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Abstract: The snow surface is at the interface between the atmosphere and Earth. The surface of the
snowpack changes due to its interaction with precipitation, wind, humidity, short- and long-wave
radiation, underlying terrain characteristics, and land cover. These connections create a dynamic snow
surface that impacts the energy and mass balance of the snowpack, blowing snow potential, and other
snowpack processes. Despite this, the snow surface is generally considered a constant parameter in
many Earth system models. Data from the National Aeronautics and Space Administration (NASA)
Cold Land Processes Experiment (CLPX) collected in 2002 and 2003 across northern Colorado were
used to investigate the spatial and temporal variability of snow surface roughness. The random
roughness (RR) and fractal dimension (D) metrics used in this investigation are well correlated.
However, roughness is not correlated across scales, computed here from snow roughness boards at a
millimeter resolution and airborne lidar at a meter resolution. Process scale differences were found
based on land cover at each of the two measurement scales, as appraised through measurements in
the forest and alpine.

Keywords: snowpack properties; random roughness; fractal dimension

1. Introduction

During periods of snow cover, the snowpack is the interface between the atmospheric
boundary layer and the land surface [1]. The geometry of the snowpack surface controls
atmosphere–snow heat transfer [2], which influences global climate [3], impacts water
resource availability through surface sublimation [4], and dictates blowing snow dynamics
and accumulation patterns [5]. Most models consider snow surface roughness to be a
constant parameter for snow on the ground [6], yet in reality, snow surface roughness
is highly variable [6–9]. It has been noted that for snow cover on the canopy, roughness
length has been presented as a function of the amount of snow cover [10]. Using snow
surface roughness as a constant can impact model estimates of energy exchange over a
season and consequently peak SWE, compared to using dynamic snow surface roughness;
as such, this paper provides process-based insight to inform physically based snow models
to more accurately resolve snow water resource availability. The texture of the snowpack
surface can be measured using a variety of methods [2,11–14]. Geometric snow surface
data can be used to estimate roughness metrics, including aerodynamic roughness length
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(z0) [2,6,15], random roughness (RR) [11,16], and fractal dimension (D) [11,17]. In this study,
we used RR and D to assess the dynamic nature of snow surface roughness from various
surface geometry measurements over a seasonal snowpack environment. We address the
following research questions: (1) Is snow depth variability consistent over time? (2) Does
snow surface roughness vary over space? (3) Does snow surface roughness vary over time?
(4) Does snow surface roughness vary as a function of land cover? (5) Does snow surface
roughness vary across spatial scales, i.e., at different resolutions? and (6) Are roughness
metrics (i.e., RR and D) correlated?

2. Study Sites

The field data used in this study are from the National Aeronautics and Space Ad-
ministration (NASA) Cold Land Processes Experiment (CLPX), which were collected in
the northern Colorado Rocky Mountains (between 40 and 40.5 degrees north and 105.8
and 106.8 degrees west) during four Intensive Observation Periods (IOPs) in late February
and March of 2002 (IOP1, IOP2) and 2003 (IOP3, IOP4) [18]. This includes airborne light
detection and ranging (lidar), collected during the last IOP on 25 March 2003 [19]. For this
paper, four 1 km2 intensive study areas (ISAs) were selected (Figure 1), each comprising one
hundred, 100 m × 100 m grid cell areas. The Fraser Alpine (FA) ISA was chosen because it
is a mixture of forest and alpine, consisting of 31% forest, 51% alpine, and 18% at treeline or
krummholz (Figure 1). The other three ISAs contain a variety of other land cover types: the
Fraser Fool Creek (FF) ISA has remnants of patch cutting illustrated by a mosaic of forested
and regrowth, the Rabbit Ears Spring Creek (RS) ISA is primarily covered by meadows and
deciduous forest (Aspen, Populus tremuloides), and the Rabbit Ears Walton Creek (RW) ISA
consists of primarily meadows with some clumps of Spruce–Fir forest (Picea engelmannii
and Abies lasiocarpa). Several other ISAs established during the 2002–2003 CLPX campaign
were not considered in our study, including the Fraser St. Louis Creek (FS) ISA, because it
represents a uniform forest. Additionally, the Rabbit Ears Buffalo Pass (RB) ISA was not
selected, since the roughness board images were difficult to process for most IOPs due
to snowfall occurring during data collection. The three North Park ISAs were also not
considered, as they have a shallow snowpack [20], and roughness board insertion was
difficult at many points.Water 2023, 15, x FOR PEER REVIEW 3 of 16 

 

 

 
Figure 1. The CLPX study sites within (a) the United States, (b) the state of Colorado (FF = Fraser 
Fool Creek, RS = Rabbit Ears Spring Creek, RW = Rabbit Ears Walton Creek), (c) the legend, (d) 
highlighting the Fraser Alpine (FA) Intensive Study Area, which consists of 31% coniferous forest in 
the northwest, 51% alpine in the southwest through northeast, and 18% krummholz in between 
forest and alpine. The snow roughness board data [18,21] are for each of the locations shown, while 
the lidar data [19,22] are for each of the 100 m × 100 m grid cells. Wind data obtained from Sexstone 
et al. [23,24]. 

3. Data 
Roughness estimates from 1 m long snow boards at approximately one millimeter 

resolution were collected by inserting a black ABS plastic board vertically into the snow-
pack that was subsequently photographed with a digital camera [18]. For the FA ISA, two 
of the March 2003 snow depths were shallower than 10 cm, and the snow surface rough-
ness was measured at the second snow depth measurement location within the same 100 
m × 100 m extent [18]. During the last sampling period, lidar was used to measure the 
snow surface, and those data were compared to the roughness boards. Point snow depth 
data were co-located with the snow roughness measurements. These were measured to 
the nearest 1 cm using a depth probe [18]. The snow board [21], lidar [22], and snow depth 
[25] data are available from the National Snow and Ice Data Center <https://nsidc.org> 
(last accessed 16 April 2023). 

Wind speed estimates over each 100 m × 100 m area matching the CLPX extents were 
obtained for the FA site (data from Sexstone et al. [23,24]). Wind speed estimates were 
based on 1/8th-degree grid spacing North American Land Data Assimilation System 

Figure 1. The CLPX study sites within (a) the United States, (b) the state of Colorado
(FF = Fraser Fool Creek, RS = Rabbit Ears Spring Creek, RW = Rabbit Ears Walton Creek), (c) the
legend, (d) highlighting the Fraser Alpine (FA) Intensive Study Area, which consists of 31% conifer-
ous forest in the northwest, 51% alpine in the southwest through northeast, and 18% krummholz
in between forest and alpine. The snow roughness board data [18,21] are for each of the locations
shown, while the lidar data [19,22] are for each of the 100 m × 100 m grid cells. Wind data obtained
from Sexstone et al. [23,24].
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3. Data

Roughness estimates from 1 m long snow boards at approximately one millimeter
resolution were collected by inserting a black ABS plastic board vertically into the snowpack
that was subsequently photographed with a digital camera [18]. For the FA ISA, two of the
March 2003 snow depths were shallower than 10 cm, and the snow surface roughness was
measured at the second snow depth measurement location within the same 100 m × 100 m
extent [18]. During the last sampling period, lidar was used to measure the snow surface,
and those data were compared to the roughness boards. Point snow depth data were
co-located with the snow roughness measurements. These were measured to the nearest
1 cm using a depth probe [18]. The snow board [21], lidar [22], and snow depth [25] data are
available from the National Snow and Ice Data Center <https://nsidc.org> (last accessed
16 April 2023).

Wind speed estimates over each 100 m × 100 m area matching the CLPX extents
were obtained for the FA site (data from Sexstone et al. [23,24]). Wind speed estimates
were based on 1/8th-degree grid spacing North American Land Data Assimilation System
(NLDAS-2) reanalysis forcing data [26] that were downscaled to a 100 m spatial resolution
using MicroMet [27], a high-resolution meteorological distribution model, as described
in Sexstone et al. [23]. The 100 m × 100 m wind speed estimates included adjustments to
account for the presence of forest canopies, following Liston and Elder [28]. The maximum
and mean daily winter wind speeds over the surface when snow covered were estimated
for the period 2011–2015 [23]. The wind rose from the midpoint of each ISA illustrated
that the wind mostly blew from the west [17]. For FA, land cover as forest, alpine, or
krummholz/treeline was determined using visual observation of the aerial photograph
(Figure 1d) and the mean January through March wind speed (Figure 2).
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Figure 2. Mean January through March 100 m pixel wind speed across each grid cell of the FA ISA
from Figure 1d, divided into alpine, krummholz, and forest pixels. Snow depth data are from the
data of Elder et al. [18,25]. Wind data are for the years 2011–2015 from Sexstone et al. [23,24].

4. Methods
4.1. Digital Image Analysis and Lidar Processing

The image analysis technique developed by Fassnacht et al. [11] was used to convert
raw snow surface roughness board images into a detrended series of X, Y coordinates. Each
of the 100 photographs per ISA and IOP was cropped to fit the board extent. Any noise,
such as snowfall, was manually removed by masking the specific area black. The cropped
and masked images were converted into ASCII text files of digital numbers. A digital
number threshold was established (Fassnacht et al. [11] used 140) to distinguish white

https://nsidc.org
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snow versus the black board. Finally, the snow surface was detrended using a best-fit line
to remove biases, in this case from photographs taken on an angle and/or a non-smooth
snow surface [11].

Two-dimensional surface data were obtained from airborne lidar [19] and are available
from the National Snow and Ice Data Center [22]. Specifically, the ~1.5 m resolution
lidar data were interpolated to a 2 m resolution over the study domain using ordinary
kriging [13]. For each 100 m × 100 m extent, the lidar surface was detrended with a
two-dimensional plane to remove elevation-based bias in the roughness computations [13].

4.2. Random Roughness

RR is a roughness metric that quantifies the intensity of surface roughness as one
number [11,16]. It does not consider the spatial structure, i.e., the relative location of
roughness elements [17]. RR is the standard deviation of elevations from the mean surface;
as such, larger values represent a rougher snow surface. Each curve (board) or surface
(lidar) was detrended to remove bias [11].

4.3. Fractal Analysis

The value of D describes the nature of the snow surface; a value of 1 is a line, a value
of 2 is a plane, and a value of 3 is a surface. For the roughness boards, D is between 1 and
2 such that when D is close to 1, the surface is well organized, whereas a D close to 2 is
approaching a random. For the lidar data, the value of D is 1 more, i.e., between 2 and 3. It
is derived from the slope of the best-fit power function from variogram analysis [11,17],
and it identifies scaling processes with similar values. For each roughness board or lidar
area, the semi-variance was plotted as the variance between surface elevation points of
equal distance. The lag distance is the average distance between measurements. Log-log
space was used, and the power function was fit to the data starting at the shortest lag
distance until the scale break (SB) or change in slope (end to a similar scaling process). The
value of D was computed as 3 minus the power function exponent divided by 2 [17]. More
information and examples are provided in Appendix A. A higher slope is more organized
and thus has a lower fractal dimension.

4.4. Data Analysis

The distributions of snow depth and RR were plotted for each ISA and each IOP, as
well as for each of the three land cover types (see Figure 1d) for the FA ISA. The value of D
was only computed for the FA ISA since it was the only ISA with different land cover types
(Figure 1d). The temporal correlation coefficient (R) was computed between each snow
depth, RR, and D value over the four IOPs. To quantify snow surface roughness across
scales, lidar- and board-derived metrics were compared for IOP4 at FA. Specifically, RR
and D were compared both across scales at the two resolutions and versus one another (D
versus RR). Since RR has units of length, it was standardized by dividing by the resolution
to further quantify the correlation of the derived roughness metrics.

5. Results

For FA IOP4 (late March 2003), there was no correlation between snow depth and
wind speed (Figure 2). The mean winter wind speeds were similar among the alpine and
krummholz land cover pixels (6–7 m/s). Among the forest, they were approximately half
of the other two land cover types (3–4 m/s) (Figure 2). Wind speeds varied from year to
year (not shown), and the maximum wind speeds were highly correlated with the mean
wind speed.

Near the Fraser ISAs (FA and FF), 2002 was a lower-than-average snow year (Figure 3).
From the snow telemetry data (Figure 3) and the CLPX point depth measurements (Figure 4a),
IOP1 and IOP2 had similar snow depths. Snow year 2003 was about average until a large
snow event across the northern Front Range of Colorado in mid-March, as seen at the two
Fraser sites (FA and FF); IOP4 occurred 5–10 days after this event (Figure 3). On average,
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the snow depth was the same at the Rabbit Ears sites (RS and RW) in 2003 (Figure 4a). The
point snow depth measurements were very consistent between measurement dates at the
FA forest (R > 0.9) and krummholz (R > 0.92) locations (Figure 4b) but less so in the alpine
(R from 0.65 to 0.81). Snow depth was least correlated at RS (R was as low as 0.32 between
IOP2 and IOP3). FA alpine had the least mean amount of snow (Figure 4a).
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Figure 4. (a) Snow depth [25] distribution at the location where the snow board photo [21] was
taken during the four IOPs (2002 and 2003 winters in late February and late March) at the four ISAs
(FA = Fraser Alpine, FF = Fraser Fool Creek, RS = Rabbit Ears Spring Creek, RW = Rabbit Ears Walton
Creek). The FA data were divided into forest, krummholz (krumm), and alpine. The line in each box
is the mean snow depth, the box represents +/− one half standard deviation, and the dots represent
the maximum and minimum. (b) The correlation coefficient (R) between snow depths collected at
the same locations from two different time periods (i.e., a pair of IOPs). Correlations (b) denoted by
* and + are statistically significant at the p < 0.05 and p < 0.1 levels, respectively.
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When snow board data were averaged by ISA for each IOP, the mean RR values were
similar (i.e., ~2.9–5.6 mm). However, variability in RR values was high at each site and
observational period, often spanning ~2.5 orders of magnitude (i.e., 0.6–20 mm). At FA,
the mean snow board RR was greatest during the last sampling date for the forest and
alpine, and least on that date for the krummholz (Figure 5a). The RR values were poorly
correlated between dates (Figure 5b), with the best correlation occurring between IOP1 and
other dates in the FA forest (R of 0.32–0.38).
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tially no correlation in the krummholz and alpine. 
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7c,d). 

The correlation between D and RR was consistent across the four IOPs, especially 
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Figure 5. Snow board [21] (a) random roughness (RR) during the four IOPs (2002 and 2003 winters
in late February and late March) at the four ISAs (FA = Fraser Alpine, FF = Fraser Fool Creek,
RS = Rabbit Ears Spring Creek, RW = Rabbit Ears Walton Creek). The FA data were divided into
forest, krummholz (krumm), and alpine. The line in each box is the mean RR, the box represents
+/− one half standard deviation, and the dots represent the maximum and minimum. A logarithmic
scale is used to highlight the RR differences for the small values. (b) The correlation coefficient (R)
value between RR collected at the same locations from two different time periods (i.e., a pair of
IOPs). Correlations (b) denoted by * and + are statistically significant at the p < 0.05 and p < 0.1
levels, respectively.

The snow board D varied from date to date, with the second IOP having the largest
average D, except for in the krummholz (Figure 6a). The range of D was from 1.1 (organized)
to 1.95 (almost fully random). The alpine had the lowest D values, with the range of D
values being similar between forested and krummholz. Across FA and among the different
land covers, the mean D was lowest on the last sampling date. It was poorly correlated
between dates (Figure 6b), with little correlation in the forest (R~0.2) and essentially no
correlation in the krummholz and alpine.
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There was no correlation among RR (Figure 7a) or D (Figure 7c) across scales, i.e., from
the snow roughness board to the lidar. For the lidar and the boards, RR varied by up to a
factor of 20 (Figure 7b). The range of D for lidar (range of ~0.3, values from 2.1 to 2.4) was
approximately half that of the boards (range of ~0.6, values from 1.1 to 1.7) (Figure 7c,d).

The correlation between D and RR was consistent across the four IOPs, especially
when comparing the four different land cover types (Figure 8a–d). For the alpine, the D and
RR values were smaller than the forested and krummholz land cover types. Smaller D and
RR values were most apparent in the lidar datasets, which also show a weaker correlation
between D and RR values (i.e., R2 of 0.22 versus 0.58, respectively) for the entire domain
during IOP4 (Figure 8e).

By reducing the lidar D by a factor of 1 (Dadj), (i.e., changing the range from 2–3 to
1–2, meaning plane-surface to line-plane) and then standardizing RR by pixel size (RRstd),
we see more distinctive correlations (Figure 9), as compared to the raw values (Figure 8).
The Dadj and RRstd values have higher variance in regression residuals for board-derived
versus lidar-derived values (Figure 9), and the R2 values are also higher for forest and
alpine (Figure 9b,d) for the boards versus the lidar. The opposite is seen for the krummholz
(Figure 9c), due to fewer points (18) and two extreme values for the boards (D from 1.3 to
1.9 for a similar RR value). The alpine has the lowest lidar RR values and the highest board
RR values (Figure 9d).
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Figure 8. Snow roughness board [21] fractal dimension (D) versus random roughness (RR) for
(a) IOP1, (b) IOP2, (c) IOP3, and (d) IOP4 at the Fraser Alpine ISA divided by forest, krummholz, and
alpine land cover. (e) Lidar-based [22] IOP4 D versus RR (with different scales). The coefficient of
determination (R2), coefficient (a), and exponent (b) for the power function fit to all data, and the
three land cover groups are listed. The line shown is the best-fit power function for all the data. All
functions were statistically significant at the p < 0.05 level.
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for the best-fit power function: the coefficient of determination, coefficient (a), exponent (b), and
standard error (SE). All functions were statistically significant at the p < 0.01 level.

6. Discussion

Snow depth distribution patterns have been shown to be consistent inter-annually [29–31]
and seasonally [32]. Therefore, snow depth is also assumed to be spatially consistent
intra-annually [33]. From our analysis, the intra-annual consistency is slightly greater (R
increase of 0.05) than the inter-annual consistency (Figure 4b), with snow depth being more
consistent in 2003 (IOP3 and 4) than in 2002 (IOP1 and 2). This is likely due to the substantial
March snowfall that was observed at FA and FF (Figure 3). The snow depths used herein
are from manual depth probe measurements [18], which have inherent biases due to
over-probing [34] and location uncertainty [34–36]. More efficient data collection methods
could enable a better assessment of intra- and inter-annual variability, such as automated
depth probes [34], various forms of lidar (e.g., Deems et al. [37]), and photogrammetry
techniques (e.g., Nolan et al. [38]). These advanced data collection methods could be
especially impactful when implemented more frequently over the same period or winter
season (e.g., Pflug and Lundquist [39]).

Since snowpack surfaces are continuously changing and evolving, snow surface rough-
ness varies spatially (Figures 5a and 6a) [7,8] and temporally (Figures 5b and 6b) [6,8], as it is
driven by interactions with meteorological forces. The observed spatio-temporal variability
from the boards is partially due to the fine resolution (<1 mm) and small sampling extent
(1 m); this scale can identify very local features that are linked to snow depth characteris-
tics [8]. Temporal variability is correlated with the timing of the sampling relative to fresh
snowfall events (Figure 3) [40,41]. Thus, it is relevant to track the snow surface roughness
evolution with respect to what is occurring to the snowpack (accumulation, compaction,
ablation, etc.). At the lidar scale (2 m resolution at the 100 m extent in this study), terrain
characteristics dictate spatial variability [13]. Temporal variations at coarser lidar resolu-
tions were not evaluated in our study; however, such investigations have been conducted
by others, such as with the Airborne Snow Observatory dataset for the Tuolumne Basin in
California, USA, as illustrated in Pflug and Lundquist [39].

In our study, the snow surface roughness in the krummholz was similar to the forest,
with RR being greater (Figure 5a) and D being lesser (Figure 6a) than in the alpine. In the
forest, snow interception dominates the snow surface characteristics [10] and dictates the
correlation length (8–15 m) [17,42], whereas in the alpine, blowing snow dominates and
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has a much longer correlation length for measurements (40+ meters) [17,42]. Although the
wind characteristics in the krummholz were the same as in the alpine (Figure 2), the process
behavior between forested, including krummholz, versus non-forested (alpine) partially
dictated snow surface roughness characteristics. Specifically, in the forest or krummholz,
canopy interception is an important process, whereas in the alpine, shrub–snow interaction
is relevant [20,43], and blowing snow dominates [23].

The differences between snow surface roughness in the forest, alpine, and krummholz
did vary somewhat over time (Figure 8). Due to the increased wind in the krummholz,
there can be a large amount of blowing snow, causing large snow depth variability
(Figure 4a) [44]. For the krummholz, there is less snow accumulation below trees dur-
ing snowfall if winds are low, but subsequent blowing snow fills in much of this snow
under individual trees [45]. Snow surface roughness varies as a function of land cover
characteristics (Figures 5, 6, and 8). This has the potential to impact how moisture and
wind regimes drive sublimation [46].

At the lidar resolution, these differences, i.e., spread between krummholz and forest
versus alpine (Figure 8e), were more distinct than for the boards. Also, the “slope”, as
represented by the b values (i.e., the exponent of the best-fit power function), is very
similar between forest and krummholz (Figure 9). We see a gap between measurement
scales over the three orders of magnitude of resolution (Figure 9). For example, the snow
boards’ spatial extent is too small to capture snow drifts, whereas the airborne lidar data
are too coarse to capture the details of the spatially dynamic nature of snow drifts. At finer
resolution, the snow surface characteristics are strongly related to snow depth, whereas at
coarser resolution, the snow surface is more related to the ground surface characteristics [8].
Overall, the correlation between D and RR is lowest for the alpine, as represented by the R2

values (Figures 8 and 9). We do see correlations between the two scales, with more of these
correlations occurring in forest and krummholz land types than in the alpine (Figure 9),
impacted by wind dominance (alpine) compared to canopy dominance (forest) or both
(krummholz). This yields differences in the scales [17,42].

To better assess how snow surface roughness changes across scales, we could measure
the snow surface (spatially and temporally) at the centimeter scale over an extent of 10s
of meters [8]. This would be a finer resolution than suggested by Andreas [12], who used
manual 0.5 m sampling over 128 m transects via spectral analysis. Although terrestrial lidar
is often employed at coarser resolutions [37,47], especially over longer distances [48], it can
also be used over smaller spatial domains and at finer resolutions. New technology, such as
drones or uncrewed aerial vehicles (UAVs), can be used with photogrammetry or structure
from motion [49], with newer, smaller lidar units becoming practical for drones [50]. Finally,
new lightweight hand-held lidar tools are starting to be useful for small domains [51].

7. Implications

There are differences between snow surface roughness expressed as RR versus D
(Figure 8), but there is more correlation between these metrics for the boards (Figure 8a–d)
than lidar (Figure 8e). Numerous surface roughness metrics exist [14], but relatively few
are used for snow due to the complexity of snow surface characteristics [11]. Values of
z0 can be computed using surface geometry [2,6,15] by identifying individual surface
elements and computing the ratio of the cross-section area perpendicular to the wind to the
horizontal area of the elements [13]. This geometric assessment may be performed through
photogrammetry or structure from motion [52]. However, surface geometry is not the only
factor influencing z0 [12], as wind dynamics are relevant, as they, in turn, shape the snow
surface [5,44]. Overall, the variability in snow surface roughness has implications for the
energy balance of the snowpack, especially the sensible and latent heat fluxes [53], plus the
mass balance due to sublimation [4,54], blowing snow [5,23], and other components [55],
such as net short- and long-wave radiation.
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8. Conclusions

From the paper’s objectives, we conclude as follows:

(1) The variability in snow depth is most temporally consistent in the forest (R approach-
ing 1 over time), slightly less in the alpine (R is approximately 0.75), and least consis-
tent in open terrain with mixed forests (R is approximately 0.6). Snow depth is more
consistent intra-annually than inter-annually.

(2) Snow surface roughness, as defined by the random roughness, varies by up to
1.5 orders of magnitude over space. Mean random roughness values vary by a factor
of 2 or 3 across the various study domains. This was observed for the boards and the
lidar-derived snow surfaces. The fractal dimension value varies from 1.1 to 1.95 for
the boards and by less than half for the lidar-derived snow surfaces (1.1 to 2.4).

(3) Snow surface roughness from the boards is not temporally consistent; the maximum
R-value for random roughness is 0.35, with most intra- and inter-annual comparisons
being less than 0.2. Temporal consistency is less for the fractal dimension, with R
being less than 0.2. Lidar data were only available for one time period, and thus the
temporal variability was not assessed.

(4) Snow surface roughness is correlated with land cover characteristics. Alpine has a
larger random roughness and is more organized (lower fractal dimension) than forest.
The values for krummholz are between alpine and forest.

(5) The two snow surface roughness metrics are not correlated across spatial scales,
i.e., from the boards at millimeter resolution to the lidar data at meter resolution.

(6) The roughness metrics (i.e., RR and D) are well correlated, especially when separated
by land cover. The correlation is more obvious when the dimension is removed from
the roughness metrics.
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Abbreviations

CLPX Cold Land Processes Experiment
D fractal dimension
FA Fraser Alpine ISA
FF Fool Creek ISA
IOP Intensive Observation Period (IOP1 = February 2002, IOP2 = March 2002,

IOP3 = February 2003, IOP4 = March 2003)
ISA Intensive Study Area
NLDAS North American Land Data Assimilation System
R correlation coefficient (−1 to +1)
R2 coefficient of determination (0 to 1)
RR random roughness
RS Rabbit Ears Spring Creek ISA
RW Rabbit Ears Walton Creek ISA

Appendix A. Fractal Analysis

For one-dimensional (1-D) data, i.e., the roughness boards, D has a value between 1
and 2 and is computed as follows:

D = 2 − b/2 (A1)

where b is the slope of the variogram in log-log space or the exponent of the best-fit power
function that has the form:

γ = axb (A2)

where γ is the semi-variance, x is the lag distance from the variogram, and a and b are the
best-fit coefficients, analogous to the y-intercept (a) and slope (b). For two-dimensional
data, i.e., the lidar-derived snow surface, D is between 2 and 3. For a 1-D surface, a D of 1 is
a line, and a D of 2 is a surface, with natural surfaces typically having a value of D greater
than 1 but less than 2 (Figure A1). The examples in Figure A1 show a very organized surface
(Figure A1a with D~1.05), a partially organized surface with some randomness (Figure A1b
with D~1.5), and an almost completely random surface (Figure A1c with D~1.95).
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