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Abstract: Anammox bacteria can remove ammonium directly, which is different from what was
previously believed. This is an important process for the global nitrogen cycle. Anammox bacteria
were first identified in sewage treatment systems and were later proven to exist widely in natural
ecosystems. To better understand the relationship between the anammox reaction and different sys-
tems, and to maintain the stability of the nitrogen cycle, anammox functional microorganisms found
in different natural environments were summarized. In addition, anammox nitrogen production rate
and the contribution of anammox to nitrogen were discussed under different ecological environments.
A literature analysis showed that the contribution rate of nitrogen removal of anammox was the
highest in the Terrestrial ecosystem, up to 87.5%. The Terrestrial ecosystem is more likely to form an
anoxic or even anaerobic environment conducive to anaerobic ammoxidation. Therefore, the control
of DO is an important factor in the activity of anaerobic ammoxidation. Other environmental factors
affecting the contribution of anammox to nitrogen removal include temperature, pH, organic matter
content, inorganic nitrogen concentration, and salinity. However, the dominant influencing factors of
anammox reactions in different ecosystems are evidently different. Therefore, the mechanism of the
impact of different environmental factors on the anaerobic ammonia oxidation process is necessary to
discuss. This provides a scientific basis for the global nitrogen cycle and is of great significance to
improve nitrogen’s biogeochemical cycle in the ecosystem.

Keywords: anaerobic ammonia oxidation; contribution rate; ecosystem; environmental factor; nitro-
gen cycle; wastewater treatment system

1. Introduction

For many years, nitrification and denitrification have been considered the main pro-
cesses of the biogeochemical nitrogen cycle. With the discovery of anaerobic ammonia
oxidation (anammox) bacteria [1], it was found that denitrification was not the only method
that transforms inorganic nitrogen into N2 in the natural environment; subsequently, the
anammox process rapidly gained interest [2]. Nitrate is also transformed into ammonium
via DNRA, which is called Dissimilatory Nitrate Reduction to Ammonium. The nitrogen
cycling process is shown in Figure 1. Denitrification and anammox bacteria can produce N2.
In the anammox process, anammox bacteria take NH4

+ as the electron donor, NO2
− as the

electron acceptor under anaerobic conditions, and finally produce N2 (NH4
+ + NO2

−→N2↑
+ 2H2O) [1]. In an oxygen-deprived environment, anammox is the main driver for the loss
of fixed nitrogen, in addition to the reoxidation of nitrite to nitrate in freshwater and marine
ecosystems [3]. Anammox can release approximately 3.8–50% of N2 into the atmosphere
in the natural environment [4,5]. In natural ecosystems, anammox bacteria are found in
oceans [6,7], rivers [8,9], lakes [10,11], estuaries [12], paddy soil [13,14], and natural wet-
lands [15,16]. In artificial systems, anammox bacteria have been found in bioreactors [17,18]
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and artificial wetlands [19,20]. Figure 2 shows the development of the anammox bacteria.
In 1998, anammox bacteria were successfully enriched using a Sequencing Batch-Reactor-
Activated Sludge Process (SBR). Studies on anammox have revealed that these bacteria
have a wide distribution range, and may have evolved unique structural and metabolic
characteristics [5].
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Figure 2. Schematic of the research and development on anammox.

In several natural ecosystems, owing to the lack of oxygen or the limited supply of
electron donors (sulfide or organic matter), a host of NO2

− is generated. Low oxygen
and sufficient nitrite levels provide favorable conditions for anammox bacteria. In the
artificial reactor system, the anammox activity and its denitrification effect are mostly
evaluated by measuring the decrease of NH4

+-N and NO2
−-N and the increase of NO3

−-N
in the inlet and outlet of the reactor. Anammox occurring in environmental ecosystems
is usually characterized by the 15N isotope-tracing technology. Anammox activity in the
natural environment was evaluated by generating 29N2 from 15N-labeled 15NO3-N, which
is the potential activity. The experiments were designed accordingly. After a period of
culture, the resulting 28N2, 29N2, and 30N2 concentrations were measured by a membrane-
sampling mass spectrometer, isotope ratio mass spectrometer, or gas chromatography–mass
spectrometry. Through calculation, we can judge whether there is an anammox reaction
and its reaction rate [21]. In addition to utilizing the stable 15N isotope-tracing technology
to study the activity of anammox, there are also molecular biology, bioinformatics, and
other technologies to conduct in-depth research on anammox bacteria. These include, for
example, 16S rRNA-PCR, 16S rRNA-PCR-DGGE, 16S Real time-PCR, and fluorescence in
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situ hybridization (FISH) techniques. These research methods provide a technical basis for
understanding the diversity, abundance, and distribution of anammox bacteria.

Recently, many researchers have studied anammox in different types of natural ecosys-
tems, but there is still a lack of review articles on this aspect, so this paper provides a
summary. This paper introduced the reaction principle of anammox, combed the devel-
opment history of anammox bacteria, analyzed the Web of Science data of more than
20 years since the discovery of anammox bacteria, and used SPSS software to classify and
summarize the bacterial species and categories of anammox bacteria in various ecosystems.
The analysis results showed that the activity of anammox varies greatly in the nitrogen
cycle; the contribution rate is also significantly different in different environments, which
plays an important role. Existing studies have revealed that environmental factors have a
significant impact on the composition, abundance, and distribution of anammox bacteria
in various natural habitats. In addition, anammox bacteria have different N2 losses in
different ecosystems. Therefore, based on the existing research, this study explains the
physiological mechanisms of anammox. We studied the impact of marine, freshwater,
terrestrial, and other ecosystem types on the anammox process to clarify the impact of
different environmental factors on anammox, and to provide a scientific basis for further
research of anammox’s role in the nitrogen cycle in natural environments.

2. Anammox Microorganisms and Their Biochemical Reaction Mechanism

Anammox is a biological nitrogen removal process in which NH4
+ is used as an elec-

tron donor and NO2
− is used as an electron acceptor to directly oxidize ammonia nitrogen

into N2 under anaerobic conditions (NH4
+ + NO2

−→N2↑ + 2H2O). This process includes
three main reactions [22,23] (Figure 3). First, NO2

− is reduced to NO or hydroxylamine
by nitrite reductase (Nir). Subsequently, NO is converted into NH2OH by hydroxylamine
oxidase (HAO). Following this, NH2OH and NH4

+ are condensed into N2H4 by hydrazine
hydrolase (HH). Finally, hydrazine oxidase (HZO) catalyzes the oxidation of N2H4 to
N2 and H2O, while nitrite oxidase (Nar) oxidizes NO2

− to NO3
−. Owing to its unique

structure and reaction process, anammox can occur in a variety of low-substrate, -nitrogen,
and -oxygen environments.
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According to 16S rRNA homology, anammox can be classified as a single-line branch of
Brocadiacaea in Planctomycetia [24]. Anammox bacteria are globular, ovoid, and rod-shaped.
The cell body is red, and it is a gram-negative bacterium. To date, no pure culture strains
for anammox exist. However, 16S rRNA, hzo, hzsB (key genes of hydrazine synthetase),
and other genes can be detected using common polymerase chain reaction (PCR) and
fluorescence quantitative PCR using modern molecular biology techniques, which can
quantify bacterial abundance [5,25]. Among them, the hzsB functional gene has been used
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several times in quantitative research on anammox bacteria. It can be used as an anammox
biomarker and can display the diversity of anammox bacteria more comprehensively
than other genes [16]. Currently, seven genera and 26 species of Candidatus (Brocadia,
Kuenenia, Jettenia, Scalindua, Anammoxoglobus, Anammoximicrobium, and Brasilis) have been
identified [26]. Details on the diversity of anammox microorganisms are presented in
Table 1 [27–29]. Ca. Scalindua was found to dominate all surveyed oceans [30]. The
biological diversity of anammox bacteria detected in freshwater ecosystems was low,
and most of them belong to Ca. Brocadia [31] and Ca. Kuenenia [32]. Most anammox
bacteria found in terrestrial ecosystems belong to Ca. Jettenia, Ca. Brocadia [33], and Ca.
Kuenenia [34].

Table 1. Microbial diversity of anammox bacteria.

Phylum Family Genus Species Origin Ref.

Planctomycetia Anammoxaceae

Candidatus Scalindua

Candidatus Scalindua
manna - -

Candidatus Scalindua
zhenghei the South China Sea [35]

Candidatus Scalindua
brodae five Rotating Biological

Contactors (RBCs) [36]
Candidatus Scalindua

wagneri
Candidatus Scalindua

sorokinii the Black Sea [37]

Candidatus Scalindua
arabica

the Arabian Sea and the
Peruvian OMZ [38]

Candidatus Scalindua
profunda the Gullmar Fjord [39]

Candidatus Scalindua
japonica

a Hiroshima bay
sediment [40]

Candidatus Scalindua
sinooilfield

High-Temperature
Petroleum Reservoirs [41]

candidatus Kuenenia candidatus Kuenenia
stuttgartiensis

A two-stage
semi-technical trickling

filter reactor system
[42]

candidatus Brocadia

Candidatus Brocadia
anammoxidans - [43]

Candidatus Brocadia
fulgida SBR [44]

Candidatus Brocadia
sinica

Upflow Anaerobic
Sludge Bed (UASB) [45]

Candidatus Brocadia
caroliniensis

a glycerol-fed digester
liquid effluent

treatment process
[46]

candidatus Jettenia
Candidatus Jettenia

asiatica Anammox [47]

Candidatus Jettenia caeni - -

Candidatus anammoximicrobum
Candidatus

Anammoximicrobium
moscomii

- -

Candidatus anammoxoglobus

Candidatus
Anammoxoglobus

propionicus
fed-batch enrichments [27]

Candidatus
Anammoxoglobus sulfate

Non-woven rotating
biological contactor

(NRBC)
[48]

Anammox bacteria contain an organelle structure that is dense and has low perme-
ability, known as anammoxosome [22,49]. Anammoxosome occupies most of the space
within anammox bacterial cells and is the core component of anammox metabolic reactions.
In addition, anammoxosomes can maintain an appropriate matrix concentration gradient
within and outside the intracytoplasmic membrane when the anammox bacteria are in
a low metabolism reaction [49]. A unique ladderane structure was found in anammox
bacteria in previous studies. It requires 3–5 cyclobutanes in a series as the core structure
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and is only synthesized by anammox bacteria. It can be used as a biomarker for the de-
tection of anammox bacteria [50]. The deposited ladderane lipids have been proven to
be biomarkers of fossil molecules, which can reflect the existence and past changes in
anammox bacteria [6].

3. Distribution and Ecological Diversity of Anammox in Different Systems

Anammox is an anaerobic process. The process is mediated by a group of chemolithoau-
totrophic bacteria. Therefore, compared with traditional nitrification and denitrification
processes, the anammox process has a higher denitrification capacity and does not consume
oxygen and organic substrate without N2O as the intermediate product [51]. Therefore,
anammox bacteria have the ability to survive in many natural environments. Anaerobic am-
moxidation is a more effective and environmentally friendly way to reduce the production
of greenhouse gases such as NO and N2O in the process of nitrogen removal. Global nitro-
gen loss caused by anammox cannot be ignored; in addition, it is of great significance for
the slowing of the global greenhouse effect. In an anoxic region and ecotone environment,
a supersaturated water condition and an anoxic environment result in the mineralization of
organic matter to form many NH4

+ cations. The NH4
+ cation is also produced by DNRA.

These two pathways can provide a large number of reaction substrates for anammox. In
some ecosystems, a large quantity of artificial nitrogen is inputted, which makes NH4

+,
NO3

−, NO2
−, and other nitrogen-containing nutrients accumulate, subsequently providing

a material basis for the survival and reproduction of anammox. However, the diversity
and community structure of anammox bacteria differs in different ecosystems owing to
the environmental background, demonstrating a specific distribution according to the
ecological niche [52]. Scholars worldwide have used molecular biology, 15N isotope tracing,
and other technologies to conduct extensive research on this topic. Research areas are
widely distributed, and the main ecosystem types that have been researched are marine,
lake, river sediment, farmland soil, forest soil, and low-oxygen water areas. Table 2 presents
the main research results.

Table 2. Anammox in different ecosystems.

Ecosystem Research Object Research Area Nitrogen Removal
Contribution Rate Reaction Rate Main

Microorganisms Reference

Marine ecosystem

Marine sediment

Skagerrak 24–67% 1.25 µmolN·h−1 — [21]
Black sea 10–15% 2.92 × 10−4 µmolN·L−1·h−1 Ca. Scalindua [37]

Arabian Sea (NE) 30–50% 1.76 × 10−4 ± 0.146 × 10−4

µmol−1·h−1 — [53]

Gullmarsfjor-den,
Sweden 48% 6.64 µmolN·m−2·h−1 — [54]

East Sea, Ulleung
Basin 17–56% 1.3–4.1 µmolN·m−2·h−1 — [55]

East Sea, China 13–50% 2 µmolN·m−2·h−1 — [56]
Northern Gulf of

Finland, Baltic Sea 10–15% 0.42 µmolN·m−2·h−1–1.25
µmolN·m−2·h−1 — [57]

Golfo Dulce, Costa
Rica 19–35% 1570–2542 µmolN·m−2·h−1 — [58]

Southern New
England estuarine 4–42% 0–8.7 µmolN·L−1·h−1 — [59]

North sea, UK 10–20% 0.2–5.7 µmolN·m−2·h−1 — [60]
Coasts of Greenland

(EW) 1–35% 0.04–3.83 µmolN·m−2·h−1 — [61]

South pacific
coastal, Peru 48% 1.8–44.2 µmolN·L·h−1 Ca. Scalindua [62]

Bay sediment

Aarhus Bay 2% 0.625–1.333 µmolN·h−1 — [21]
Beibu Gulf 13–34% 0.13–1.22 µmolN·L−1·h−1 — [63]

Northeast of Daya
Bay, China 0.84% 1.26 µmolN·kg−1h−1 — [64]

Jiaozhou Bay (JZB) 0.07–18.55% 0.01 ± 0.00–0.24 ± 0.03
µmolN·kg−1·h−1

Ca. Scalindua,
Ca. Brocadia
Ca. Kuenenia

[65]

Chesapeake Bay 0–22% — Ca. Scalindua [66]
Shaws Bay, New

South Wales,
Australia

74% 0.18 µmolN·m−2·h−1 — [67]

Arcachon Bay,
Atlantic Ocean,

France
14–45% 0.617 ± 0.15–9.921 ± 6.533

µmolN·L−1·h−1 Ca. Scalindua [68]
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Table 2. Cont.

Ecosystem Research Object Research Area Nitrogen Removal
Contribution Rate Reaction Rate Main

Microorganisms Reference

Freshwater
ecosystem

Estuary sediment

Yangtze Estuary,
China 6.6–12.9% 0.94–6.61 µmolN·kg−1·h−1

Ca. Scalindua
Ca. Brocadia
Ca. Kuenenia

[69]

Estuaries of
Southeast England 0.57–10.93% — — [70]

Colne Estuary, UK 30% 157± 15 µmolN·m−2·h−1 Ca. Scalindua [71]
St. Lawrence

Estuary, Canada 33% 5.5 ± 1.7 µmolN·m−2·h−1 — [72]

Cavado River
estuary, NW

Portugal
17–72% 0–3.3 µmol·L·h−1 — [73]

River and Lake
sediment

Yincungang River,
Jiangsu, China

0.8 ± 0.00–10.7 ±
0.03%

0.11 ± 0.07
µmolN·m−2·h−1–3.08 ± 0.95

µmolN·m−2·h−1

Ca. Kuenenia
Ca. Scalindua
Ca. Jettenia [32]

Geng River, Henan,
China

4.2 ± 0.02–10.2 ±
0.01%

1.27 ± 0.68
µmolN·m−2·h−1–6.79 ± 1.28

µmolN·m−2·h−1

Ca. Kuenenia
Ca. Scalindua
Ca. Jettenia

Yangtze River,
China 3.5–82.8% 6.76 µmolN·kg−1·h−1

Ca. Brocadia
Ca. Kuenenia
Ca. Jetternia

Ca. Scalindua
Ca.

anammoxoglobus

[8]

Shanghai River
Network, China 0.34–81.6% 0.0404–23.7 µmolN·kg−1·h−1 — [74]

Portugal, Ave River 5.5–35.1% 0.8–8.4 µmolN·L·h−1 — [75]Portugal, Douro
River 0–54.0% 0–2.9 µmolN·L·h−1 —

Lake tanganyika,
East Africa 13% 0.01 µmolN·m−2·h−1 Ca. Scalindua [10]

Donghu Lake,
Nanhu Lake,

Wuhan, Chaina
10.4% 87 ± 26 µmolN·m−2·h−1- 237

± 83 µmolN·m−2·h−1 — [76]

Constructed
wetland

Subtropical region,
Taiwan 0–0.76% 4.17 × 10−4–66.67 × 10−4

mg·m−2·h−1 — [77]

Beijing, china 33% 18 µmolN·kg −1·h −1

Ca. Jettenia
Ca. Brocadia

Ca.
Anammoxoglobus

[78]

Mito, Japan 3.1% 50. 3 µmolN·kg−1·h−1 Ca. Brocadia
Ca. Jettenia [79]

Underground water
Thuringia,
Germany 83% 1.46 × 10−4–1.96 × 10−4

µmol·L−1·h −1 Ca. Brocadia [80]

Elmira, Canada 18–36% 13.3 × 10−3–31.3 × 10−3

µmol·L−1·h −1 Ca. Brocadia [81]

Wetland sediment

Logan/Albert River,
Australia 0–9% 0.5–8 µmolN·L·h−1 — [82]

Goa, India 15–25% 101.15 ± 87.73 µmolN2·
kg−1·h−1 — [83]

Baiyangdian
Wetland 2.4–35% 0.8–240 µmolN·kg−1·h−1 Ca. Brocadia

Ca. Kuenenia [84]

Zhangjiang Estuary,
China 1.61–16.70% 0.20–11.56 µmolN·kg−1·h−1 — [16]

Terrestrial
ecosystem

Upland soil Tianjin, China 41–67% 0.23–0.74 µmolN·kg−1·h−1 Ca. Brocadia [33]Basel, Switzerland 37.5–58.3% 0.005–0.68 µmolN·kg−1·h−1 Ca. Brocadia

Coastal saline-alkali
soil Cixi, Ningbo, China 40–87.5% 0.09–1.32 µmolN·kg−1·h−1

Ca. Scalindua
Ca. Brocadia
Ca. Kuenenia

[85]

Vegetable field soil Nanjing, Jiangsu,
China 1.4–18.4% 0.046–0.729 µmolN·kg−1·h−1

Ca. Kuenenia
Ca. Brocadia
Ca. Jettenia

[86]

Paddy soil

Zhejiang, China 4–37% 0.5–2.9 µmolN·kg−1·h−1

Ca. Kuenenia
Ca.

Anammoxoglobus
Ca. Jettenia

Ca. Brocadia’

[34]

Zhejiang, Hunan,
Jiangix, China 1.5–35.1% 0.11–3.64 µmolN·kg−1·h−1 — [12]

Jiaxing, China 3.1–8.1% 0.78–1.60 µmolN·kg−1·h−1 Ca. brocadia
Ca. kuenenia [87]

Binhai, Leizhou,
Taoyuan, China 0.4–12.2% 0.02–0.77 µmolN·kg−1·h−1

Ca. Brocadia,
Ca. Kuenenia
Ca. Jettenia

[88]

Changshu, Jiangu,
China 3.58–8.17% 0.56–1.47 µmol N2·kg−1·h−1 Ca. Brocadia

Ca. Jettenia [89]

Riverina, New
South Wales (NSW),

Australia
17% 4.58 × 10−3 g·m−2·h−1 — [90]
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Table 2. Cont.

Ecosystem Research Object Research Area Nitrogen Removal
Contribution Rate Reaction Rate Main

Microorganisms Reference

Ibaraki Prefecture,
Japan 1–5% 2.2–2.7 µmol·kg−1·h−1 Ca. Brocadia

Ca. Kuenenia [91]

Other ecosystems

Heaven pond Tianshan, China 82% 1.162 µmol·kg −1·h −1
Between Ca.

Brocadia and Ca.
Jettenia

[92]

Hydrothermal
samples Mid-Atlantic Ridge — 1.25 × 10−3 µmol·h−1 Ca. Scalindua

Ca. Kuenenia [93]

Hot springs California and
Nevada — — Ca. Brocadia

Ca. Kuenenia [94]

Marine sponges Conch Reef, Key
Largo, Florida — — Ca. Brocadia [95]

3.1. Anammox in Marine Ecosystems

Marine sediments are often in an anoxic state. Under these conditions, the decom-
position of organic matter yields NH4

+-N. Denitrification and short-cut nitrification pro-
duce NO2

−-N, an intermediate product, which can provide favorable living conditions
for anammox bacteria. Thamdrup and Dalsgaard [21] first detected anammox activ-
ity in Danish coastal sediments using the 15N stable isotope tracer method, which con-
firmed the existence of anammox in natural ecosystems. Subsequently, anammox was
detected in marine sediments in several regions. Anammox is of great significance to
the biogeochemical cycles of marine nitrogen and marine ecology [30]. Based on 16S
rRNA and hzo gene research, Dang et al. [96] found that anammox bacteria accounted
for 0.094 × 10−4–0.21 × 10−4 copies·g−1 of the total microbial biomass in Jiaozhou Bay.
Fu et al. [97] found that the ratio of anammox bacteria to total microbial biomass was only
0.020 × 10−4–0.051 × 10−4 copies·g−1. Hou et al. [69] identified that the ratio of anammox
bacteria in the Yangtze River estuary and adjacent waters was between 9.86 × 106 and
1.02 × 108 copies·g−1. Ca. scalindua, which has a high salt tolerance and plays a critical
role in nitrogen production in marine environments. The anammox bacteria contribute
1–67%, or even higher to N2 production in the marine nitrogen cycle (Table 2). In particular,
the anoxic oceanic area is an important location for anammox, and the contribution rate
of anammox in different oceanic areas is considerably different. In the East Sea Ulleung
Basin, the anammox contribution rate to the nitrogen cycle was 56%, which exceeded that
of denitrification [55]. Bulow et al. [53] also detected high anammox reaction activity from
the Oman coast to the central–northeast Arabian Sea. It was found to contribute 30–50%
of the nitrogen cycle in the region, which was equivalent to the denitrification intensity.
However, the contribution of anammox to the nitrogen cycle in some marine sediments is
relatively low [60]. For example, the contribution rate of anammox measured by Hietanen
and Kuparinen [57] in the northern Gulf of Finland was only 10–15%, and denitrification
was found to play a leading role. In conclusion, anammox activity is different in different
sea areas, which may be related to the different environmental factors (ecological niches) in
different sea areas. Therefore, the contribution rate of anammox to the sediment nitrogen
cycle is different in different sea areas.

The contribution rate of anammox to nitrogen in the bay is 0.07~74%, and the N2
production contribution of anammox bacteria in estuarine is up to 30% [71].

It has been observed that there are anammox bacteria of the genera Ca. Brocadia, Ca.
Kuenenia, and Ca. Scalindua in the Zhangjiang estuary wetland [16]. Estuaries are among
the areas with the most intense land-ocean interactions and the most complex ecological
structure, which can create a microenvironment suitable for the survival of different types of
anammox bacteria. In addition, Ca. Brocadia and Ca. Kuenenia were found in the sediments
of estuaries and bays, indicating that the anammox bacteria of these two genera have a
salt tolerance capacity in the alternating freshwater and ocean zones. The ecological and
physiological differences in these anammox bacteria are also the drivers of the anammox
community’s geographical distribution pattern in estuaries and bays.
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3.2. Anammox in River Ecosystems

Anammox bacteria in freshwater ecosystems differ from those in oceanic ecosystems.
The river basin nitrogen contribution rate in most freshwater areas remains lower than that
of the marine environment. The contribution rate of anammox in the Ave River of Portugal
is 5.5–35.1%, and the reaction rate is 0.8–8.4 nmol N·cm−3·h−1 [75]. Meyer et al. [82]
found that the N2 contribution rate of anammox in the Logan/Albert River system in the
subtropical area of southeast Queensland, Australia is 0–9%, and the reaction rate is similar
to that of the Ave River, which is 0.5–8 nmol N·cm−3·h−1. These studies show that the
contribution rate of anammox to nitrogen in freshwater is low, and denitrification plays an
important role in the nitrogen cycle. The reason for this may be because the organic carbon
content in freshwater sediments is rich, and most denitrifying bacteria are heterotrophic
bacteria, so anammox bacteria cannot gain an advantage when they coexist and compete
with denitrifying bacteria. Most anammox bacteria in freshwater ecosystems belong to
Ca. Brocadia [31] and Ca. Kuenenia [32]. Chen et al. [8] found abundant anammox bacteria
in the Yangtze River Basin of China, including four types of Ca. Brocadia: Ca. Kuenenia,
Ca. Jetternia, Ca. Scalindua, and Ca. Anammoxoglobus. The anammox contribution rate was
3.5–82.8%, and the reaction rate was 6.76 nmol Ng−1h−1. This is because the sediments
along the Yangtze River contain a certain amount of anammox bacteria with high spatial
heterogeneity, so the nitrogen loss shows heterogeneity.

Owing to its fluidity and external pollution, the activity and contribution of anammox
are significantly different in different locations [65]. Bohlke et al. [98] first detected anam-
mox in groundwater using the isotope tracer method and identified a rate of
0.027 µmol·L−1·d−1, indicating that anammox plays a secondary role in the groundwater
nitrogen cycle. Moore et al. [81] reported the activity of anammox bacteria in groundwater
polluted with ammonium in Elmira, Canada. They detected four types of anammox mi-
crobial species and found that the reaction with ammonium caused 18–36% nitrogen loss.
Smits et al. [99] also found that anaerobic anammox bacteria were present in ammonia-
contaminated groundwater, in addition to anammoxidation, and found that this reaction
contributed 39–90% of the potential N2 production. These results indicate that anammox
plays a key role in denitrification in nitrogen-polluted groundwater. Therefore, it is specu-
lated that there may be a specific heterogeneity in the distribution of anammox bacteria in
groundwater systems.

3.3. Anammox in Lake Ecosystem

Schubert et al. [10] first reported the distribution of anammox bacteria in a natural
freshwater ecosystem in Lake Tanganyika, mainly in the Ca. Scalindua. The maximum ac-
tivity of the anammox bacteria was 10 nmol·N2·h−1. The anammox bacteria’s contribution
rate to the nitrogen cycle in this area is 13%, in addition, their activity and contribution
rates are not inferior to those of anammox bacteria in some marine habitats [56,61]. The
contribution of N2 to anammox in a constructed wetland in the subtropical region of
Taiwan was only 0–0.76% [77]. However, in the eutrophic freshwater Puhu Lake, Hubei
Province, the relative contribution of the anammox process to nitrogen production is high.
From this, up to 40% of N2 production is related to anammox activity. The study found a
positive correlation between NO3

− concentration and nitrogen production contribution
rate of the anammox process, indicating that NO3

− concentration is the key factor for the
development and activity of anammox bacteria in this freshwater habitat [100].

3.4. Anammox in Terrestrial Ecosystems

Some areas in the terrestrial ecosystem can provide suitable living conditions for anam-
mox bacteria. In recent years, human activities have resulted in an influx of large amounts
of nitrogen into marshlands, farmlands, and other terrestrial ecosystems. Anammox is
likely to occur in selected areas lacking oxygen. However, currently, research on anammox
in terrestrial ecosystems is mainly focused on farmland soils. Humbert et al. [13] first
detected Ca. Scalindua, Ca. Kuenenia, Ca. Brocadia, and Ca. Jettenia in different terrestrial
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environments such as swamps, polluted interstitial aquifers, permafrost, and farmland soil.
Anammox bacteria are only found in soil to a certain depth. The highest rate of anammox
was identified in the 20–30 cm layer, which indicated that the spatial heterogeneity and
distribution of anammox bacteria in terrestrial ecosystems only exist in specific ecological
environments. In China, the contribution rate of anammox to N2 is 4–37% in Zhejiang
paddy soil [34], 1.5–35.1% in Hunan and Jiangxi paddy soil [12], and 3.1–8.1% in Jiaxing
paddy soil [87]. Among them, Ca. Brocadia and Ca. Kuenenia were the most dominant
bacterium. Most of these soils are dominated by Ca. Brocadia. However, in the saline–alkali
soil of a Hai-han horticultural farm in Ci-xi, Ningbo, the highest rate of anammox is 40–
87.5%, and the reaction rate is 0.09–1.32 nmol N·g−1·h−1. This is because the terrestrial
ecosystem is more likely to form an anoxic or even anaerobic environment conducive to
anaerobic ammoxidation. Therefore, the control of DO is an important factor in the activity
of anaerobic ammoxidation. The dominant bacteria is similar to that of marine ecosystems,
mainly the salt-tolerant Ca. Scalindua with a small proportion of Ca. Brocadia and Ca.
Kuenenia also being detected. Clearly, many microbial niches in the soil were found to
support the ecological and physiological functions of different anammox bacteria [101].

3.5. Anammox in Other Ecosystems

In addition to these ecosystems, anammox bacteria are distributed in other ecosystems.
Jaeschke et al. [94] observed the presence of anammox bacteria in hot springs at 65 ◦C. Ac-
cording to 16S rRNA phylogenetic analysis, Ca. Brocadia fulgida, Ca. Brocadia anammoxidans
and Ca. Kuenenia stuttgartiensis are present in hot springs. Byrne et al. [93] also detected Ca.
Scalindua in the deep sea hydrothermal vents of the Mid-Atlantic Ridge with temperatures
up to 60–85 ◦C and confirmed its anammox activity. Anammox bacteria found in hydrother-
mal ecosystems can be used to improve the understanding of the nitrogen cycle in the
deep sea. Mohamed et al. [95] observed the distribution of anammox bacteria in marine
sponges. The anammox bacteria detected in this study had a relatively distant relationship
with Ca. Brocadia fulgida. Anammox bacteria were also detected and found to dominate in
the sediment samples of the lakeside water–land boundary zone of Tianshan Tian-chi, a
low-temperature and high-altitude area in China, with a contribution rate of 82%, which
is higher than that previously reported in other environments [92]. The distribution of
anammox in these ecosystems shows that anammox plays an important role in the nitrogen
cycle of certain specific ecosystems and that the extremity of the environment is not a
controlling factor of anammox activity.

3.6. Anammox in Wastewater Treatment System

Anammox has been detected in several natural ecosystems globally. As the largest
biotechnology application, wastewater treatment plants (WWTPs) play an important role
in the global nitrogen cycle [102]. The anammox rate of municipal sewage treatment plants
in winter is 0.08–0.36 µmol N·g−1·h−1 and 0.12–1.20 µmol N·g−1·h−1 in summer. The
contribution to N2 production is 2.05–6.86% and 1.71–7.26% respectively, which verifies
the substantive contribution of the anammox process in municipal sewage treatment for
the first time [103]. Research by Meng et al. displayed that the abundance of plancto-
mycetes in WWTPs of mainstream cities and towns was 41.873–96.565%, mainly including
four anaerobes: Ca. brocadia, Ca. kuenenia, unclassified Ca. brocadiaceae, and Ca. anammox-
oglobus. The dominant anaerobe was unclassified Ca. brocadiaceae, with an abundance of
33.363–95.346%. Simultaneously, anaerobe diversity analysis showed that the diversity
was low in WWTPs in mainstream cities and towns. Different biological units in the
same WWTPs could be distributed in the same quadrant. The biological units of different
WWTPs are both similar and different [104]. According to Lu et al. [105], when the salinity
increases to 160 mmol·L−1 during wastewater treatment, and the main functional bacteria
change from Ca. kuenenia to unclassified Ca. brocadiaceae. There are great differences in the
optimal temperature, pH, and salinity of different anaerobes in the wastewater treatment
system [16].
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4. Influential Factors on Anammox Distribution

Differences in the anammox bacteria distribution in the natural environment may be
due to environmental factor restrictions. Different ecological substrates affect the commu-
nity structure and activity of the anammox bacteria. In recent years, many studies have
discussed anammox community diversity, abundance, and activity in different environ-
ments. Correlations between these aspects and environmental factors provide a theoretical
basis for revealing the cause of the spatial heterogeneity and environmental functions of
anammox [106]. The environmental factors affecting anammox include temperature, pH,
substrate concentration, organic matter content, dissolved oxygen (DO), and water salinity.

4.1. Temperature

Temperature dependence is an important limiting factor affecting the operation of
biological nitrogen removal systems [107]. In different ecosystems, anammox exhibits a
strong temperature adaptation range of −2–80 ◦C. Anammox bacteria can survive in a
wide temperature range and can exist in extreme environments, such as hot springs and
hydrothermal vents with temperatures up to 60–80 ◦C, or river and marine sediments at
temperatures of −5–4 ◦C [108]. However, low temperatures affect the growth rate of the
anammox bacteria. Laureni et al. [109] showed that reducing the temperature from 29 ◦C
to 12.5 ◦C increased the doubling time from 18 to 79 d. Lotti et al. [110] achieved a specific
anammox growth rate of 0.02 d−1 at 20 ◦C, and the doubling time was 35 d. Lowering the
temperature to 15 ◦C resulted in a decrease in the growth rate to 0.009 d−1 and a doubling
of time to 77 d. The optimal temperature of anammox in WWTPs is 33 ± 1 ◦C [111],
which is lower than that of most natural ecosystems. The optimal temperature range
for anammox activity in estuarine sediments is 14–16 ◦C, which is very similar to the
previously reported optimal temperature of 12–15 ◦C in marine sediments [61]. In a
natural environment, denitrification and anammox can produce a large amount of N2,
and denitrification can promote the anammox. In the summer, more nitrites are produced
as intermediate products by enhancing denitrification. This could stimulate the growth
of anammox bacteria during the warm season, and increase the incidence of anammox
reactions. However, in a study by Cheng et al. [74], the denitrification rate in summer was
higher than that in winter, whereas the anammox rate in winter was higher than that in
summer. Rysgaard et al. [61] determined that the optimal temperature for anammox activity
in the Arctic Ocean was 12 ◦C. Anammox bacteria exhibit a strong temperature adaptability
in the natural environment. Therefore, seasonal and spatial changes in anammox activity
may be regulated by water temperature and substrate content in the sediment.

4.2. pH

The most suitable pH condition for the anammox bacteria as identified in a reactor
is a neutral or weak alkaline range between 6.7 and 8.3 [18,112]. The pH of unpolluted
water and sediment in natural habitats is within this range and is suitable for the growth
of microorganisms. Nevertheless, active anammox bacteria were also detected in extreme
freshwater environments with pH values of 3.88 and 8.91 [108]. Temperature and pH have
significant effects on the anammox process, and anammox bacteria are particularly sensitive
to changes in pH. On the one hand, pH strongly inhibits the anammox process by affecting
the substrate concentration (ammonium and nitrite) [113]. However, pH directly affects the
anammox bacteria community structure and diversity, thus affecting the anammox process.
Wang and Gu et al. [114] showed that high pH (9.0) had a great impact on the community
structure of anammox bacteria, whereas low pH (5.0) had little impact. However, compared
to the control group at pH 7.0, the biodiversity of both cases increased. This may be
because of the promotion of NH4

+ and NO2
- generation after acid or alkali treatment, thus

forming an environment conducive to the growth and development of anammox bacteria.
In addition, high pH also causes the unavailability of trace elements [115]. It is clear that
anammox bacteria exhibit better activity in acidic environments.
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4.3. DO and Salinity

Anammox bacteria is an anaerobic microorganism that is sensitive to changes in
oxygen concentration. They can survive in an environment with less than 5% oxygen
saturation where oxygen partial pressure activity of more than 18% oxygen saturation
may be inhibited (reversible inhibition). However, the oxygen content in the natural
environment varies in the sediment or water layer. Therefore, anammox bacteria in the
natural environment may have a higher oxygen tolerance. However, areas with low
oxygen content had a high incidence of anammox bacteria. Therefore, the factors affecting
anammox activity change with sampling depth [116].

With the change in salinity, the species of anammox bacteria and the rate of the
anammox reaction also change [5]. Most bacteria in the ocean are Ca. Scalindua, which
have strong salt tolerance, unlike the main bacteria found in freshwater systems and
reactors. Sonthiphand et al. [117] used sequencing and nonparametric analyses using
distance matrices to test several marine samples from around the world. They confirmed
that salinity is the main factor affecting the global distribution of anammox bacteria. In
addition, there is a significant correlation between anammox bacteria species richness and
salinity. Dale et al. [106] noticed that the change in anammox bacterial abundance was
closely related to the change in salinity in the Cape Verde estuary, which ranged between 0
and 9.9. Zheng et al. [118] found that the abundance of anammox bacteria was significantly
correlated with the salinity of the Yangtze River Estuary (p < 0.05). Salinity has a great
influence on the abundance of anammox in the Cape Verde and the Yangtze River estuaries.
In areas with low or high salinity (15.65–34.46 or 34.47–34.48), the abundance of anammox
bacteria was relatively low.

4.4. Substrate Concentration

Substrate concentration, such as NO3
− and NO2

−, and organic matter content both
significantly affect the abundance and distribution of the anammox bacterial community.
As a substrate, nitrite provides nutrients and energy to the anaerobic anammox bacteria.
However, when the concentrations of ammonia nitrogen and nitrite exceed a threshold, the
activity of anammox bacteria is inhibited. Studies have shown that the anammox rate is
linearly correlated with the concentration of NO3

− in Greenland [61]. Moreover, anammox
bacteria are advantageous in sediments with high and stable NO3

− conditions. Moreover,
Wu et al. [65] found that high NO3

− in Jiaozhou Bay is beneficial for the growth of different
anammox bacteria in the surface sediment. The observed anammox activity in the Yangtze
River estuary is more sensitive to nitrite [69], which may be because the nitrite content in
the sediment is a controlling factor of anammox in the sediment. Nitrite is an intermediate
product formed by denitrification by denitrifying bacteria, and its content in the natural
environment is lower than that of other inorganic nitrogen salts; therefore, the content of
nitrate or nitrite has become an important limiting factor for anammox.

4.5. Organic Matter Content

Anammox bacteria are chemoautotrophic bacteria that do not require organic carbon
sources [119]. Furthermore, when the availability of electron donors in sediments becomes
high, anammox may not exceed that of denitrification [120]. Nicholls and Trimmer [70]
displayed that the abundance of anammox bacteria increases significantly with an increase
in TOC. This is because more organic matter in the sediment can produce more NH4

+

through ammonification and more NO2
− through denitrification. This leads to a positive

correlation between the anammox abundance and TOC. Trimmer et al. [121] studied the
anammox process in the sediments of the Thames Estuary, UK. They also found that there
is a significant positive correlation between the anammox process and organic matter
content, which contributes 1–8% to the production of N2. Lu et al. [122] noted that in the
low-organic-matter-content environments of Sandusky Lake, the amount of N2 produced
by anammox was higher than that produced by denitrification. This was owing to the high
organic load in the study area which promoted the reduction of NO3

− by denitrification
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and made denitrification more advantageous than anammox. However, with a decrease
in organic loading, denitrification activity decreased. Simultaneously, a large quantity of
NO2

− (which can be used by organisms) can provide favorable conditions for the anammox
reaction and increase anammox activity. These results show that the diversity and activity of
anammox increased with a decrease in organic carbon content. Therefore, an environment
with a low organic carbon content is more favorable for the survival of anammox bacteria.

5. Expectation

Existing studies have only analyzed the anammox contribution rate to the nitrogen cy-
cle in local ecosystems. The nitrogen cycle of global ecosystems, as well as the participation
and contribution rate of anammox, remain unknown. Research on anammox processes in
different natural and artificial ecosystems should be expanded to determine their actual
contributions. By detecting sediment samples, isolating and identifying strains, establishing
microbial metabolic models, etc., a deeper understanding of the anammox process can be
gained, and the contribution of anammox to global nitrogen cycling can be quantified based
on data. Further research can be carried out to explore its contribution to global nitrogen
cycling by studying anammox processes in different ecosystems, exploring its advantages
in nitrogen removal, considering its environmental impacts and safety issues, and quan-
tifying its contribution through data analysis and modeling. Models can be established
through numerical simulation to draw the activity distribution map of anammox reactions
in global aquatic and terrestrial ecosystems, predict and evaluate the role of anammox in
the spatial large-scale nitrogen cycle, accurately evaluate the important role of anammox
reactions in the nitrogen cycle, comprehensively investigate all environmental factors in
the ecosystem, and analyze the comprehensive effects of influencing factors on different
systems. This is undertaken to provide a scientific basis for the global nitrogen cycle, which
is of great significance for improving the biogeochemical cycle of nitrogen in ecosystems.

6. Conclusions

The anammox process is catalyzed by Nir, HAO, HH, HZO, and Nar. Anammox
bacteria, which have unique anammox structures. At present, 26 species of anammox
bacteria belonging to 7 genera have been identified in natural ecosystems. They exist widely
in different ecosystems. In natural ecosystems, anammox maintains nitrogen balance by
converting excess ammonia nitrogen into nitrogen. Anammox occurs under anoxic or
anaerobic conditions, so it usually occurs at the top of the sediment or at the bottom of
the water column. It makes an important contribution to the nitrogen cycle, especially
when the nitrification/denitrification process is inhibited. The contribution of anammox
to the marine ecosystem is the highest, the N2 production rate can reach 67%, and the
dominant bacteria in the ocean is Ca. scalindua. The nitrogen contribution rate of anammox
to most freshwater areas was lower than that of the marine environment. Anammox
bacteria play a key role in the nitrogen pollution of groundwater. The concentration of
NO3

- is a key factor for the development and activity of anaerobic anammox bacteria in
lake ecosystems. The main functional bacteria in sewage treatment systems is Ca. kuenenia.
The distribution of anammox bacteria in natural environment is affected by environmental
factors such as temperature, pH, substrate concentration, organic content, dissolved oxygen,
and salinity. Sometimes anammox bacteria exhibit thermophilic, acidophilic, and salt-
tolerant characteristics. The study of environmental factors on the distribution of anammox
bacteria is helpful to further analyze the global contribution of anammox to nitrogen.
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