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Abstract: Polydisperse particles are ubiquitous in both the natural and engineered environment, and
the precise prediction of the transport and capture of polydisperse particles in a saturated medium
is crucial. Several efforts (Yao model, RT model, TE model, MPFJ model, NG model, MHJ model,
and MMS model) were developed to obtain accurate correlation equations for the particle capture
probability (single-collector removal efficiency), but the applicability of the existing models to the
entire porous medium and the retention characteristic of the polydisperse particles are still unclear.
In this study, sand column experiments were undertaken to investigate the transport and capture
processes of the polydisperse particles in the saturated medium. The mass density was employed to
quantize the effects of particle polydispersity and incorporated into the depth-dependent deposition
rate. The experimental results showed that the polydisperse particles formed a hyper-exponential
retention profile even under favorable conditions (no repulsion). The excellent agreement between the
results obtained from the MMS model and the experimentally observed results of the breakthrough
curves (BTCs), as well as the retention profiles demonstrated the validation of the MMS model, as
the correlation coefficient and the standard average relative error were 0.99 and 0.005, respectively.
The hyper-exponential retention profile is caused by the uneven capture of the polydisperse particles
by the porous medium. This study highlights the influences of particle polydispersity on particle
transport and capture in a saturated porous medium.

Keywords: polydisperse particles; capture probability; deposition coefficient; model comparisons;
uneven capture; hyper-exponential retention; favorable conditions

1. Introduction

Particle migration and capture in saturated porous media is prevalent in a wide range
of environmental and industrial scenarios [1,2]. Included are concerns such as colloid-
facilitated transport of viruses, bacteria, and nanoparticles in aquifers, suspended particle
removal in sand filtration or wastewater treatment, and rock permeability reduction as a
result of particle capture in drilling operations [3–6]. For all these above cases, it is critical
to understand how particles are transported and captured in a porous medium and to
predict particle removal through physically sound modeling [7–9].

Dispersed particles are ubiquitous in the groundwater environment and highly hetero-
geneously sized, ranging from the nanoscale up to fractions of a millimeter in natural and
engineering conditions [10]. The transport processes of these dispersed particles through a
porous medium and how they interact with the porous medium are governed by several
different forces and transport mechanisms depending on the particle density and size [11].
These transport mechanisms mainly include Brownian motion, gravity, interception, at-
tachment to media via attractive electrostatic forces, straining (pore throats are too small
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for particles to pass), bridging, and trapping in dead-end pore throats [12]. The retention
of particles larger than 10 µm is mainly accomplished by gravity, interception, and hydro-
dynamics, while Brownian motion is the most-prevalent transport mechanism for small
colloids (<1 µm). For mean colloids (1–10 µm), all the acting forces and mechanisms can
make a contribution to the transport and capture processes of colloidal particles [13]. These
forces and mechanisms are complex and change greatly over time and space, which are
inherently non-linear and operate jointly [14].

Over the past half century, the colloid filtration theory (CFT) has been modified at both
the microscale and macroscale to model particle flow and capture in saturated porous media
(collector) [1]. The transport and capture of colloids present a unique multiscale problem,
and the theoretical underpinnings of the CFT consist of two fundamental components [15]:
(1) a pore-scale analysis of particle flow and capture by a collector to define the removal
efficiency of a collector and (2) upscaling from this pore-scale of particle motion analysis
to a macroscale behavior. The first component is typically regarded as a progression of
the transport and attachment stages, where the particle transport is governed by transport
mechanisms and the attachment is approached due to the van der Waals attraction and
electrostatic repulsion (DLVO theory) between a particle and the surface of a porous
medium under favorable conditions [16]. Finally, a correlation equation for the frequency
of particle contact with the medium surface, known as the single-collector efficiency, has
been developed. The second component is conventionally achieved by the combination
of a local mass conservation law with a kinetics equation for particle deposition [17]. This
upscaling is primarily approached by continuum-based numerical models solving the
advective and dispersion equation for solute transport in saturated porous media [18].

The first correlation equation was proposed in 1971 by Yao et al. [19], who assumed
the correlation equation was the additivity of three analytical solutions for particle capture
by an isolated sphere as a result of diffusion (D), gravity (G), and interception (I). However,
this approach neglects the interplay between the three different capture mechanisms.
Rajagopalan and Tien enhanced the Yao model in 1976 by conducting a numerical trajectory
analysis of suspended particles under the actions of the van der Waals force (V) and the
hydrodynamic retardation (H) in addition to the three mechanisms mentioned above [20].
Another commonly used correlation equation was developed by Tufenkji and Elimelech in
2004 [21], who performed Eulerian simulations in the Happel sphere and accounted for the
coexistence of the three transport mechanisms, as well as the effects of the van der Waals
force and the hydrodynamic retardation. In 2009, Ma et al. [22] introduced the hemispheres-
in-cell model, which takes into account the effect of grain-to-grain contact points on the
transport and deposition processes of a particle within a pore space. Nelson and Ginn [23] in
2011 developed a different correlation equation by conducting a large number of Lagrangian
simulations in Happel sphere-in-cell porous media, and the new model simulated the
concomitant presence of all the forces acting on the particles. Ma et al. [24] in 2013 extended
the applicability of the correlation equation to low fluid velocity conditions by introducing
a saturation factor on the basis of the particle mass transfer relationships. Messina et al. [25]
in 2015 proposed a novel total flux normalized correlation equation, which included mixed
terms that account for the mutual interaction of simultaneous transport mechanisms. These
mixed terms could eliminate the negative effects of the use of additivity. The main features
of the above seven correlation equations are summarized in Table 1.

Despite the significant efforts made by researchers in the development of correlation
equations for the dynamic description of the particle behavior in saturated media, several
mysteries remain because of the complex mutual interactions between particles and porous
surfaces, especially when it comes to the effects of particle polydispersity on particle fate
in a saturated medium [26,27]. Moreover, the similarity among the existing seven models
naturally raises interest in their comparison and selection. However, few attempts have
been made to explore the applicability of the existing correlation equations, especially for
polydisperse particles, which are more prevalent in natural and engineered systems [28,29].
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Table 1. The existing correlation equations for particle capture and their transport mechanisms.

Acronym Authors Geometry Transport Mechanisms

Yao model Yao et al., 1971 [19] Isolated sphere Additivity of analytical solutions for D, G, I.

RT model Rajagopalan and Tien, 1976 [20] Happel sphere-in-cell Additivity of analytical solutions for D, G, I, V, H.

TE model Tufenkji and Elimelech, 2004 [21] Happel sphere-in-cell Numerical solutions for D, G, I, V, H.

MPFJ model Ma et al., 2009 [22] Hemispheres-in-cell Numerical solution for D, G, I, V, H allowing for
grain-to-grain contact points.

NG model Nelson and Ginn, 2011 [23] Happel sphere-in-cell Numerical solutions for D, G, I, V, H for small particles
at low velocities.

MHJ model Ma et al., 2013 [24] Modified hemisphere-in-cell Numerical solutions for D, G, I, V, H at low
fluid velocities.

MMS model Messina et al., 2015 [25] Isolated sphere Numerical solution for D, G, I and the mutual
interactions among the three.

The overarching objective of this work was to model the transport and deposition pro-
cesses of polydisperse particles in a saturated porous medium under favorable conditions.
Laboratory sand columns filled with quartz sand of 0.503 mm were employed as exper-
imental porous media. Polydisperse particles with a size range from 0.375 to 18.863 µm
were made into a suspension and injected into the sand columns for breakthrough and
final retention profile analysis. A comparison of the seven models (Yao model, RT model,
TE model, MPFJ model, NG model, MHJ model, and MMS model) with the available exper-
imental data was made. The specific objectives were to: (1) determine the effects of particle
polydispersity on particle transport and deposition, (2) compare the performance of the
seven existing models with the influent, effluent, and retention profile, and (3) simulate the
transport and capture processes of polydisperse particles in the saturated porous medium.

2. Materials and Methods
2.1. Polydisperse Particles

The polydisperse particles were collected around the inlet of the Han River, and that
could well represent the composition in reality. The material was ground, dried, and sorted
repeatedly, ensuring a particle size range of 0–30 µm was obtained, since this specific size
range is the most-commonly used. Particle size distribution (PSD) analysis was performed
using dynamic light scattering (ZetasizerNanoZS90, Malvern Instruments Ltd., Malvern,
UK). PSD analysis indicated the polydisperse particles ranged in sizes from approximately
0.375 to 18.863 µm, and the median size was around 2.932 µm (Figure 1). The particle
polydispersity can be characterized by the particle mass density, namely the probability
density of the particle size distribution [30]. The zeta potential of the particles was measured
to be −24.3 mV in deionized water and values of −0.69 mV in 200 mM NaCl at pH 6.8
(25 ◦C). The specific density of the polydisperse particles was measured to be 2.53 g/cm3.
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For the suspensions’ preparation, the selected polydisperse particles were made into a
desired particle concentration and ionic strength (200 mM NaCl) with deionized water, and
then, the suspension was sonicated for 2 h to achieve a thorough dispersion.

2.2. Porous Medium

Natural sand is a typical experimental material and was used as the porous medium
for filling the column. The natural sand was sieved for uniformity. The PSD results showed
that the porous medium material had a mean size of 0.503 mm with a standard deviation
of 0.105 mm, which indicated that the sandy material was homogeneous. The bulk density
of the sand medium was measured as 1.61 g/cm3, and the specific density was 2.56 g/cm3.
The porosity of the clean porous medium was measured as 0.378 (±0.003).

Prior to use, the sand was thoroughly cleaned by means of tap water, deionized water,
HCl, and NaOH solution, in order to remove impurities. The zeta potential of the sand
surface was measured to be 18.6 mV in 200 mM NaCl.

2.3. Experiments for the Transport and Deposition of Polydisperse Particles

A Plexiglas sand column, with a length of 50 cm and an inner diameter of 5 cm, was
wet packed with the sand medium (Figure 2). Therefore, the value of each pore volume (PV)
was 370.912 mL at a constant Darcy velocity of 3.51 × 10−5 m/s, and this velocity is the
average value typically used in most experiments [23]. Sixteen piezometers were unevenly
installed along the length of the sand column to monitor the pressure variations during
the injection processes. The screen was placed at the bottom to prevent the movement of
the medium, and a dampener was installed at the top of the column to protect the sandy
material from the energy of water applied. The top of the sand column was connected with
a peristaltic pump to represent a suspension recharge, and a motorized stirrer operated to
keep the suspension stable.
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Figure 2. Illustration of the column experiment.

Before the particle injection, the sand column was first fed with 8 PVs of DI water and
followed by 4 PVs of electrolyte solution (200 mM NaCl). Then, a total volume of 28.8 pore
volumes of polydisperse particles, with a particle concentration of 300 mg/L, was injected
into the sand column with five replicates during the experiments. The injected particle
concentration was targeted at 300 mg/L due to the typical stormwater concentration from
a review of international data [31]. The effluent concentration of the sand column was
monitored with a spectrophotometer, and the hydrodynamic dispersions were determined
through fitting the breakthrough curves.
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During the whole period of the experiments, pressure variations due to particle capture
along the column were monitored to avoid piezometer heads below the position head, and
the case of an unsaturated zone was not considered.

At the end of the experiment, the mixed deposition and sandy material packed in the
column was carefully excavated and cut into sections to obtain the final deposition profile
of the retained particles along the column length according to the procedure described
in [32]. PSD analyses were conducted for the retained particles.

2.4. Modeling for the Transport and Deposition Processes of Polydisperse Particles

The transport and capture processes of polydisperse particles, in a one-dimensional
sand column, can be described by the advective diffusion equation with a deposition term,
as follows [33,34]:

∂C
∂t

= D
∂2C
∂z2 − u

∂C
∂z
−

ρp

ε

∂S
∂t

(1)

ρp

ε

∂S
∂t

= k0 ϕC (2)

where C (M·L−3) is the aqueous phase concentration of the polydisperse particles,
D (L2·T−1) is the hydrodynamic dispersion coefficient, z (L) is the space coordinate,
S (L3·L−3) is the solid phase concentration of retained particles, u (L·T−1) is the Darcy
velocity, t (T) is the time coordinate, ε is the porosity of the sand porous medium, and
ρp (M·L−3) is the bulk density of the particles.

The kinetic equation of the polydisperse particles is given as follows [32]:

k0 = −3(1− ε)

2dc
u
∫ ∞

0
Q(x)ln(1− η(x))dx (3)

where k0 (T−1) is the initial deposition coefficient, dc (L) is the collector diameter, and Q(x)
(L−1) is the mass density of the polydisperse particles. η(x) is the capture probability
(collector efficiency) of a particle with a diameter of x. x (L) is a collection of particle sizes.
Details about the seven existing models to calculate the capture probability can be found in
the Supplementary Materials. If the particles are assumed to be monodispersed, and x is a
constant value,

∫ ∞
0 η(x)dx = 1, and Equation (3) is expressed as follows:

k0 = −3(1− ε)

2dc
uln(1− η) (4)

Equation (4) is the expression of a constant first-order deposition coefficient, which is
derived from the classical CFT [35]. Thus, the deposition coefficient of the monodispersed
particles is a special case of the polydisperse particles.

ϕ is a dimensionless particle deposition function, and this dimensionless model is
given as follows [36]:

ϕ =

(
1− S

Sm

)
(5)

where Sm is the maximal retention (Sm ≤ ε), and measured to be 0.265 according to the
methods described in [32].

The mass density of particles will constantly change, as particles of different capture
probabilities are arrested by the porous medium. The mass density is given as follows:

Qout(x) =
(1− η(x))ϕ

3(1−ε)
2dc

∆lQin(x)Cin
Cout

(6)

where Qout(x) (L−1) is the mass density of the polydisperse particles and Cin and
Cout (L3·L−3) are the inlet concentration and outlet concentration. ∆l (L) is the length
of a finite element of the sand column.
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The numerical solutions of Cout and S for the coupled partial and ordinary differen-
tial Equations (1)–(6) can be achieved by an explicit algorithm, which requires a set of
appropriate boundary and initial conditions.

A constant concentration of the polydisperse particles is assumed at the inlet of the
sand column, and the corresponding boundary condition is as follows:

C = C0 at z = 0, t > 0 (7)

A second boundary condition with no change of concentration at the sand column
exit was adopted.

∂C
∂z

= 0 at z = L, t > 0 (8)

where C0 (M·L−3) is the initial concentration and L (L) is the column length.
The initial conditions corresponding to a clean sand porous medium are as follows:

C(z, 0) = 0
S(z, 0) = 0

(9)

The numerical solution of C and S can be achieved by setting ∆t = 2 min and
∆l = 0.5 cm. There were 1262 time steps needed to complete the simulations, and an
estimation of the discretization error (compared with ∆t = 1 min and ∆l = 0.1 cm) was
about 0.52%. Therefore, the options of ∆t = 2 min and ∆l = 0.5 cm were acceptable when a
trade-off was made between the time cost and efficiency.

2.5. Evaluation Criterion

In order to compare and analyze the differences between the model results and the
measured results, the standard mean relative error was used as the calculation method of
the error in the data analysis, and the calculation formula is as follows:

SMRE =
∑n

i=1
∣∣yi − y′i

∣∣
n(ymax − ymin)

(10)

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (11)

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣ (12)

where SMRE is the standard mean relative error, RMSE is the standard mean relative
error, and MAE is the mean absolute error. yi, y′i are the measured data and simulated data,
respectively; ymax, ymin are the maximum value and the minimum value of the measured
data; n is the number of data.

3. Results
3.1. XDLVO Energy

The zeta potentials of the polydisperse particles and the sand surface were both
negatively charged in deionized water, but a 200 mM NaCl solution was added to enhance
attachment in filtration by adsorption to produce charge neutralization and (or) bridging.
The interaction between the polydisperse particles and the sand surface were calculated to
be attractive in the high ionic strength solution, which indicated a favorable condition. The
XDLVO theory was employed to calculate the interaction energy between the polydisperse
particles and the sand surface, and plate–plate interactions were assumed. The XDLVO
forces include van der Waals attraction, electric double-layer repulsion, and Lewis acid–
base interactions [37]. The XDLVO energy profile between the polydisperse particles and
sand medium is presented in Figure 3. A primary minimum was observed to exist under
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the experimental conditions. It is easy for the particles to attach to the surfaces of the sand
medium in a primary minimum and almost unlikely to be released into the suspension [38].
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NaCl solution.

3.2. Seven Correlation Equations for Polydisperse Particles

The results of seven correlation equations for polydisperse particles are summarized
in Figure 4. The capture probability of each particle is plotted as a function of the particle
diameter. It was also observed that polydisperse particles of different sizes were captured by
the porous medium according to their capture probabilities. The general trend of the results
calculated by all seven correlation equations were similar, and there existed a particle size
with a minimum opportunity for removal. Nevertheless, this critical particle size varied
with different models. For the NG and MHJ models, this critical particle size was about
4 µm, while this critical particle size was about 1 µm for the other five models. For particles
larger than the critical value, the capture opportunity increased rapidly with the particle
size, and removal was mainly accomplished by sedimentation and (or) interception. For
particles smaller than the critical value, the capture opportunity increased with decreasing
particle size, and removal was mainly accomplished by diffusion.
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Figure 4. Comparison of the calculated capture probability for the polydisperse particles (0.375
to 18.863 µm) with the seven existing models. Data: ε = 0.378, u = 3.51 × 10−5 m/s,
ρp = 2.53 × 103 kg/m3, dp = 2.932 × 10−6 m, dc = 5.03 × 10−4 m, D = 2.31 × 10−6 m2/s.

The Yao model is just the superposition of three capture mechanisms due to Brownian
motion, gravity, and interception, assuming the hydrodynamic effect is balanced by the van
der Waals force. The RT model, TE model, MPFJ model, NG model, and MHJ model all take
into account the joint effects of the van der Waals force and the hydrodynamic retardation
in addition to the three mechanisms. The RT model mainly focuses on non-Brownian
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particles (>1 µm), and the MHJ model is suitable for particles in low fluid velocity. The six
models mentioned above neglect the mutual interactions of different capture mechanisms,
while the MMS model considers the interplay between the different capture mechanisms.

Furthermore, the NG and MHJ models calculate capture opportunity, which was about
an order of magnitude larger than the other models when the particle size was less than
1 µm. On the contrary, the two models predicted a much smaller capture opportunity
when the particle size was larger than this critical particle size. Overall, the MMS model
predicted a larger capture probability over the particle size range, which could produce a
higher deposition coefficient.

3.3. The Transport of Polydisperse Particles in the Porous Medium

The breakthrough curves (BTCs) of the column experiment data simulated by the
seven models are represented by the relative concentration as a function of the injected NVp
in Figure 5. The BTCs are the relative concentration curve (ratio of the outlet concentration
C to the inlet concentration C0) over time. The simulated BTCs of all the models showed a
similar behavior. The effluent concentrations increased with time (injected pore volume) for
the whole period of the experiments. After the 28.8 Vp of polydisperse particles injection,
finally, the relative concentration reached a steady-state plateau value of 0.833. These
models predicted a higher relative concentration of the outlet at the early stage of injection
(NVp < 5) except for the MMS model, and the MMS model predicted the steady-state
concentration plateau at 10 Vp, which was earlier than the other models.
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Figure 5. Comparison between the observed breakthrough curve (symbols) and simulated BTCs
(solid line) with the existing models for the polydisperse particles, plotted as a function of the number
of pore volumes (NPv). The mean concentration of five measurements, with the 95% confidence
interval, is presented.

Figure 6 shows the normalized Taylor diagram of the relationship between the simu-
lated values of the seven models and the experimental results. The closer to the observation
point, the better the simulation of the model. The seven models all seemed to portray
the transport and capture processes of the polydisperse particles in terms of the BTCs
well, since the correlation coefficients of the seven models were more than 0.9 and the
root-mean-squared error was between 0.1 and 0.5, which are generally acceptable results
for BTC predictions. The MMS model was the best under the experimental conditions, and
its correlation coefficient and root-mean-squared error were 0.99 and 0.1, respectively.
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3.4. The Final Retention Profile

The final retention profile is also a pivotal indicator to evaluate a model’s ability to
characterize the fate of polydisperse particles in the saturated porous medium. Figure 7
exhibits the deposition profiles of the experimentally observed data and simulated results
along the sand column at the end of the experiments. The retention profile of the experi-
mental data was a hyper-exponential profile characterized by two distinct sections, with a
steeper slope at the upper segment of the porous medium, followed by a relatively flatter
slope at the lower part of the column. The experimentally observed hyper-exponential
profile indicated a higher proportion of the polydisperse particles were captured near the
entrance of the sand column, and much fewer particles were captured near the bottom of
the column. Two models stood out, namely the Yao model and the MMS model, as both
were able to depict the hyper-exponential profile of the retained polydisperse particles
under the experimental conditions (Table 2). However, the rest of the models tended to
homogenize the final retention profile of the captured particles and failed at the attempt to
capture this obvious feature.
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Table 2. The standard average relative error of each model for the particle retention profiles.

Model Yao Model RT Model TE Model MPFJ Model NG Model MHJ Model MMS Model

SMRE 0.009 0.044 0.024 0.058 0.013 0.017 0.005
RMSE 0.003 0.015 0.010 0.019 0.007 0.009 0.002
MAE 0.058 0.123 0.099 0.138 0.083 0.095 0.047

It was shown that the discrepancies between the existing seven models for polydis-
perse particles presented significant effects on the laboratory-scale applications of the
CFT under favorable conditions. Both the BTC results and retention profiles demon-
strated the ability of the MMS model to characterize the processes of polydisperse particles’
transport and deposition under the experimental conditions. At a higher injection concen-
tration (300 mg/L), the interaction between different deposition mechanisms might not be
ignored [39]. The MMS model stood out since it can not only model interception, sedimen-
tation and diffusion, but also the mutual interactions among these three mechanisms. Thus,
the results of the MMS model were employed to analyze the distribution of the particle
deposition coefficients, both spatially and temporally.

4. Discussion
4.1. The Formation of a Hyper-Exponential Deposition Profile

Under favorable conditions (particle–surface lacking net repulsion), the final particle
retention profiles were observed to be exponential in saturated porous media, and it is
generally assumed that, once the particles are immobilized by the porous surface, they
will never be released back in to the bulk solution [40,41]. However, a hyper-exponential
deposition profile was observed to exist under favorable conditions, which was inconsistent
with the classical CFT predictions. Figure 8 presents the spatial and temporal distribution
of the accumulated retention during the whole stage of the experiments simulated by the
MMS model. The results of the MMS model showed an uneven distribution of particle
retention both temporally and spatially. This uneven distribution increased with increasing
injected polydisperse particles, and finally, the hyper-exponential deposition profile formed
along the sand column.

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

tribution of the accumulated retention during the whole stage of the experiments simu-

lated by the MMS model. The results of the MMS model showed an uneven distribution 

of particle retention both temporally and spatially. This uneven distribution increased 

with increasing injected polydisperse particles, and finally, the hyper-exponential depo-

sition profile formed along the sand column. 

The classical CFT-predicted retention profile is log-linear with the column depth un-

der favorable conditions, if the polydispersity of the suspended particles is ignored [42]. 

The hyper-exponential profile is usually attributed to unfavorable conditions, where the 

like-charged particle and medium surface generate a repulsive barrier that stops the par-

ticle from approaching the collector surface [9]. Under favorable conditions, the formation 

of hyper-exponential profile should be attributed to the particles’ polydispersity. It is ob-

vious that particles of different sizes are unevenly arrested by the porous medium accord-

ing to their capture probabilities (Figure 4). The capture probability for particles larger 

than the critical particle size increased sharply with the particle diameter, but the increase 

was much slower for particles smaller than the critical size (the MMS model in Figure 4). 

This distinction implies that the particle capture probability will disproportionally in-

crease with the particle size. With higher capture probabilities, more of the larger particles 

are captured near the entrance of the porous medium, while more of the smaller particles 

with lower capture probabilities tend to be transported through the porous medium. 

 

Figure 8. Spatial and temporal distribution of particle retention simulated based on the MMS model. 

4.2. Spatial and Temporal Evolution of Deposition Coefficient 

The uneven distribution of particle retention suggested decreased distributions of the 

deposition rates. The hyper-exponential retention profiles could be directly explained by 

the spatial and temporal distribution of the deposition coefficients, which is shown in Fig-

ure 9. The results also showed that, as uneven particle capture occurred, the distribution 

of the particle deposition coefficients varied substantially in time and space. The uneven 

distributions of the deposition coefficient were consistent with the spatial distribution of 

particle retention (Figure 8). The deposition coefficient declined with the column length 

even at the beginning of the injection experiment, rather than a constant first-order depo-

sition rate, which is usually the assumption for CFT. The kinetics of polydisperse particle 

deposition on the porous surface decreased with length, as particles with bigger capture 

probabilities were retained by the upper part of the sand column and the rest of the par-

ticles with smaller capture probabilities were too difficult to be arrested by the lower part 

of the porous medium. In this case, the porous medium at the lower part of the sand col-

umn suffered a small drop of the deposition coefficients, and the deposition coefficients 

looked unchanged, as simulated by the MMS model in Figure 9. 

Figure 8. Spatial and temporal distribution of particle retention simulated based on the MMS model.

The classical CFT-predicted retention profile is log-linear with the column depth under
favorable conditions, if the polydispersity of the suspended particles is ignored [42]. The
hyper-exponential profile is usually attributed to unfavorable conditions, where the like-
charged particle and medium surface generate a repulsive barrier that stops the particle
from approaching the collector surface [9]. Under favorable conditions, the formation of
hyper-exponential profile should be attributed to the particles’ polydispersity. It is obvious
that particles of different sizes are unevenly arrested by the porous medium according
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to their capture probabilities (Figure 4). The capture probability for particles larger than
the critical particle size increased sharply with the particle diameter, but the increase was
much slower for particles smaller than the critical size (the MMS model in Figure 4). This
distinction implies that the particle capture probability will disproportionally increase with
the particle size. With higher capture probabilities, more of the larger particles are captured
near the entrance of the porous medium, while more of the smaller particles with lower
capture probabilities tend to be transported through the porous medium.

4.2. Spatial and Temporal Evolution of Deposition Coefficient

The uneven distribution of particle retention suggested decreased distributions of
the deposition rates. The hyper-exponential retention profiles could be directly explained
by the spatial and temporal distribution of the deposition coefficients, which is shown in
Figure 9. The results also showed that, as uneven particle capture occurred, the distribution
of the particle deposition coefficients varied substantially in time and space. The uneven
distributions of the deposition coefficient were consistent with the spatial distribution of
particle retention (Figure 8). The deposition coefficient declined with the column length
even at the beginning of the injection experiment, rather than a constant first-order deposi-
tion rate, which is usually the assumption for CFT. The kinetics of polydisperse particle
deposition on the porous surface decreased with length, as particles with bigger capture
probabilities were retained by the upper part of the sand column and the rest of the particles
with smaller capture probabilities were too difficult to be arrested by the lower part of the
porous medium. In this case, the porous medium at the lower part of the sand column
suffered a small drop of the deposition coefficients, and the deposition coefficients looked
unchanged, as simulated by the MMS model in Figure 9.
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4.3. Particle Size Distribution Analysis of the Retained Particles

Figure 10 presents the PSDs of the retained polydisperse particles along the column
length at the end of the experiment. The PSDs varied from the inlet of the sand column to
the outlet. The upper part of the porous medium (z ≤ 10 cm) possessed almost the same
particle size range as that in the injected inlet particles (0.375 to 18.863 µm). The PSD of the
retained particles gradually narrowed, as larger particles with higher capture opportunities
were retained upstream of the smaller particles, which were more likely to be transported
further. The particle size range of the sand bottom (40 ≤ z ≤ 50 cm) was less than 8 µm.
The measured median particle size also declined from the top to the bottom. The maximum
ratio of the particle size to the mean collector diameter (dp/dc) was 0.037, much smaller than
the critical value of 0.05. This ratio implies that mechanical straining is not a primary factor
responsible for the particle retention [43,44]. The deposition of large particles is still subject
to interception and sedimentation due to gravity and their sizes, while Brownian diffusion
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governs the fate of smaller particles [19]. Further, the mutual interactions among these
three mechanisms can also contribute to the deposition of the polydisperse particles [25].
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4.4. Spatial Distribution of the Mass Density

When the polydispersity of suspended particles in groundwater cannot be neglected,
the polydisperse particles result in a distinct deposition behavior [45]. The spatial distribu-
tion of the particle mass density along the column is manifested in Figure 11. Particles of
different sizes have different capture probabilities; thus, the removal of polydisperse parti-
cles was uneven along the column length. Because the dynamic light scattering method
can only measure the relative proportion of the outlet-recovered particles, if the same
proportion of particles as in the influent is removed, the mass density curve will stay the
same. The mass density of a certain particle decreases if it has a greater probability to
be captured than other particles. On the contrary, the mass density of a certain particle
increases if it is removed by less in proportion. According to the evolution of the mass
density, three types of particles were identified: (1) small particles, the size range being
(0.375, 1.941 µm) and the mass density increasing along the length (Figure 12a); (2) middle
particles, the size range being (2.123, 8.715 µm) and the mass density increasing, then
decreasing (Figure 12b); (3) large particles, the size range being (9.732, 18.863 µm) and
the mass density continuing to decrease (Figure 12c). The mass densities of three typical
particles (d = 0.545, 3.206, 10.779 µm) are plotted in Figure 12. It can be seen that the
mass density curve of the large particles dropped sharply, while the curves of the small
and middle particles rose at first, because a bigger proportion of the large particles were
removed and the relative proportion of the small particles and middle particles increased.
However, as the particles reached the deeper porous medium, almost all large particles
were removed and more middle particles were removed, and the mass density curve of the
middle particles started to decline, while the curve of small particles kept moving upward.
The variations of the particle mass densities reflected the non-uniform retention of the
polydisperse particles. The evolution of the mass density was consistent with the PSDs of
the retained polydisperse particles along the column length (Figure 10).
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Figure 12. Evolution of the mass density for three typical particles along the length of the column:
(a) dp = 0.545 µm, (b) dp = 3.206 µm, (c) dp = 10.779 µm.

5. Conclusions

The CFT predominately focuses on bacteria, viruses, and colloids that are about 1 µm
in size or smaller. These suspended particles are not only small, but also monodispersed,
and Brownian diffusion is the operative transport mechanism. However, a wide size range
of suspended particles is ubiquitous in natural groundwater environments, and the impacts
of particle polydispersity on particle deposition processes are often neglected. In this study,
the mass density (the probability density of the particle size distribution) was incorporated
into the depth-dependent deposition rate to account for the implications of particle polydis-
persity. Particles with different diameters have different capture probabilities depending
on the particle size. Large particles generally with high capture probabilities tend to be
captured by the porous medium, while small particles with low capture probabilities tend
to be transported throughout the medium. This uneven capture of the polydisperse parti-
cles caused the formation of a hyper-exponential deposition profile, even under favorable
conditions. At a higher injection concentration (300 mg/L), the particles were densely
populated, and all the deposition mechanisms might operate jointly. The MMS model
takes into account the mutual interactions among these mechanisms, which makes it more
suitable to portray the transport and deposition processes of the polydisperse particles in
the saturated medium.

It is also important to note that our sand column experiments of the polydisperse
particles injection is just an exploration. Thus, a comprehensive testing of the existing
models will require new experiments at physical and chemical conditions affecting particle
migration in porous media, especially a pore-scale investigation of the impacts of particle
polydispersity on particle transport and capture processes in a saturated medium.
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Nomenclature

C aqueous phase concentration of the polydisperse particles
Cin, Cout inlet concentration and outlet concentration
D hydrodynamic dispersion coefficient
z space coordinate
t time coordinate
S solid phase concentration of retained particles
Sm maximal value of S
u Darcy velocity
ε porosity of the sand porous medium
ρp bulk density of the particles
k0 initial deposition coefficient
dc average collector diameter
Q(x) mass density of the polydisperse particles
η(x) capture probability of a particle with a diameter of x
x a collection of particle sizes
ϕ a dimensionless particle deposition function
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