while the max/min
temperatures and solar radiation were lower than those of CMADS. There is a need to
investigate the reason why the temperatures and solar radiation of the CFSR dataset were
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lower than those of the CMADS dataset and why CFSR exhibited higher wind speeds
than the CMADS dataset. Meng et al. [36] concluded that temperature had a relatively
greater RMSE in the southern and western parts of the Yunnan province, and a minority
of stations in the region showed negative biases when compared to the observations from
the national automatic stations. Relative humidity and wind speed showed a positive bias
effect in the southern parts of the Yunnan province [36]. However, the factors influencing
the accuracy of CMADS have not yet been systematically analyzed [36]. The main reason
for the differences between the CMADS and CFSR datasets was the difference in the
observation data sources and assimilation methods [35,36].

4.2. Differences in Hydrological Model Response

Various studies have reported that the performance of meteorological re-analyses in
discharge modeling varies depending on the situation compared to rain gauge
data [2,3,11,25–27,30]. However, their results indicate that CFSR could be a valuable
option for hydrological simulation in areas with limited data. In this study, we compared
the hydrological responses between the CFSR-based SWAT+ simulation and CMADS-based
SWAT+ simulation under the same watershed delineation, hydrological model, parameter
sensitivity analysis, and calibration method. However, the two different meteorological
re-analyses led to different sensitivities and calibrated optimal values for the consistent
parameters, which further led to different hydrological responses. Moreover, the simu-
lations based on CFSR and CMADS yielded significant differences in the water balance
components in the upper LMRB. For example, higher precipitation led to a lower conver-
sion rate to streamflow and higher evaporation and transpiration according to the water
balance. Therefore, a different watershed delineation, hydrological model, parameter sensi-
tivity analysis, and calibration method would lead to different hydrological responses. In
order to make the hydrological simulation more efficient in evaluating the performance
of the meteorological re-analyses in discharge modeling, we created four subbasins and
110 HRUs from the DEM by specifying the default area thresholds for channels (1716 km2)
and streams (17,160 km2). As the small area thresholds created more subbasins and HRUs,
they required more computing time for the hydrological simulation, which may have
affected the hydrological responses.

The common six-year time span of meteorological forcings in the hydrological model-
ing was short in this study. The global gridded meteorological re-analysis, CFSR, included
a nearly 35-year period which met the long-term time-series requirements of hydrological
modeling, but the regional gridded meteorological re-analysis, CMADS, only covered a
10 years period. However, regional gridded meteorological re-analyses generally assim-
ilate more observations than global ones; resolve physical processes at a finer scale; and
consequently account for terrain characteristics, topography, land use, and local weather
characteristics [63]. In order to compare their performances in hydrological modeling and
verify the performance of the global gridded meteorological re-analyses, we chose the
common six-year period (i.e., 2008–2013). If the global gridded meteorological re-analysis-
based hydrological modeling performed better than or comparably to the regional gridded
meteorological re-analysis-based hydrological modeling, the global gridded meteorological
re-analysis, here CFSR, would be chosen for the hydrological modeling research, because
CFSR includes long-term time series and covers the global spatial scale.

The common six-year time span of the two meteorological forcings for hydrological
modeling was from January 2008 to December 2013. No definite conclusions have been
drawn as to the lengths of observed streamflow necessary for effective model calibra-
tion [64], but the record requires sufficiently diverse flow conditions. The lengths of time
used in this study impacted the hydrological responses, because some extreme interannual
variability was not included. We chose 2008, one year, as the warm-up period. According
to the same physical criteria as the calibration and validation periods [53,65], such as the
same type of climate and land use, the two years from 2009 to 2010 were used as the
calibration period and three years from 2011 to 2013 as the validation period. The average



Water 2023, 15, 2209 19 of 24

values of the observed streamflow at Chiang Sean station in 2009–2010 and 2011–2013 were
2097.04 m3/s and 2069.69 m3/s, respectively, and the variances were 1,680,030.8 (m3/s)2

and 1,347,166.8 (m3/s)2, which met the same physical criteria as the calibration and vali-
dation periods. The same duration of model calibration and validation was set according
to research on the Qinghai-Tibet Plateau [3]. Therefore, the hydrological modeling per-
formances based on the two meteorological gridded re-analyses were to a certain extent
credible.

In this study, we used a quantitative sensitivity analysis method, Sobol’s method,
which could evaluate the impacts of each parameter (first-order effects) and its interactions
(interaction effects) with other parameters on the model output [46,52]. Sobol’s method
calculates the contribution of the variance due to the perturbation of each parameter relative
to the total variance of the model output [51]. We obtained the first-order sensitivities of
24 common parameters after 5000 SWAT+ model simulation runs based on the SWAT+
toolbox v1.0. The sum of the first-order sensitivity values of the 24 common parameters
was one or less than one, and the first-order sensitivity values were well differentiated
based on Sobol’s method: some sensitivity values were higher (e.g., esco for CFSR was
0.24, and k for CFSR was 0.22), and some sensitivity values were lower (e.g., flo_min for
CFSR was −0.0000013). However, the first-order sensitivity values were more uniform
when using other quantitative sensitivity analysis methods, such as the McKay main
effect analysis method [66]. Many studies [51,67] recommend that sensitive parameters
should be chosen when the absolute value of the first-order sensitivity according to Sobol’s
method is greater than 0. Another reason for the low sensitivity value may have been
that the interaction between parameters was not considered in this study. Gan et al. [66]
concluded that parameters with lower main effect values may have significant interaction
effects with other parameters, which should also be treated as important parameters.
Therefore, we chose all parameters with a first-order sensitivity value greater than 0 instead
of filtering parameters by setting sensitivity thresholds to avoid missing important sensitive
parameters.

The uncertainty of precipitation estimations and meteorological forcings is regarded
as typical for input data [68], and Leta et al. [69] concluded that it is very important
to take rainfall uncertainty into account when calibrating a hydrological model. It was
difficult to perform bias correction on the precipitation data in this study because the
weather gauge stations were scarce. We could have feasibly used the satellite-based
observational precipitation datasets to correct the precipitation values. We also needed to
correct the biases of the other meteorological forcings; however, fewer of these forcings were
comprehensively observed, such as relative humidity and solar radiation. The uncorrected
bias in the meteorological forcings in this study resulted in uncertainties in the hydrological
model parameters.

4.3. Limitations

In addition to the input meteorological data and hydrological model parameters, other
limitations, including anthropogenic activities and climate change, could have influenced
the hydrological modeling in the upper LMRB. Firstly, we did not consider anthropogenic
activities in the hydrological modeling, such as the dam construction along the upper
LMRB. The observed streamflow was affected by dam construction [14,70,71], but the
simulated streamflow did not reflect this factor. Secondly, climate change may influence
hydrological modeling, but the research period of this study was too short to include
the impact of climate change. Another limitation was the limited number of observed
hydrological stations for hydrological modeling in the upper LMRB. The upper LMRB is
huge, topographically and hydrologically diverse, and spans areas affected by different
sources of highly variable monsoonal moisture. We used only one observed streamflow
from Chiang Sean hydrological station for hydrological modeling. We could compare
the performance of the hydrological responses based on the two gridded meteorological
re-analyses in more detail by dividing the upper LMRB into several parts.
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The increases or decreases in streamflow caused by anthropogenic activities and
climate change pose some challenges to the supply and management of water resources
in the upper LMRB. Medium- to long-term streamflow forecasting is a good way to meet
these challenges. Currently, the main problem with medium- to long-term streamflow
forecasting is the low prediction accuracy, which makes it difficult to effectively guide
production practice. In the present study, we focused on the performance of hydrological
modeling in the LMRB based on different re-analysis datasets and concluded that CFSR
could drive the SWAT+ model to simulate the streamflow in the upper LMRB. The available
and valuable hydrological modeling based on CFSR provided an experimental basis for
us to conduct ensemble streamflow prediction for medium- to long-term hydrological
predictability research. We will use climate forecast data as the input data for the SWAT+
model to conduct ensemble streamflow prediction and focus on an analysis of how climate
forecasts contribute to the predictability of seasonal streamflow in the upper LMRB, which
could provide a scientific basis for realizing medium- and long-term streamflow forecasting,
promoting the efficient development and utilization of water resources in the basin, and
formulating effective flood control and drought relief measures.

5. Conclusions

Our study aimed to assess differences in hydrological responses through hydrological
modeling in the upper LMRB using two common open-gridded meteorological datasets,
CFSR and CMADS. This study evaluated the suitability of six meteorological variables from
the CFSR and CMADS datasets that are commonly used to force SWAT+ models, along
with analyzing the differences in the hydrological modeling. We arrived at the following
conclusions:

All the meteorological variables of the CFSR and CMADS datasets exhibited similar
spatial average annual distributions; however, the precipitation, relative humidity, and
wind speed values in the CFSR dataset were greater than those in the CMADS dataset.
Further, the temperatures and solar radiation were lower in the CFSR dataset. The spatial
distributions of the statistical indicators in the CFSR and CMADS datasets, namely, the
R, PBIAS, and RMSE values, were different. The temperatures and solar radiation values
in the CFSR and CMADS datasets exhibited strong correlations across the entire basin,
while precipitation and relative humidity portrayed strong correlations in the downstream
regions. Additionally, wind speed exhibited an irregular spatial distribution of correlation
over the entire river basin. The PBIAS results indicated that precipitation, relative humidity,
and wind speed portrayed positive deviations across the entire basin. Minimum temper-
ature and solar radiation portrayed negative deviations across the entire basin. Notably,
the maximum temperature yielded a positive deviation in the downstream and a negative
deviation in the upstream regions. These conclusions were further confirmed by the result
of the RMSE and the area average values of the statistical indicators.

For a comparison of the hydrological features of the CFSR- and CMADS-based SWAT+
models, we compared the sensitive parameters and simulated the monthly streamflow.
Different meteorological datasets resulted in significant differences in hydrological re-
sponses, which were reflected by the different sensitive parameters and their optimal
values. Nineteen sensitive parameters (from a total of twenty-four parameters) for the
CFSR and CMADS models were mostly the same, with only two being inconsistent, namely,
flo_min and revap_min. However, the sensitivities of these parameters were different. The
calibrated optimal values of the 19 sensitive parameters were very different for the two
meteorological re-analyses, reflected mainly in the most sensitive parameters, including
esco, slope, epco, and surlag. These different calibrated optimal values of the sensitive
parameters lead to different simulated water balance components between the CFSR- and
CMADS-based SWAT+ models. The monthly streamflow simulated using the CFSR-based
SWAT+ model was superior to that simulated using the CMADS-based SWAT+ model from
2008–2013, with higher NSE and lower PBIAS values. These results indicated that CFSR
could better drive the SWAT+ model to simulate the streamflow in the upper LMRB. This
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study advanced our understanding of the strengths and weaknesses of different meteoro-
logical forcings and their performance and helped to determine the hydrological models
applicable for the upper LMRB.
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www.mdpi.com/article/10.3390/w15122209/s1, Figure S1: Map of land use/land cover distribution
in the upper Lancang-Mekong River Basin, Table S1: Dominant land cover classes in the upper
Lancang-Mekong River Basin, Figure S2: Map of soil type distribution in the upper Lancang-Mekong
River Basin, Table S2: Major soil types in the upper Lancang-Mekong River Basin, Figure S3: The
channels and streams in the upper Lancang-Mekong River Basin.
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