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Abstract: Under the influence of global climate change and urbanization processes, the number of
available water resources (AWRs) in basins has become significantly more uncertain, which has
restricted the sustainable development of basins. Therefore, it is important for us to understand the
relationship between land use (LU) patterns and climate change on AWRs in a basin for sustainable
development. To this end, the vector autoregressive (VAR) method was adopted to construct a
quantitative model for AWRs in the basin in this study. Taking the Yiluo River Basin (YRB) as an
example, the dynamic relationship between the five elements of agricultural land (AD), woodland
(WD), grassland (GD), construction land (CD), and annual precipitation (PREP) and AWRs in the
basin was studied. The results show the following: (1) The constructed VAR model was stable,
indicating that the use of the proposed VAR model to characterize the degree of the effect of LU
pattern and PREP on AWRs in the YRB was reasonable and effective. (2) AWRs in the YRB showed a
downward trend, and their responses to the change in LU and PREP were delayed. The changes in
the AWRs in the YRB tended to occur the year after changes to the LU pattern and PREP occurred.
(3) In the long run, the degree of the contribution of each influencing factor to changes to AWRs was
23.76% (AD), 6.09% (PREP), 4.56% (CD), 4.40% (WD), and 4.34% (GD), which meant that the impact
of the LU pattern was more than 90%. This study provides new ideas for similar research, water
resource allocation, and LU planning in other river basins from a macroscopic perspective.

Keywords: basin management; available water resources (AWRs); land use change; precipitation;
vector autoregression (VAR) model

1. Introduction

Globally, runoff is undergoing unprecedented changes, which are having a signifi-
cantly negative impact on water management and utilization in basins [1]. Runoff is closely
related to the water resources of social circulation processes [2], which are the foundation
of sustainable development in basins and play an important role in the maintenance of
the ecological environment, social stability, and food security [3]. Research has found that
the excessive expansion of human activities and global climate change have become the
main factors affecting water production in the watershed [4,5]. The former is ultimately
reflected in land use (LU) changes through population aggregation and industrial layout
changes, while the latter affects the water resources of the watershed through meteorologi-
cal variables such as precipitation [6,7]. The water yield of the watershed is related to the
development and utilization of water resources, the control of flood or drought water secu-
rity issues, and the maintenance of vegetation species [8,9]. In particular, urbanization and
economic development have had unprecedented impacts on LU changes and watershed
water production conditions, with many rivers experiencing unsustainable water resource
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exploitation [6]. The use of water in basins constrains land planning, and unreasonable
land development has a negative impact on water resources. For example, the excessive
development of agricultural land leads to a shortage of irrigation water [10]. In addition,
rainfall changes caused by climate change also have a significant impact on regional water
supply [11]. Therefore, in the context of increasingly frequent human activities and climate
change, it is crucial to understand the patterns of LU in river basins, clarify the role of
climate change on available water resources, and quantify their relationship, which is
conducive to the formulation of sustainable management policies and the optimization of
the allocation of water and soil resources in the basin.

Generally, the majority of the total water resources calculated using river runoff
cannot be developed and utilized due to economic, technological, and ecological protection
limitations. Only the available water resources obtained through water extraction processes
are available to aid human survival and development [12,13]. Therefore, this portion of
water resources is not only affected by climate change, but also by human activities. Due
to the natural attributes of these influencing factors, research on the impact of runoff is
always based on the physical processes of the water cycle, with little attention being paid
to the quantification of AWRs in basins, as well as the impact of human activities (LU) and
climate change (PREP) on the social attribute of water resource availability. In fact, this
portion of water resources is the key to solving the problem of water resource shortages in
basins [14,15].

At present, research on the analysis of factors influencing the changes in water re-
sources in basins can generally be divided into four categories. The first category includes
distributed and semi-distributed hydrological models based on physical processes, such as
SWAT [16], HSPF [17], and MIKE-SHE [18]. These models analyze the influence of different
land types on watershed runoff due to the difference in precipitation–evaporation balance
caused by the internal hydrological mechanism [19,20]. However, the application of these
models is limited because of the complexity of the data sets, the time required for the
parameter calibration and verification processes, and the lack of a predictive function. The
second category is the use of artificial intelligence technology or new modeling paradigms,
such as using data-driven technology to predict monthly river discharge [21], using the
coupled wavelet random forest algorithm to improve the accuracy of evapotranspiration
estimation in hydrological models [22], and building machine learning models to simulate
soil water content data [23]. Although intelligent models can improve the data accuracy
of traditional hydrological models and enable the prediction of river runoff, they require
more complex modeling techniques to be used by the managers.

The third category is to take the three-dimensional external factors of society, the
economy, and the environment into consideration to conduct quantitative research on the
relationship between water and soil resources as a whole. For the social dimension, the
Gini coefficient [24–26] was used to evaluate the influence of the relationship between
land and water resources on society; for the economic dimension, the energy consumption
coefficient was selected to reveal urbanization water resources and energy consumption to
evaluate the relationship between water and soil resources [27–29]; for the environmental
dimension, water footprint was chosen to measure the impact of LU change on the water
environment from the consumption of water resources by land area [3,30]. The fourth
category is statistical methods, which include the analysis of runoff changes based on
the Mann–Kendall rank correlation test, the exploration of the driving factors of runoff
changes at obvious change points based on multiple linear regression analysis [31] and
precipitation elasticity coefficient methods [32], discussion of the factors affecting the spatial
distribution of river water quality based on the spatial autocorrelation analysis method [33],
and the estimation of the impact of (LU) and terrain on river water quality based on the
principal component analysis method [34]. Although statistical methods avoid complex
physical processes and fully utilize data information, simple regression analysis ignores
the dynamic variability of influencing factors or only considers the influencing factors at
specific moments (sudden changes). Therefore, a new statistical method that can be used to
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evaluate the dynamic impact of various types of LU and PREP on water resource changes
in basins is urgently needed.

Compared with hydrological models and simple regression analysis, the vector au-
toregression (VAR) model not only has a simple structure, it also reflects the dynamic
nature of influencing factors in the water cycle process. The VAR model proposed by
Sims [35] is a method for establishing a model based on the statistical characteristics of
data to analyze the relationship between multiple interrelated variables. The VAR model
treats each endogenous variable in the system as a hysteresis function of all endogenous
variables. It is a joint form of multiple time series autoregressive models, expanding the
single variable autoregressive model to a vector autoregressive model composed of multi-
ple time series variables [35]. This model not only analyzes and predicts the relationships
between variables in the system from the perspective of dynamic impact mechanisms but
also quantifies the impact effects [36,37]. Initially, the VAR model was mainly applied
in the economic field to describe the dynamic behavior of economic variables [38]. With
time, it was gradually applied in other disciplines. Kumar et al. [39] used the VAR model
to analyze the degree of influence of the change in the concentration of one air pollutant
on the change in the concentration of other pollutants over time. Xu and Lin [40] used
the VAR model to explore the driving factors of CO2 emissions in China. Wu et al. [41]
analyzed the contribution of different management measures to carbon stocks of vegetation
through the VAR model, which provided a solid foundation for the formulation of effective
management policies. However, there are few studies introducing the VAR model into
hydrology to explore the impact of different types of LU areas and precipitation (PREP) on
changes to water resources.

Therefore, this study attempts to explore the dynamic impact of human activities
and climate change on the number of AWRs via the VAR model. The main research
content of this study includes: (1) AWRs in the basin were calculated and their temporal
changes analyzed, and the VAR model was applied to analyze the response of AWRs
in the basin to LU patterns and annual PREP. (2) Taking the Yiluo River Basin (YRB) in
China as the research area, the dynamic impact of LU and PREP on AWRs was clarified,
and the contribution of these two factors to the AWRs’ changes was quantified. (3) The
application of the VAR model in the hydrological field was expanded, providing new ideas
for basin managers to explore the interaction between water and land resources in basins
and resource management planning. The novelty lies in considering the social attributes of
water resources, proposing a quantitative method for AWRs in the basin, and combining
VAR models to explore the contribution rates of different LU and PREP to AWRs’ changes
in basins.

2. Materials and Methods
2.1. Study Area

Yiluo River is the largest first-level tributary below Sanmenxia in the Yellow River
in China [42]. It is mainly composed of Yi River and Luo River, among which, the Luo
River is the main flow and Yi River is the first tributary of the Luo River. The Yiluo
River Basin (YRB) is located in the middle reaches of the Yellow River Basin between
Sanmenxia and Huayuankou, between 109◦17′ E~113◦10′ E and 33◦39′ N~34◦54′ N. It flows
through Shaanxi and Henan provinces in a total of 18 counties (cities), covering an area of
18,881 km2. The topography of the YRB is complex. Mountainous and hilly areas cover
a large portion of the area, and natural secondary forests and plantations are the main
vegetation. The YRB has a long history of agricultural production and a wide range of
industrial categories, and the tertiary industry has undergone rapid development in this
area, which has increased the need for the development and utilization of water and soil
resources in the basin. Obviously, it is necessary to understand the dynamic response of
AWRs to the changes in LU and climate in the basin.

The geographical location, LU distribution, and flowing regions of the YRB are shown
in Figure 1. The data collected in this study include historical precipitation data, annual LU,
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and water resource data. Annual precipitation data were obtained by using Tyson polygon
interpolation, based on the original data collected during precipitation observation stations
in the YRB, from the China Hydrological Yearbook—Hydrological Data of Yellow River
Basin [43]. The annual LU data were derived from the Chinese LU/LC dataset created by
Yang and Huang [44]. The spatial resolution of land cover (LC) was 30 m, and the average
overall accuracy (OA) of the data reached 79.31%. The clip tool of the ArcGIS platform was
used to cut the data set. Land use data at 30 m resolution in the YRB from 2001 to 2019 were
obtained. Data regarding water resources in the YRB in 2001–2019 were obtained from the
Comprehensive planning for YRB [42], the water resources bulletin in Shaanxi Province
(accessed on 12 December 2022, http://slt.shaanxi.gov.cn/zfxxgk/fdzdgknr/zdgz/szygb/
index.html), and the water resources bulletin in Henan Province (accessed on 12 December
2022, https://slt.henan.gov.cn/bmzl/szygl/szygb/). Additionally, the cross-validation
method was used to determine the consistency of data from different sources. The selected
variables were AWRs and the area of land use type, including agricultural land (AD),
woodland (WD), grassland (GD), construction land (CD), and annual precipitation (PREP).
In order to eliminate the influence of heteroscedasticity as much as possible and reduce the
influence caused by the different dimensions of the measurement units of the variables,
logarithm transformation was carried out on all variables; therefore, the processed variables
were LNAWR, LNAD, LNWD, LNGD, LNCD, and LNPREP.

Water 2023, 15, x FOR PEER REVIEW 4 of 16 
 

 

the basin. Obviously, it is necessary to understand the dynamic response of AWRs to the 
changes in LU and climate in the basin. 

The geographical location, LU distribution, and flowing regions of the YRB are 
shown in Figure 1. The data collected in this study include historical precipitation data, 
annual LU, and water resource data. Annual precipitation data were obtained by using 
Tyson polygon interpolation, based on the original data collected during precipitation ob-
servation stations in the YRB, from the China Hydrological Yearbook—Hydrological Data 
of Yellow River Basin [43]. The annual LU data were derived from the Chinese LU/LC 
dataset created by Yang and Huang [44]. The spatial resolution of land cover (LC) was 
30m, and the average overall accuracy (OA) of the data reached 79.31%. The clip tool of 
the ArcGIS platform was used to cut the data set. Land use data at 30m resolution in the 
YRB from 2001 to 2019 were obtained. Data regarding water resources in the YRB in 2001-
2019 were obtained from the Comprehensive planning for YRB [42], the water resources 
bulletin in Shaanxi Province (accessed on 12 December 2022, 
http://slt.shaanxi.gov.cn/zfxxgk/fdzdgknr/zdgz/szygb/index.html), and the water re-
sources bulletin in Henan Province (accessed on 12 December 2022, https://slt.he-
nan.gov.cn/bmzl/szygl/szygb/). Additionally, the cross-validation method was used to de-
termine the consistency of data from different sources. The selected variables were AWRs 
and the area of land use type, including agricultural land (AD), woodland (WD), grass-
land (GD), construction land (CD), and annual precipitation (PREP). In order to eliminate 
the influence of heteroscedasticity as much as possible and reduce the influence caused 
by the different dimensions of the measurement units of the variables, logarithm transfor-
mation was carried out on all variables; therefore, the processed variables were LNAWR, 
LNAD, LNWD, LNGD, LNCD, and LNPREP. 

 
Figure 1. The geographical location, LU distribution, and flowing regions of YRB. 

2.2. Calculation of AWRs in the Basin 
AWRs in basins include surface water and shallow groundwater [45]. The former oc-

cupies a large proportion in the process of water resource utilization in a basin and 
changes with the amount of surface water resources, while the latter accounts for a rela-
tively small portion, and the water supply is stable due to the difficulty in its exploitation 
[46]. According to China’s Technical Specification for Forecasting Analysis of Water Re-
sources Supply and Demand [47] and relevant research results [12], the formula for calcu-
lating AWRs in a basin is as follows: 

aq saq uaqW W W= +  (1)

Figure 1. The geographical location, LU distribution, and flowing regions of YRB.

2.2. Calculation of AWRs in the Basin

AWRs in basins include surface water and shallow groundwater [45]. The former
occupies a large proportion in the process of water resource utilization in a basin and
changes with the amount of surface water resources, while the latter accounts for a relatively
small portion, and the water supply is stable due to the difficulty in its exploitation [46].
According to China’s Technical Specification for Forecasting Analysis of Water Resources
Supply and Demand [47] and relevant research results [12], the formula for calculating
AWRs in a basin is as follows:

Waq = Wsaq + Wuaq (1)

Wsaq = Wsq −Weq −W f q ±Wtq (2)

Wuaq = ξ ∗Wuq (3)

where Waq is the number of AWRs in the whole basin, 108 m3; Wsaq is AWRs from surface
water in the basin, 108 m3; Wuaq is AWRs from groundwater in the basin, 108 m3; Wsq is

http://slt.shaanxi.gov.cn/zfxxgk/fdzdgknr/zdgz/szygb/index.html
http://slt.shaanxi.gov.cn/zfxxgk/fdzdgknr/zdgz/szygb/index.html
https://slt.henan.gov.cn/bmzl/szygl/szygb/
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the amount of surface water, 108 m3; Weq is water demand for the eco-environment inside
the river, 108 m3; W f q is the unusable flood discards, 108 m3; Wtq is the transfer water
inter-basin, 108 m3; ξ is the coefficient of groundwater extraction; Wuq is the amount of
groundwater, 108 m3.

2.3. Construction Steps in VAR Model between AWRs and LU and Precipitation in the Basin

The premise of establishing a VAR model for multiple time series is that variables
need to be stable. The purpose of modeling is to analyze the influence mechanism among
variables, quantify the influence degree, and predict variables. If yt represents the column
vector of k-dimensional endogenous variables (the number of variables is k), p is the lag
period of the model, denoted as VAR (p). The mathematical expression is as follows:

yt = c + α1yt−1 + · · ·+ αpyp + εt (4)

where c is constant; yt−i, i = 1, 2, . . . , p is the lagged endogenous variable; α1, . . . , αn is
the column vector of the matrix of coefficients to be evaluated for yt; εt is the vector
generalization of the random perturbation term. The model-constructing steps mainly
include the following two parts:

Step (1): Stability test of variables
The stationary time series variable that passes the unit root test is the necessary

condition for constructing a VAR model. The Augmented Dickey–Fuller (ADF) test and the
nonparametric Phillips–Perron (PP) test are the most commonly used unit root tests [48].
The long-term relative stability between stable variables is the basis of the VAR model.
Therefore, Johansen and Juselius proposed the Johansen co-integration test in 1988 [49],
which tested the co-integration relationship of variables through the maximum likelihood
matrix. After the system variables pass the stationarity test and co-integration test, the first
step in constructing a VAR model is to determine the appropriate lag period, which also
reflects the dynamic characteristics of the interaction between variables. The information
criteria for judging the length of lag period include the likelihood ratio test (LR), the final
prediction error (FPE), Akaike Information Criteria (AIC), Schwartz Bayesian Criteria (SC),
and the Hannan–Quinn information criteria (HQ) [50].

Step (2): Stability test of VAR model
Only when the constructed VAR model is stable is simulation analysis feasible. The

principle of the stability test of the model is to introduce a specific characteristic coefficient
to solve the characteristic root of the difference equation obtained by the differential
processing of the model. If all the eigenvalues are in the unit circle (the unit circle is a
circle with the origin as the center and the radius of 1, located in the coordinates with the
horizontal axis as the real number axis and the vertical axis as the imaginary number axis),
the VAR model constructed is stable; otherwise, the model is unstable. Only a stable VAR
model has practical analytical significance [51].

2.4. Analysis of VAR Model between AWRs and LU and Precipitation in the Basin

The idea of analyzing the influence relationship with a time series is to consider how
the influence of the disturbance term is transmitted to each variable and the degree of
disturbance that each variable undertakes. The former is an impulse response function (IRF),
and the latter is variance decomposition. The VAR model is not a traditional theoretical
model, with too many coefficients to directly reflect the relationship between variables;
therefore, the IRF and variance decomposition explain and describe the VAR model. The
IRF test reflects the dynamic feedback process of system variables to random disturbance
terms through the impact of impulse from a system on variables in the current and future
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periods, so as to obtain the explainability of one variable by another variable in the system
and analyze the importance of the variable. The principle of the IRF is as follows:

yit =
k

∑
j=1

(
θ0

ijε jt + θ1
ijε jt−1 + θ2

ijε jt−2 + θ3
ijε jt−3 + . . .

)
t = 1, 2, . . . , T (5)

where Equation (5) is the expression of the Vector Moving Average (VMA) under the order
of infinite; εt = (ε1t, . . . , εkt)

′ is a random disturbance term; yit is the variable; θ0
ij, θ1

ij, θ2
ij,

θ3
ij . . . is the response function of yj caused by the impulse of yj, and then, the cumulative

response function of the j perturbation term from an infinite past to present time point

yj is
∞
∑

q=0
θ
(q)
ij .

Some random error terms from variables will be generated in the process of an IRF
analysis, which all contain important information about the relationship between variables.
Therefore, variance decomposition is used to explain this information as a whole. The
analytical idea is that when there is no sequence correlation for the disturbance term,
Equation (6) can be obtained according to the cumulative response function obtained using
Equation (5):

E
[(

θ0
ijε jt + θ1

ijε jt−1 + θ2
ijε jt−2 + θ3

ijε jt−3 + . . .
)2
]
=

∞
∑

q=0

(
θ
(q)
ij

)2
σij

i, j = 1, 2, . . . , k
(6)

where σij is the covariance matrix of the perturbation term vector. If the covariance matrix
is assumed to be a diagonal matrix, then the variance of yi is

var(yi) =
k

∑
j=1

{
∞

∑
q=0

(
θ

q
ij

)2
σjj

}
i, j = 1, 2, . . . , k (7)

where σjj is a member of the assumed diagonal matrix.
Then, the variance of yi is decomposed into k kinds of unrelated influences, so as

to obtain the contribution of each variable to the impact of endogenous variables of the
system, as shown in Equation (8):

RVCj→i(∞) =

∞
∑

q=0

(
θ

q
ij

)2
σjj

var(yi)
=

∞
∑

q=0

(
θ

q
ij

)2
σjj

k
∑

j=1

{
∞
∑

q=0

(
θ

q
ij

)2
σjj

}
i, j = 1, 2, . . . , k

(8)

In other words, the relative variance contribution rate (RVC) reflects the influence of the
j variable on the i variable through the difference of the influence of each variable on the
system disturbance (relative contribution rate).

2.5. Error Correction Model Analysis

The error correction model (ECM) usually appears as a supplementary model of the
VAR model. The VAR model explains the long-term relationship between variables, while
the ECM explains the short-term relationship. The principle of the ECM is to treat the error
correction term as an explanatory variable and build a short-term model together with
other explanatory variables, as shown in Equation (9):

∆yt = γecmt−1 + βi∆xt + εt (9)
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3. Results
3.1. Temporal Variation in AWRs and PREP in YRB

Figure 2 reveals the temporal variation in the annual AWRs and PREP in the YRB from
2001 to 2019. The maximum AWR was 4.29 × 109 m3 in 2003, with the highest PREP of
335.50 mm that year. The minimum AWR was 8.06 × 108 m3 in 2008, while the minimum
PREP was 513.15 mm in 2013. It could be seen that the trend of AWRs and PREP was
declining overall in the period 2001–2019, and their fluctuation curves were similar. The
change in the LU pattern is mainly reflected in the change in different land types. The LU
types in the basin were divided into agricultural land (AD), woodland (WD), grassland
(GD) and construction land (CD). Table 1 shows the change in LU coverage and dynamic
attitude in the YRB during 2001–2019. As can be seen from Table 1, AD and WD were the
main LU types in the YRB, and the area of AD and GD was gradually decreasing, while
there was a continuous increase in the area of WD and CD.
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Table 1. Land use coverage and dynamic attitude in YRB from 2001 to 2019.

Land Use Type
Coverage (%) Dynamic Attitude (%)

2001 2010 2019 2001–2010 2010–2019

Agricultural land 46.82 44.70 42.61 −2.12 −2.10
Woodland 40.92 42.30 45.71 1.38 3.41
Grassland 7.62 6.85 4.09 −0.77 −2.76

Water and wetland 0.37 0.49 0.52 0.11 0.03
Construction land 4.27 5.66 7.08 1.39 1.41

Unused land 0.00 0.00 0.00 0.00 0.00
Total 100.00 100.00 100.00

3.2. Establishment of VAR Model

In order to eliminate the influence of heteroscedasticity as much as possible and reduce
the influence caused by different unit dimensions of variables, logarithmic transformation
was adopted on all variables. The area of wetland and unused land changed slightly;
therefore, VAR modeling was carried out for the time series of annual AWRs and the
area of land use type, including agricultural land (AD), woodland (WD), grassland (GD),
construction land (CD), and annual precipitation (PREP).
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(1) Test of stationarity
The first step in VAR modeling is to test whether the variable time series are stationary.

The variables after logarithmic processing were LNAWR, LNAD, LNWD, LNGD, LNCD,
and LNPREP. The results of the unit root test on the variables are summarized in Table 2.
The ADF statistic of other time series were all greater than the critical value of 5% except
PREP; therefore, their unit root process could not be rejected, which meant the time series
was non-stationary. However, the sequence of AWRs and the area of AD after first-order
difference and other sequences after second-order difference did not have unit roots, which
were the stationary time series. Therefore, a VAR model could be constructed to describe
the influence relationship among variables in the YRB.

Table 2. Stationarity test of time series of variables in YRB.

Variable ADF Test Statistic p Value
Critical Values at Different Significance Levels

Conclusion
1% 5% 10%

LNAWR −3.297 0.0667 −4.380 −3.600 −3.240 Unstable
D (LNAWR) −4.991 0.0000 −3.750 −3.000 −2.630 Stable

LNAD −2.253 0.4600 −4.380 −3.600 −3.240 Unstable
D (LNAD) −3.692 0.0042 −3.750 −3.000 −2.630 Stable

LNWD 0.388 0.9966 −4.380 −3.600 −3.240 Unstable
D (LNWD) −2.207 0.2036 −3.750 −3.000 −2.630 Unstable

DD (LNWD) −7.858 0.0000 −3.750 −3.000 −2.630 Stable
LNGD 1.235 1.0000 −4.380 −3.600 −3.240 Unstable

D (LNGD) −0.447 0.9020 −3.750 −3.000 −2.630 Unstable
DD (LNGD) −3.382 0.0116 −3.750 −3.000 −2.630 Stable

LNCD 0.218 0.9959 −4.380 −3.600 −3.240 Unstable
D (LNCD) −2.422 0.1356 −3.750 −3.000 −2.630 Unstable

DD (LNCD) −5.872 0.0000 −3.750 −3.000 −2.630 Stable
LNPREP −3.915 0.0019 −3.750 −3.000 −2.630 Stable

Note: D represents the first-order difference; DD represents the second-order difference.

(2) Test of Johansen cointegration
The results of the Johansen cointegration test conducted on the stationary sequence

after difference of variables in the YRB are shown in Table 3. When the number of cointe-
gration equations was 0, the statistics of trace and Max-Eigen were 64.8863 and 42.4523,
respectively, both of which were greater than the critical value of 5%. Therefore, the null hy-
pothesis of “there are 0 cointegration relations” was rejected. This indicated that there was
a long-term equilibrium relationship among the series of AWRs and the area of AD, WD,
GD, CD, and PREP in the YRB at the significant level of 5%. Thus, it could be verified that
the VAR model was of practical significance in quantitatively expressing the relationship
between LU pattern and PREP on AWRs in the YRB.

Table 3. Johansen cointegration test of variables in YRB.

Trace Test
H0: rank = r eigenvalue Trace statistic Critical values at 5% p value

None * 0.9410 64.8863 63.8761 0.0410
At most 1 0.5763 22.4339 42.9153 0.8981
At most 2 0.3327 9.5539 25.8721 0.9426

Max-Eigenvalue Test
H0: rank = r eigenvalue Max-Eigen statistic Critical values at 5% p value

None * 0.9409 42.4523 32.1183 0.0019
At most 1 0.5762 12.8799 25.8232 0.8127
At most 2 0.3326 6.0675 19.3870 0.9529

Note: * represents that the null hypothesis is rejected at the significance level of 10%.
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(3) Selection of the lag period for VAR
The statistics of FPE, AIC, LR, SC, and HQ applied to the time series of the VAR model

in the YRB were calculated using Eviews9.0 software (as shown in Table 4). The optimal
lag period was selected to be 1 under the information criterion. In other words, the number
of parameters in the VAR model was the most appropriate at this time, and the model
parameters could be estimated effectively. Then, the parameters of the VAR model for
AWRs were preliminarily estimated through the Eviews9.0 software.

Table 4. Selection of the lag period for VAR model in YRB.

Lag LogL LR FPE AIC SC HQ

0 −191.8878 NA 191.7975 19.7500 17.3094 18.3107
1 −186.9326 28.6519 698.3145 * 27.0577 * 27.8129 * 27.0496 *
2 −174.1036 11.9737 1652.9160 27.4804 28.9909 27.4644

Note: * represents that the null hypothesis is rejected at the significance level of 10%.

(4) Stability test of VAR model
Stability testing of the built VAR model was carried out, as shown in Figure 3. The

results showed that the reciprocal values of all unit roots of the model were less than 1,
which meant they were all within the unit circle. This indicated that the constructed VAR
model was stable, and it was reasonable and effective for quantitatively representing the
effect degree of LU and PREP on AWRs in the YRB with the VAR model.
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3.3. VAR Analysis Results

(1) The dynamic response of AWRs to change in LU and PREP in YRB
The response of AWRs in the YRB to changes in the LU pattern and PREP was deter-

mined based on the basic principle of the IRF, as shown in Figure 4, where the horizontal
axis refers to the lag period, and the vertical axis refers to the response value. The response
of AWRs in the YRB to the area of AD (Figure 4a), WD (Figure 4b), and GD (Figure 4c)
was 0, and they showed negative fluctuations from the second year. The fluctuation coeffi-
cients were −0.239, −0.104, and −0.102, respectively, reflecting the hysteresis quality in the
impact of changes. Finally, the positive and negative fluctuations tended to 0. This was
because the PREP was intercepted by the vegetation layer and soil layer, avoiding the direct
impact of rainwater on the ground and leading to runoff in the basin being regulated and
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water sources being conserved. In the short term, the number of surface water resources
decreased and then increased slowly. Conversely, the increase in CD (Figure 4d) had a
positive effect on AWRs in the second year, with a coefficient of 0.064, and a negative effect
in the third year. This is because CD changed the natural circulation path of water, which
increased the water resources in the basin in the short term. However, in the long term, the
water resources presented a decreasing trend due to the increase in the human consumption
of water resources. The impact of PREP (Figure 4e) began from the second year, and the
pulse effect was first positive and then negative, and then fluctuated around 0.
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(2) Contribution of LU and PREP changes to AWRs’ changes in YRB
Based on the basic principle of variance decomposition, the contribution degree of AD,

WD, GD, CD, and PREP to the changes in AWRs in the YRB was analyzed, and the results
are displayed in Table 5. In addition to the contribution of AWRs themselves in the YRB, the
contribution rates of AD, WD, GD, CD, and PREP to AWRs’ changes were 23.76%, 4.40%,
4.34%, 4.56%, and 6.09%, respectively. In general, the impact of LU on AWRs’ changes was
much higher than that of PREP.
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Table 5. Results of variance decomposition of AWRs in YRB.

Period S.E. DLNAWR DLNAD DDLNWD DDLNGD DDLNCD LNPREP

1 0.4230 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.5250 67.8792 20.6738 3.8886 3.7686 1.4782 2.3114
3 0.5684 58.4357 23.4246 3.4198 4.4665 4.5407 5.7124
4 0.5733 57.7600 23.1236 4.1345 4.3900 4.5223 6.0693
5 0.5756 57.3152 23.4113 4.3887 4.3555 4.5056 6.0234
6 0.5771 57.0252 23.7692 4.3685 4.3327 4.4863 6.0179
7 0.5776 56.9308 23.7429 4.3916 4.3364 4.5243 6.0739
8 0.5778 56.9007 23.7303 4.4027 4.3401 4.5433 6.0827
9 0.5779 56.8695 23.7605 4.4007 4.3409 4.5468 6.0813
10 0.5780 56.8509 23.7596 4.4008 4.3433 4.5559 6.0892

(3) Analysis of ECM in YRB
The ECM between AWRs and areas of LU and PREP was constructed through the

analysis of the VAR model, as shown in Table 6 and Equation (10). In the short term, the
influence of LU and PREP on AWRs in the YRB was significant. Under the condition that
other variables remained unchanged, when AD increased by 1 unit, AWRs increased by
550.23 units. When the area of WD, GD, and CD increased by 1 unit, the AWRs in YRB
decreased by 2041.71, 264.53, and 468.03 units, respectively, while when PREP increased by
1 unit, AWRs increased by 22.74 units.

DLNAWR(−1) = 550.2299 ∗ DLNAD(−1)− 2041.7050 ∗ DDLNWD(−1)
−264.5290 ∗ DDLNGD(−1)− 468.0315 ∗ DDLNCD(−1)
+22.7362 ∗ LNPREP(−1)− 145.7459

(10)

Table 6. The ECM between AWRs and LU and PREP in YRB.

Variable DLNAD DDLNWD DDLNGD DDLNCD LNPREP Constant

Test result 550.2299
**

−2041.7050
***

−264.5290
***

−468.0315
***

22.7362
***

−145.7459
***

(224.5070) (189.0030) (27.4488) (49.2207) (3.7975)
[2.4508] [−10.8025] [−9.6372] [−9.5088] [5.9871]

Note: ** and *** represent that the null hypothesis is rejected at the significance level of 10%, 5% and
1% respectively.

4. Discussion

This section details the dynamic effects of each LU area and PREP on AWRs in the
basin and how these findings relate to and differ from previous studies.

(1) Explanation of the hysteresis of AWRs in YRB
On the whole, the pulse response curves of AWRs in the YRB are smooth (Figure 4),

indicating that the response of AWRs in the basin to changes in the pattern of LU and annual
PREP is slow. This means that the impact of LU pattern adjustment on water resources
in the first year manifests in the second year. In previous studies [52], the water yield of
a river under natural conditions and water demand under an LU pattern were mainly
considered in the process of water resource allocation in the basin. This study found that
when managers allocate water resources in the second year, changes in AWRs in the basin
caused by changes in the LU pattern in the previous year should also be considered. For
example, the expansion of CD driven by economic development will lead to the increase
in AWRs in the next year; therefore, the water resource allocation scheme in the basin
should be adjusted in time to avoid the unnecessary wastage of water resources. Similarly,
in the process of LU planning in a basin, it not only needs to meet the needs of human
social and economic development [51,53], it also needs to consider the impact of LU types
on watershed AWRs. Thus, the contradiction between the expansion of WD and GD for
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ecological restoration and the increase in CD for social and economic development can
be alleviated.

(2) Difference between LU and PREP on AWRs change
Most studies have shown that surface vegetation can reduce water resources in basins,

but the degree of reduction has not been quantified [54,55]. Through the VAR model
constructed in this study, it was found that the contribution rates of AD, WD, GD, CD, and
PREP to changes in AWRs were 23.76%, 4.40%, 4.34%, 4.56%, and 6.09%, respectively. In
other words, the change in AR area is the focus of consideration in YRB LU planning. WD
and GD can also help reduce AWRs in the YRB on the basis of the analysis of the VAR
model constructed in this study [56], both in the short and long term (Figure 4 and Table 5).
This is because forest canopies can weaken the direct impact of PREP on the surface, and
the developed root system can effectively increase the infiltration of soil to rainfall, the
water-holding capacity of which will continue. The increase in the area of AD leads to
the increase in AWRs in the YRB in the short term, because human farming activities and
fertilizer application change the original water-holding characteristics of the land, leading
to increased surface runoff. Meanwhile, with the consumption of water resources by crops,
the long-term impact results include a decrease in AWRs in the basin. There are abundant
human activities on CD that cause great levels of water consumption [57], which will cause
the negative growth of AWRs in the YRB in the short run. However, in the long run, the
impervious area increases gradually with social development, leading to an increase in
surface runoff and even extreme precipitation events, which generate a greater flood risk
in the basin [58]. AWRs, as water resources, are closely related to PREP, as is shown in
most studies [59]. Therefore, the comprehensive impact of LU pattern changes on AWRs
in different periods should be considered in water resource allocation in basins. The total
change in AWRs caused by the change in the land area of different types may increase in
the short term but may lead to a decrease after long-term development.

(3) Contributions and limitations of the model
This study introduced the VAR model to establish a research framework for the

calculation of AWRs of the basin and to quantify the contribution of changes in LU and
PREP to the change in AWRs based on the easy-to-access statistical data. Quantifying the
impact degree helped us to determine the direction basin managers should take explore
how human activities and climate change affect AWRs in the basin, which provides a new
way for basin managers to optimize land layout and water resource allocation. However,
this study only considered the impact of rough LU types on AWRs without the further
classification of land types. For example, there may be significant differences in the effects
of different forest cover types, including arbors, broad-leaved forests, and shrubs, on
AWRs. At the same time, the specific effects of human activities and climate change on
the water quality of the basin were not considered. In the future, multivariate data fusion
will be considered to expand the model and improve the data. The effect of more detailed
influencing factors on AWRs and water quality will be explored from the perspective of the
whole basin, so as to improve the comprehensiveness of basin management measures.

5. Conclusions

In order to understand the changes in AWRs and the main influencing factors from the
perspective of the whole basin and strengthen the management of water and land resources
in the sustainable development of the basin, this study calculated the AWRs in the YRB and
introduced the VAR model to quantitatively analyze the impacts of different land types
and PREP changes on AWRs, and their long-term and short-term impacts were quantified.

(1) Overall, the AWRs in the YRB showed a downward trend, and the time series of
AWRs and the area of AD, WD, GD, CD, and PREP were stable after logarithmic and
differential processing. The Johansen cointegration test was used to determine that
there was a long-term stable relationship between the area of different land types,
annual PREP, and AWRs in the basin, indicating that the constructed VAR model
was feasible.
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(2) There was a lag in the response of AWRs to changes in LU and PREP in the YRB in
the current year, which occurred in the next year. The impacts of different land types
on AWRs in the YRB were different. Meanwhile, the same land type had different
effects on AWRs in different periods in the YRB. In the long run, the contribution
degree of each influencing factor to changes in AWRs was 23.76% (AD), 6.09% (PREP),
4.56% (CD), 4.40% (WD), and 4.34% (GD), which lay the foundation for land planning
in the YRB.

(3) The framework proposed in this study quantified AWRs in the YRB and analyzed
the contribution rates of its influencing factors, indicating that human activities and
climate change have different effects on the short-term and long-term effects of AWRs
in the YRB. These research ideas and methods can provide new ideas for similar
research in other river basins and water resource allocation and LU planning.
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