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Abstract: Non-indigenous species (NIS) represent one of the greatest threats to biodiversity and
ecosystem functioning, altering invaded habitats, competing with native species, and eventually
becoming pests. The Mediterranean Sea is a marine biodiversity hotspot, with its coasts being densely
populated and its living resources fished since ancient times. As a result of such a long history of
exploitation, the whole basin is exposed to a wide array of human pressures, with their combined
effects on marine ecosystems being amplified by ongoing climate change. Caulerpa cylindracea
Sonder, 1845, is a non-indigenous invasive seaweed widely distributed in the coastal habitats of the
Mediterranean Sea, which ultimately affects marine biodiversity and ecosystem functioning. Here, a
systematic literature analysis on the consumption of the NIS Caulerpa cylindracea by Mediterranean
native and NIS species is provided, focusing on the benefits and drawbacks for the native biota
and human health. The present review aims to synthetise knowledge and provide tools to manage
the occurrence of the invasive seaweed C. cylindracea in the Mediterranean Sea, encouraging an
ecosystem-based approach to the management of the ecological, economic, and social effects of the
successful expansion of this NIS.
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1. Introduction

The acceleration of the introduction, establishment, and wide expansion of non-
indigenous species (NIS) beyond their native range represents a pervasive component
of the ongoing global changes. Due to the growing occurrence of NIS worldwide [1], they
are considered among the most important factors of change in biodiversity and ecosystem
function [2,3]. In the marine coastal system, NIS occur jointly to human-driven impacts
such as overfishing, eutrophication, habitat modification and loss, and climate change [4–7],
thereby jeopardizing the integrity of ecosystems and altering biodiversity, ultimately lead-
ing to the loss of ecosystem services with consequences in socioecological systems [8–12].

The Mediterranean Sea has reduced biodiversity due to its geological history [13]
and exploitation by humans since prehistorical times [14,15]. Nevertheless, it holds 7%
of the known marine species [5,16]. The phenomenon called tropicalisation is driven by
increasing seawater temperatures, which in turn causes shifts and a decline in temperate
species northwards and prompts high abundances of warm-water species [17–19]. This is
especially the case in eastern and southern areas, where the so-called tropicalisation of the
Mediterranean Sea occurs at a high pace when compared with other seas globally [20,21].
The increasing anthropogenic activities at sea, combined with intense marine traffic, the
enlargement of the Suez Canal, and the consequent acceleration of the reduction in the
salinity barrier represented by the Great Bitter Lake, have prompted the introduction of
a growing number of NIS within the Mediterranean Sea [22–24]. Ship traffic across the
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Mediterranean Sea, which accounts for approximately 30% of global cargo shipping [25],
represents the main pathway of introduction of NIS [25], followed by aquaculture and
aquarium trade [9,26–28]. As NIS become invasive, they potentially lead to losses in
biological populations that affect ecosystem functioning. This raises societal worries about
the maintenance of the delivery of goods and services by marine ecosystems [29,30], and
the potential negative consequences on local economies [9,31,32].

In the last decade, important management and policy measures have been adopted to
coordinate the prevention and the management of the introduction and spread of invasive
NIS in Mediterranean EU and non-EU countries [23]. However, many invasive NIS are
well-established, eradication actions are highly expensive, and their outcomes are subjected
to substantial uncertainty. Hence, the European Commission actually discourage the
application of management measures with disproportionate or excessive costs [33]. Given
the practical impossibility to achieve complete NIS eradication, adaptive management
becomes crucial, along with monitoring plans and efforts to limit further spread of NIS [34].

In the Mediterranean, the seaweed Caulerpa cylindracea, Sonder, 1845 [35], is among
the most successful NIS [36]. This species is a siphonous green alga native to southwestern
Australia, first reported in the Mediterranean in the coast of Libya in 1991. From that time,
it rapidly spread throughout the basin [37] where it colonised almost every coastal habitat
from the surface down to 70 m [38,39]. It tends to form monospecific stands in its range of
distribution [40], enhancing sediment and organic matter accumulation in the underneath
substrate, thereby creating suitable conditions for itself and facilitating the shift from erect
macroalgae to algal turfs [39,41,42].

The high invasiveness of Caulerpa spp. is reported to depend on their biological
and functional traits [43], i.e., the presence of toxic metabolites acting as grazing deter-
rents, wide bathymetric tolerance, rapid growth, large standing biomass, and facility of
dispersion [39,44]. However, NIS can also bring positive features, such as introducing
novelty in invaded areas, replacing lost ecological functions, adding redundancy, and
supporting ecosystem services [45,46].

Here, the potential of the NIS Caulerpa cylindracea as a food resource for Mediterranean
species is explored. Indeed, C. cylindracea is selected as a food source by sea urchins [39,47]
and fish [48–50], despite the presence of grazing-deterrence compounds. These include high
levels of caulerpin, a phenazine derivate exhibiting cytotoxic activity [51]. In addition, there
are also minor concentrations of caulerpenyne [52], a sesquiterpenoid quickly converted to
reactive aldehydes with oxidative activity. Both metabolites make algal tissues unpalatable
to marine fauna [53].

The aim of the present work is to assess the consumption of C. cylindracea as a food
resource in the Mediterranean by performing a systematic literature analysis on the con-
sumption of this NIS by native species as well as other established NIS. The present review
aims to synthetise the available evidence in order to inform place-based management of
the invasive C. cylindracea in Mediterranean coastal areas including ecological, economic,
and social components.

2. Materials and Methods

The data on the consumption of the NIS Caulerpa cylindracea by marine fauna in the
Mediterranean Sea were collected from the published scientific literature, grey literature,
and monitoring programs.

The research on the published literature was conducted in the ISI Web of Science
(https://www.webofscience.com/wos/alldb/advanced-search, accessed on 30 Decem-
ber 2022) and Scopus (https://www.scopus.com/search/form.uri?display=advanced, ac-
cessed on 30 December 2022) for the period between 1985 and 2022. The systematic
literature screening was carried out by searching in the “Title”, “Abstract”, and “Keyword”
fields the following combination of terms: (“Caulerpa cylindracea” OR “Caulerpa racemosa”
OR “Caulerpa”). The grey literature included publications on national journals edited by
national associations or institutions (e.g., Italian Society of Marine Biology, Italian Botanical
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Society), books, unpublished Ph.D. theses, and conference proceedings. We also checked
the citation lists of the selected articles for further publications of interest. The full list of
publications included in the analysis is reported as Supplementary Material (Table S1).

3. Results

The analysis of the literature showed that 29 marine species were reported to feed on
the invasive seaweed C. cylindracea in the Mediterranean Sea. A variety of species belonging
to six different Phyla, including Porifera, Annelida, Mollusca, Arthropoda, Echinodermata,
and Chordata, used C. cylindracea as a food resource. The analysis revealed that several
trophic guilds were involved in C. cylindracea consumption (Figure 1). Consumers of
C. cylindracea included deposit feeders (polychaetes, asteroids), detritivores (e.g., sea cu-
cumbers), filter feeders (e.g., sponges, amphipods, molluscs), herbivores (sea urchins, fish,
crabs), and omnivores (fish, sea urchins, molluscs).
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Figure 1. Feeding guilds potentially consuming the seaweed C. cylindracea.

Among the Porifera, only the sponge Sarcotragus fasciculatus is known to consume the
NIS C. cylindracea. Among the annelids, five polychaetes have been identified to feed on
this NIS: Eunice vittata, Pelogenia arenosa, Pontogenia chrysocoma, Scoletoma fragilis, and Syllis
prolifera (Table 1).

Table 1. Benthic fauna (Phyla: Porifera and Annelida) reported to feed on the NIS C. cylindracea.
References are reported in Table S1.

Species Authority Class Order Family Reference

Porifera

Sarcotragus fasciculatus (Pallas, 1766) Demospongiae Dictyoceratida Irciniidae [54]

Annelida

Eunice vittata (Delle Chiaje, 1828) Polychaeta Eunicida Eunicidae [54]
Pelogenia arenosa (Delle Chiaje, 1830) Polychaeta Phyllodocida Sigalionidae [54]
Pontogenia chrysocoma (Baird, 1865) Polychaeta Phyllodocida Aphroditidae [54]
Scoletoma fragilis (O.F. Müller, 1776) Polychaeta Eunicida Lumbrineridae [54]
Syllis prolifera Krohn, 1852 Polychaeta Phyllodocida Syllidae [55]
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Caulerpa cylindracea is also a food resource for five molluscs: Arca noae, Cerithium vulga-
tum, Glans trapezia, Hexaplex trunculus, and Pisinna glabrata (Table 2). Among arthropods,
the invasive alga C. cylindracea is consumed by Monocorophium sextonae and Percnon gibbesi.

Table 2. Marine species (Phyla: Mollusca and Arthropoda) reported to consume the NIS C. cylindracea.
References are reported in Table S1; * = unassigned order.

Species Authority Class Order Family Reference

Mollusca
Arca noae Linnaeus, 1758 Bivalvia Arcida Arcidae [54]

Cerithium vulgatum Bruguière, 1792 Gastropoda Caenogastropoda * Cerithiidae [54,55]

Glans trapezia (Linnaeus, 1767) Bivalvia Carditida Carditidae [54]

Hexaplex trunculus (Linnaeus, 1758) Gastropoda Neogastropoda Muricidae [54]

Pisinna glabrata (Megerle von
Mühlfeld, 1824) Gastropoda Littorinimorpha Anabathridae [55]

Arthropoda
Monocorophium sextonae (Crawford, 1937) Malacostraca Amphipoda Corophiidae [55]

Percnon gibbesi (H. Milne Edwards,
1853) Malacostraca Decapoda Percnidae [56]

Among the echinoderms, two species of sea cucumbers were found to feed upon
C. cylindracea, namely Holothuria (Panningothuria) forskali and Holothuria (Roweothuria) poly,
as well as three sea urchins (Arbacia lixula, Paracentrotus lividus, and Sphaerechinus granularis),
the starfish Echinaster (Echinaster) sepositus, and the ophiurid Ophioderma longicaudum
(Table 3).

Table 3. Echinoderm (Phylum Echinodermata) reported to consume the NIS C. cylindracea. References
are reported in Table S1.

Species Authority Class Order Family References

Echinodermata
Arbacia lixula (Linnaeus, 1758) Echinoidea Arbacioida Arbaciidae [57]

Echinaster (Echinaster)
sepositus (Retzius, 1783) Asteroidea Spinulosida Echinasteridae [54]

Holothuria (Panningothuria)
forskali Delle Chiaje, 1823 Holothuroidea Holothuriida Holothuriidae [54]

Holothuria (Roweothuria) poli Delle Chiaje, 1824 Holothuroidea Holothuriida Holothuriidae [54]

Ophioderma longicaudum (Bruzelius, 1805) Ophiuroidea Ophiacanthida Ophiodermatidae [54]

Paracentrotus lividus (Lamarck, 1816) Echinoidea Camarodonta Parechinidae [47,54,57–64]

Sphaerechinus granularis (Lamarck, 1816) Echinoidea Camarodonta Toxopneustidae [64]

The invasive alga C. cylindracea is consumed by several fish species such as the sparids
Boops boops, Diplodus annularis, Diplodus sargus, Diplodus vulgaris, Sarpa salpa, and Spondylio-
soma cantharus, the spinefoots Siganus luridus, and Siganus rivulatus, and the labrid Thalas-
soma pavo (Table 4).
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Table 4. Fish species (Phylum Chordata) reported to feed on the NIS C. cylindracea. References are
reported in Table S1; * = incertae sedis.

Species Authority Class Order Family References

Chordata
Boops boops (Linnaeus, 1758) Actinopteri Eupercaria * Sparidae [64]

Diplodus annularis (Linnaeus, 1758) Actinopteri Eupercaria * Sparidae [65]

Diplodus sargus (Linnaeus, 1758) Actinopteri Eupercaria * Sparidae [50,65–74]

Diplodus vulgaris (Geoffroy
Saint-Hilaire, 1817) Actinopteri Eupercaria * Sparidae [75]

Sarpa salpa (Linnaeus, 1758) Actinopteri Eupercaria * Sparidae [64,75–79]

Siganus luridus (Rüppell, 1829) Actinopteri Acanthuriformes Siganidae [75,80,81]

Siganus rivulatus Forsskål & Niebuhr,
1775 Actinopteri Acanthuriformes Siganidae [82]

Spondyliosoma cantharus (Linnaeus, 1758) Actinopteri Eupercaria * Sparidae [65,75,83]

Thalassoma pavo (Linnaeus, 1758) Actinopteri Eupercaria * Labridae [84]

4. Discussion

The reported findings showed that the NIS C. cylindracea appears to be pervasively
consumed across different feeding guilds in the Mediterranean Sea, where C. cylindracea is a
source of organic matter for benthic consumers [55] and is able to modify the trophic niche
of benthic communities in the rocky infralittoral [85]. The presence of C. cylindracea on hard
substrates can influence some taxonomic groups of macrozoobenthos communities, such
as Amphipoda, Caridea, and Tanaidacea, by creating an extension of both the trophic and
edaphic niches and potentially affecting the diversity of the macrozoobenthic system [86].
Up to now, the reported consumers of the NIS C. cylindracea include the sponge Sarcotragus
fasciculatus, bivalve filter feeders (Arca noae, and Glans trapezia), a welk (Hexaplex trunculus),
detritivores (Holothuria (Panningothuria) forskali and Holothuria (Roweothuria) poli), and
benthic deposit feeder invertebrates (Echinaster (Echinaster) sepositus, Eunice vittata, Scoletoma
fragili, Ophioderma longicaudum, Pelogenia arenosa, and Pontogenia chrysocoma), in addition to
herbivores and omnivores species. Herbivory is expected to be the main pathway of algae
to the upper trophic levels in marine webs [87,88]. Recently, omnivory has been recognised
to exert considerable control on seaweed abundance [89–92], and it has been identified
as a potential mechanism of biotic resistance against invasive algal species [59]. As far as
the NIS C. cylindracea is concerned, the grazing activity seems to be able to limit the early
colonisation stages [93]. However, there are still important aspects to be investigated. Up
to now, the available information did not show a clear relationship between the herbivory
and the variations in the abundance of this NIS [64]. In some cases, in order to face the
control exerted by herbivores on C. cylindracea biomass, a compensative strategy by the
alga has been hypothesised [94]. In fact, an experimental simulation of the herbivory
effects on the NIS C. cylindracea showed, after an initial decrease in the algal abundance, a
potential reaction mechanism in the seaweed aimed to stimulate the algal growth rates [94].
It is necessary to keep in mind that the NIS C. cylindracea exhibits a large recovery ability,
which allows it to tolerate a wide range of grazing intensities operated by native generalist
herbivores, through algal regeneration from detached fragments of several parts of the
seaweed such as stolon, rhizoid, and frond [64,94]. However, several context-dependent
direct effects deserve to be assessed in order to fully understand the inconsistent responses
to the investigated variables in these experiments, and particularly in the attempt to
disentangle the contribution of several disturbances whose effects presumably sum up
while acting simultaneously on the NIS. Besides the direct effects caused by herbivory on the
NIS seaweed, the indirect effects need to be considered, especially when they are coupled
with other kinds of environmental and anthropogenic disturbances. For example, in the
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marine costal systems, the seagrass meadows operate fundamental ecosystem functions
and herbivory should theoretically limit the penetration of C. cylindracea by operating a
control on the NIS biomass. Nevertheless, herbivores can indirectly influence the spread
of the NIS C. cylindracea acting on native seaweed and seagrass habitats. The presence of
C. cylindracea represents a threat for the integrity of marine seagrass meadows, since the NIS
penetrate them following the reduction in the seagrass resistance inducted by the native
herbivores [95] or human-driven impacts, such as clearances produced along the borders
of the meadow [96], or within the seagrass meadow, such as by illegal trawling [97] and
anchoring [98]. Improving the information about the factors regulating the establishment
and spread of C. cylindracea and having an available and exhaustive set of alternative
scenarios is crucial to apply management measures, which should be based on mechanisms
regulating the spread of the NIS C. cylindracea. The current literature analysis also reported
several sea urchin and fish species consuming the NIS C. cylindracea, namely, the sea urchins
Arbacia lixula, Paracentrotus lividus, and Sphaerechinus granularis [47,54,57,58,61–64], and
the fish Sarpa salpa, Siganus luridus, and S. rivulatus [64,65,78,81]. In addition to the above-
mentioned species, several omnivorous fish species, such as Boops boops, Diplodus sargus,
Diplodus annularis, Diplodus vulgaris, Spondyliosoma cantharus, and Thalassoma pavo have
occasionally been observed feeding on C. cylindracea [64,74,83]. However, the invasive
seaweed C. cylindracea could represent a threat for the native species feeding on it, since
the macroalga is recognised to host specific microbial communities [12,99,100], including
potential pathogens [100]. Sarpa salpa seemed to prefer C. cylindracea when available
along with other macroalgae [78], while the choice of Caulerpa as food appears to be
arbitrary for Diplodus annularis [65], Diplodus sargus [65], Spondyliosoma cantharus [65], and
Paracentrotus lividus [47,58]. However, the preference for the C. cylindracea by S. salpa
requires around 6 years of exposure to be developed, after an initial wariness. Similar
to the fish S. salpa, other native species could need time to learn if and how to exploit
the new trophic resource, while also developing effective resistance mechanisms against
NIS [79]. Santamaria et al. [79] shows how native species, initially not used to interacting
with the NIS, start to become gradually familiar and, as a consequences, the strength of
the relationship between native consumer and NIS resource reinforces, depending on
time and the abundance of the new resource. Moreover, social herbivore species can
share information on palatability and handling, increasing consumption in the population
and potentially leading to a control of NIS populations. Remarkably, as for S. salpa, the
consumers could keep the food preferences also when the resource becomes less abundant,
once incorporated in their diet [79]. Further studies could identify other Mediterranean
species feeding on the invasive alga and assess their food preference, filling the gap of
knowledge on the active choice of this NIS by marine fauna.

Interestingly, the non-indigenous crab Perchnon gibbesi as well as the exotic fishes
Siganus luridus and Siganus rivulatus were found feeding on C. cylindracea in the Mediter-
ranean. Remarkably, both the two above-mentioned siganid fish and the seaweed inves-
tigated here, C. cylindracea, are listed among the ten worst invasive species identified by
Tsirintanis et al. [101] within the Mediterranean Sea, considering their negative impact
on ecosystem services by using an holistic approach while no information is available on
the several types of impacts on marine ecosystem services and human health caused by
the cryptogenic species of crab Perchnon gibbesi except for an identified positive impact
on the Mediterranean native species Gobius paganellus [102]. A large food contribution of
C. cylindracea to the diet of the NIS crab P. gibbesi has been revealed by Maric et al. [56]
by using stable isotope analysis, underlining that the NIS C. cylindracea can support the
diversity of available prey [56]. In the literature, the interaction between C. cylindracea and
other invasive NIS is reported by several studies. In particular, the association of the NIS
C. cylindracea with invasive algal components of the algal turf has been described, including
the introduced filamentous Rhodophyta Womersleyella setacea (Hollenberg) R.E. Norris and
Acrothamnion preissi (Sonder) Wollaston. Remarkably, these NIS are also listed among the
ten worst invasive species in the Mediterranean Basin [101], and co-occurrences between
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C. cylindracea and the other algal NIS seem to stimulate the enhancement of the spread of
the NIS C. cylindracea [103–105]. The competitive mechanisms between marine invaders in
coastal systems deserve further investigations not only based on interaction mechanisms
but also including the role of allelochemical mechanisms that remain still understudied.
The NIS herbivorous fishes Siganus luridus and Siganus rivulatus have been reported feeding
on the NIS C. cylindracea. These rabbitfish were supposedly introduced for the first time
off the southern Levantine coast via the Suez Canal between the 1920s and 1950s and,
today, they build large fish biomass in rocky habitats in the eastern basin, causing the
depletion of macroalgal forests, replacing native herbivorous fish, and altering the marine
food chain [106]. As for the non-native fish S. luridus, no caulerpin accumulation has been
described in the generalist common two-banded seabream Diplodus vulgaris, as well as in
the parrotfish Sparisoma cretense [75]. Efficient pathways of detoxification are supposed to
be at play in successfully avoiding caulerpin accumulation in the herbivorous and the NIS
Siganus luridus [75]. Instead, due to the trophic relationship between the NIS C. cylindracea
and Mediterranean fish, the caulerpin accumulation has been reported in the tissues of
several generalist fish species (Figure 2), including the white seabream Diplodus sargus [74],
the black seabream Spondyliosoma cantharus [74], and the dream fish Sarpa salpa [76]. For a
long time, the phenomenon called Abnormally Tough Specimen (ATS) occurrence has been
reported, consisting of a progressive hardness of the meats of some specimens of Diplodus
sargus when they are cooked resulting in impaired edibility. As far as S. salpa is concerned,
it is a target species of the commercial small-scale fishery in the eastern Adriatic Sea with
an annual catch of about 200 tonnes year−1 [107], generally considered a low-value species
collected often as a bycatch species by artisanal and recreational fishers. Since the presence
of unpleasant palatability factors have been reported in both the white seabream and the
salema, recent research focuses on the potential relationship between the accumulation of
the main algal secondary metabolite in the fish tissues, the deterioration of their organolep-
tic profile [108,109], or even the unpleasant taste [66,76]. Although several hypotheses have
been formulated about the potential role of organic pollution, chemical contamination, and
variations in feeding habits as causes of the observed ATS [110], the exact causes and their
underlying mechanisms are still unknown. In fact, a Caulerpa-based diet could lead to these
undesirable characteristics and, for this reason, the human consumption of the salema is
recommended to be avoided from August to November due to potential, yet unknown,
negative effects on human health [66]. Additional studies conducted on fish species D. sar-
gus showed that the use of caulerpin-enriched food can cause alteration in lipid metabolism,
behavioural habits [69,70], and cellular and physiological processes [67,68]. In addition,
biomagnification of the red pigment caulerpin in the white seabream D. sargus [66] has
been suggested along the trophic net through the roles of molluscs and echinoderms. Yet, it
has not been settled if D. sargus can assimilate and accumulate compounds derived from
the consumption of Caulerpa cylindracea by intermediate generalist herbivores or sediment.
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Understanding the implications of both the positive and negative impacts of NIS on
seafood provision and safety is crucial to inform the consumer demand, as well as to create
new opportunities for the sustainable exploitation of marine NIS as resources. For example,
the NIS Rapa Welk Rapana venosa is an important target for fisheries along the coasts of the
environmentally and biologically changing Black Sea [111]. Additional examples are to
market some edible NIS rabbitfishes to be targeted and exploited by dedicated fisheries
in the Eastern Mediterranean [112], thereby contributing to the adaptive management of
NIS in a context of the rapid “tropicalisation” of the local biota. Hence, market opportunity
together with control, education, and awareness could modify local consumer behaviour,
enabling the marketing of novel products including NIS. In this way, several initiatives have
already been undertaken in the Mediterranean with the aim of exploring potential markets
for other NIS such as the invasive lionfish [113], jellyfish biomass [114–116], and the seagrass
Halophila stipulacea [117]. Analogously, the NIS C. cylindracea brings the opportunity to
develop therapeutic drugs for treating chronic diseases (e.g., diabetes) due to its content in
bioactive compounds, as well as the provision of raw material for a sustainable alternative
to plastics [96,118]. The economic exploitation of NIS biomass should be encouraged
through the exploration of novel opportunities to be developed through local adaptive
management along the Mediterranean coastal territory. It is nonetheless notably the fact
that there is not a universal recipe for the management of any given NIS, as is showed by
the contrasting consumer attitudes towards rabbitfishes among neighboring countries in
the Eastern Mediterranean, which are appreciated and targeted by local fisheries in some
areas (e.g., Cyprus, Israel, Lebanon), while considered without any profitable value and
discarded in other locations [113]. Control, education, and awareness could modify local
consumer behaviour, enabling the marketing of novel products including NIS.

The present review also highlights that other fish and sea urchin species feeding on
C. cylindracea constitute fishery targets, hence providing seafood for human consumption.
The utilisation of this NIS as a food resource can potentially lead to an accumulation of
the secondary metabolite caulerpin in the animal tissues and the amplification of cauler-
pin in liver, muscle, and brain tissues of consumers such as Sarpa salpa [75,76], Diplodus
sargus [50,65–74], and Spondyliosoma cantharus [75]. Several studies have hypothesised a
decrease in the organoleptic quality in Diplodus sargus, possibly due to biomagnification
of the caulerpin concentration along the food web [66,71,72,74]. Other studies suggest an
anxiolytic-like effect on Diplodus sargus associated with a decrease in aggressiveness [67,70].
The sea urchin Paracentrotus lividus, when exposed to the consumption of C. cylindracea,
has reduced motility and coordination [59]. Moreover, the consumption of C. cylindracea
also stimulate the production of Heat Shock Proteins [118], and an antioxidant response
in the sea urchin P. lividus [60]. In addition, the use of the secondary metabolite caulerpin
in the aquaculture sector appears promising [119]. The introduction of the metabolite
produced by the invasive alga C. cylindracea into the diet of the model fish Danio rerio
can influence the hypothalamic—pituitary—gonadal axis, increasing food intake and im-
proving fish reproductive performances [119]. Future research could offer innovative and
sustainable solutions, encouraging the exploitation of NIS as resources for veterinary and
aquaculture sectors.

5. Conclusions, Future Directions, and Perspectives

The invasive macroalga C. cylindracea is widely distributed in the Mediterranean Sea
and has become a food resource for many native and introduced species, despite containing
grazing deterrents such as caulerpin and, to a lesser extent, caulerpenyne [51]. Hence,
C. cylindracea expands the diversify of the trophic resources available to several herbivorous
and generalist species, both native and NIS. Further study will better determine the ecolog-
ical impact of this NIS in Mediterranean coastal ecosystems, as well as new perspectives
for its exploitation by marine organisms and humans. The last is of particular relevance for
food security, since the secondary metabolites caulerpin and caulerpenyne have been found
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to accumulate in some exploited species and are possibly responsible for the undesired
changes in their taste, up to the point of becoming unpalatable in certain cases.

The invasion by Caulerpa cylindracea represents an early and well-known contribution
to the ongoing trend of NIS colonisation of the Mediterranean Basin. Despite the fact
that Mediterranean species account for a relatively high regional diversity [120], it has a
relatively lower diversity of species than that of the Indo-Pacific region by virtue of the
much smaller size of the Mediterranean Basin and its geological history that includes its
isolation from other water masses, desiccation, and mass mortality of its biota due to heavy
hypersaline conditions during the Messinian salinity crisis in late Miocene, followed by the
intrusion of continental brackish water later on, and the abrupt reconnection to the Atlantic
ocean about 5.33 million years ago, from which the actual native species originated [13,121].

The aperture of the Suez Canal in 1869 connected the Mediterranean biota with the
huge biodiversity pool of the Indo-Pacific region, resulting in an influx of tropical species
towards the Mediterranean. The rate of colonisation of the Mediterranean Sea by tropical
species was further prompted by the progressive decrease in the salinity barrier represented
by the Great Bitter Lake, which was further accelerated by the successive enlargements
of the route to accommodate the ever-increasing flux of carriers. This picture has been
probably reinforced by the increase in the temperature driven by global warming, which
will proceed faster in the Mediterranean as a consequence of its smaller thermal inertia
with respect to the larger oceanic water masses [120].

Commercial shipping is supposed to be the major vector of NIS introduction into the
Mediterranean Sea, through which nearly a third of the world commercial ship traffic tran-
sits [25]. Given the fundamental role of commercial shipping for NIS in the Mediterranean
Sea, as well as for the global economy, the trend of NIS introductions in the Mediterranean
was expected to grow following the recent increase in the capacity of the Suez Canal [22]. In
addition, the redistribution of shipping traffic should be expected following the year-round
aperture of the Arctic shipping route as a result of the ongoing reduction in the ice cover,
the enhanced capacity to predict ice presence, and the enhanced shipping facilities and
services along the coasts [122]. In addition, geopolitical instability in the South China Sea
resulting from the growing attempts to control resources and secure national sovereignty
claims by emerging geopolitical players such as China and India adds uncertainty to future
shipping routes in the area [123], with possible repercussions on the transport of potentially
invasive species.

This overview provided an in-depth analysis on trophic relationships based on the
known consumers of the NIS C. cylindracea, highlighting multiple issues that are still under-
investigated or almost unknown and indicating the main goals to reach in further scientific
investigations. The NIS C. cylindracea has been one of the most studied marine invaders,
and the overall knowledge acquired has allowed for identifying a wide taxonomic range of
marine fauna that has exploited the newly available trophic resource. The present review
highlights that complex interactions among biotic factors affect Caulerpa-based trophic
chains, with direct and indirect effects on food webs, and more generally on the whole
marine coastal ecosystem. Although further studies will be necessary to understand the
complex mechanisms involved in the introduction of the invasive C. cylindracea in the
Mediterranean trophic webs and its related effects at multiple scales (i.e., species, popula-
tions, assemblages, and ecosystems), the patterns emerging from the present review indicate
that the NIS C. cylindracea is a source of organic matter for benthic consumers and is able to
modify the trophic niches of benthic species in Mediterranean infralittoral communities.

Herbivory represents the main pathway of the NIS seaweed to upper trophic levels in
marine webs; however, omnivory has recently been recognised to exert considerable control
on seaweed abundance. It is necessary to take into account that C. cylindracea exhibits great
spread and regeneration abilities that allow it to tolerate a wide range of grazing intensities
operated by marine consumers since it can easily recover its dense standing biomass
by regenerating from fragments of several parts of the thallium, such as stolon, rhizoid,
and frond. Additional complex compensative strategies of C. cylindracea could stimulate
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the algal growth rates and determinate the colonisation success of this NIS. In addition,
several context-dependent effects deserve to be assessed in order to fully understand the
inconsistent responses to the investigated variables across experimental research, trying to
untangle the contribution of environmental and anthropogenic disturbances, often acting
simultaneously, to the observed patterns. This issue remains an important aspect to be
investigated, since the data available up to now did not show a clear relationship between
the herbivory, omnivory, environmental conditions, and variations in the NIS biomass.

Furthermore, the consumption of the NIS C. cylindracea among Mediterranean marine
herbivores and omnivores can cause the cumulation of the secondary metabolite caulerpin,
a compound present in the Caulerpa genus [51], which was identified as the cause of detri-
mental effects in some native Mediterranean fish [66,71,72,74]. Some invasive fish species
could have mechanisms of detoxification for the metabolites produced by Caulerpa [124],
while these are at present unknown among Mediterranean native species. The collateral
negative effects of Caulerpa introduction in the Mediterranean marine food webs include po-
tential negative effects on human health as a consequence of consumption of the caulerpin
accumulated in seafood. The mechanisms of accumulation and detoxification of caulerpin
deserve further research to fully understand the processes regulating the adaptation to new
invasive compound products.

Importantly, taking into account that Caulerpa cylindracea extracts and bioactive com-
pounds are recognised as candidate pharmaceutical and nutraceutical products is needed;
this deserves careful evaluation in order to ascertain their potential marketing, thereby
contributing to control of this NIS through exploitation of its standing biomass by different
industries from biotechnological, nutraceutical, and aquaculture fields.

Lastly, the present review will prove useful in the study of NIS, to propose the hy-
potheses that ad hoc studies should test C. cylindracea as well as other species, in order to
promptly manage their ecological effects, forecast possible management scenarios, and
obtain potential benefits from their exploitation as new marine resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15112115/s1, Table S1: List of the selected papers analysed in the
literature review.
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