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Abstract: A digital twin basin serves as a virtual representation of a physical basin, enabling syn-
chronous simulation, virtual–real interaction, and iterative optimization. The construction of a
digital twin basin requires a basin database characterized by large-scale coverage, high-precision,
high-resolution, and low-latency attributes. The advancements in remote sensing technology present
a new technical means for acquiring essential variables of the basin. The purpose of this paper
was to provide a comprehensive overview and discussion of the retrieval principle, data status,
evaluation and inter-comparison, advantages and challenges, applications, and prospects of remote
sensing technology in capturing seven essential variables, i.e., precipitation, surface temperature,
evapotranspiration, water level, river discharge, soil moisture, and vegetation. It is indicated that
remote sensing can be applied in some digital twin basin functions, such as drought monitoring,
precipitation forecasting, and water resources management. However, more effort should be paid
to improve the data accuracy, spatiotemporal resolution, and latency through data merging, data
assimilation, bias correction, machine learning algorithms, and multi-sensor joint retrieval. This
paper will assist in advancing the application of remote sensing technology in constructing a digital
twin basin.
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1. Introduction

The concept of a digital twin has garnered substantial attention in recent years due to
its efficacy as a potent tool for simulating and managing complex real-world systems [1].
A digital twin is a virtual representation of a physical product, system, or process that
facilitates real-time monitoring, simulation, analysis, and management [2,3]. In the field of
hydrology and water resources, a digital twin basin serves as a virtual representation of
a physical basin, enabling synchronous simulation, virtual–real interaction, and iterative
optimization [4]. Essentially, a digital twin basin facilitates a comprehensive understanding
of the water and energy cycles within a basin, while also providing vital decision support
for government agencies [5,6].

The construction of a digital twin basin requires a basin database characterized by
large-scale coverage, high-precision, high-resolution, and low-latency attributes [7,8]. Such
a database can be obtained through two primary methods: in situ measurements and remote
sensing [8]. In situ measurements involve the direct observation of the basin’s parameters
and variables through ground-based monitoring stations. This approach provides precise
and accurate data at the local scale, enabling detailed analysis and understanding of specific
points within the basin. However, in situ measurements have limitations in terms of low
spatial coverage and they are labor-intensive, which hinders the ability to capture basin-
wide dynamics and may result in data gaps in remote or inaccessible regions [9]. On the
other hand, remote sensing has emerged as a recent advancement in basin observation [10].
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Remote sensing refers to a technology that employs non-contact detection techniques to
extract, process, analyze, and apply electromagnetic wave information that is reflected,
radiated, or scattered by distant objects [11–13]. By utilizing satellite or airborne sensors,
remote sensing enables large-scale, synchronized, and timely data acquisition, providing a
comprehensive data view of the basin.

In recent years, advancements in sensor technology and retrieval algorithms have
significantly improved data quality and accessibility of remote sensing observations [13,14].
These advancements have facilitated the utilization of remote sensing data in various
water conservancy applications, such as basin flood forecasting, drought monitoring,
water resources evaluation, and soil and water conservation analysis [15]. In ungauged
basins, remote sensing serves as a valuable source of data for hydrological simulation
and prediction. For instance, Du [16] utilized satellite-retrieved glacier, precipitation,
temperature, and water level data to simulate a runoff time series in the Tibetan Plateau. In
addition, remote sensing-based observations can extend the scale of disaster monitoring,
such as drought from the local scale to a larger regional scale. For instance, Zhang et al. [17]
developed a drought index based on satellite-retrieved precipitation, soil moisture, and
surface temperature data, establishing a satellite-based drought monitoring system in
northern China.

Although remote sensing provides a promising data source for the construction of
digital twin basins, several challenges still need to be addressed. Firstly, the long re-visit
periods of satellites results in inadequate temporal resolution, restricting the availability
of observational data and the ability to track rapid changes in observed variables [18].
Consequently, applying such remote sensing data to hour-scale flood forecast applications
in digital twin basins becomes challenging. To address this challenge, some researchers
have developed a data assimilation framework that integrates land surface models and
remote sensing observations to fill in the temporal gaps and enhance temporal resolution.
For instance, Chao et al. [19] developed a framework for assimilation of satellite-based soil
moisture data into the WRF-Hydro model based on the EnKF algorithm for flood forecast-
ing. Secondly, certain sensors, such as the microwave radiometer, suffer from insufficient
spatial resolution due to their long wavelengths [20]. Consequently, the application of
such remote sensing data to small basins poses challenges. So far, many scholars have
conducted research on downscaling methodologies to enhance the spatial resolution of
remote sensing observations. For instance, Liu et al. [21] proposed an attention mechanism-
based convolution network to downscale satellite-based precipitation data from a coarser
spatial resolution of 0.1◦ to a finer resolution of 0.01◦. Thirdly, the time series of individual
remote sensing products is usually not long enough for hydrological applications. One
promising solution to this issue is the merging of multi-source remote sensing products [22].
For example, Dorigo et al. [23] developed a data merging framework employing a triple
collocation algorithm, incorporating data from 12 remote sensing soil moisture products to
generate a satellite-based soil moisture product spanning the period from 1978 to 2022.

The recent advancements in remote sensing technology have made it a valuable
tool and data source with both promise and challenges. However, there is currently a
lack of review papers in the literature that comprehensively investigate and discuss the
applications and prospects of remote sensing technology in the construction of digital
twin basins. In view of this, the goal of this paper was to provide a comprehensive
overview of the retrieval principles, data status, existing challenges, and future prospects
of remote sensing technology in capturing seven essential variables, i.e., precipitation,
surface temperature, evapotranspiration, water level, river discharge, soil moisture, and
vegetation. Section 2 provides a concise overview of the classification, characteristics,
and applications of the electromagnetic spectrum in remote sensing. Section 3 focuses on
the applications and prospects of seven remote sensing variables in digital twin basins.
For each variable, the retrieval principle, data status, evaluation and inter-comparison,
advantages and challenges, applications, and future outlooks are reviewed and discussed
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in order. The conclusion of this paper will assist in advancing the application of remote
sensing technology in constructing a digital twin basin.

2. Overview of Remote Sensing Technology

This section provides an overview of remote sensing technology, which refers to
the non-contact detection technology that processes and analyzes reflected, radiated, or
scattered electromagnetic waves from objects [24]. Electromagnetic waves are categorized
according to the wavelength range, including ultraviolet (10 to 400 nm), visible spectral (400
to 700 nm), infrared (700 nm to 1 mm), microwave (1 mm to 1 m), and longer wavelengths.
Among these, visible spectral, near-infrared, thermal infrared, and microwave remote
sensing are the most commonly used in remote sensing applications [25]. Visible spectral
and near-infrared remote sensing in the visible light and infrared bands are collectively
referred to as visible spectral remote sensing, as they receive electromagnetic waves from
the surface reflection of sunlight. This range provides ultra-high resolution and full-color
images. However, it is significantly constrained by sunlight and cloud conditions [26,27].
On the other hand, in the thermal infrared and microwave bands, with wavelengths
exceeding 3 µm, there are fewer limitations posed by cloud cover and sunlight. Thermal
infrared remote sensing enables the establishment and training of retrieval models between
thermal infrared information and object temperature. Hence, it finds wide applications in
wildfire monitoring, surface temperature retrieval, and other relevant research [28]. Figure 1
shows the electromagnetic spectrum classification and its corresponding applications.
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Microwave remote sensing employs longer wavelength microwave bands than both
visible spectral remote sensing and thermal infrared remote sensing, which makes it capable
of penetrating through clouds, vegetation, and surfaces more efficiently. Consequently,
meteorological, cloud, and sunshine conditions have minimal impact on microwave remote
sensing, making it an excellent tool for all-day and all-weather continuous operations.
Despite this advantage, the spatial resolution of microwave remote sensing tends to be
coarser due to its longer wavelength [29]. The bands used in microwave remote sensing
are categorized as K, Ku, X, G, C, S, Ls, and L according to their frequencies. Among
these bands, the X, C, and L bands are the most widely used in soil moisture and ocean
observations, while the K band is widely used for cloud and water vapor observations.
In terms of sensor technology, microwave remote sensing can be divided into active
and passive microwave remote sensing [20]. Active microwave remote sensing refers
to the use of a microwave transmitter such as synthetic aperture radar (SAR) to illuminate
an area of interest and then receiving the reflected microwaves from that area using a
receiver. Passive microwave remote sensing, on the other hand, refers to the detection of
naturally occurring microwave radiation emitted by the Earth’s surface and atmosphere
by microwave radiometers [30]. Active microwave remote sensing typically has higher
spatial resolution than passive remote sensing due to the different working principles of
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the sensors. However, the accuracy of active microwave remote sensing is more likely to
be affected by environmental factors such as water bodies. Joint retrieval is the process of
combining data from both active and passive microwave sensors to improve the accuracy
and resolution of the measurements, which is the main direction of research in the retrieval
of future earth variables [31,32].

3. Applications and Prospects of Remote Sensing in Digital Twin Basin Construction
3.1. Precipitation

Precipitation plays a crucial role in global water and energy cycles as it drives hydro-
logical processes [32,33]. Accurate, high-resolution, real-time precipitation data are crucial
for effective flood forecasting, drought monitoring, and water resource management, all of
which are primary objectives of digital twin basin functionality [34–36].

Currently, precipitation can be measured using two methods: ground-based observa-
tions by rain gauge stations and remote sensing-based observations by sensors [37]. Remote
sensing-based retrieval can further be categorized into ground-based radar observations
and satellite remote sensing-based retrieval. Ground-based observations by rain gauge
stations are the most accurate means of obtaining precipitation data and have been estab-
lished for a long time with long sequences of data. However, due to factors such as labor
costs, economic viability, terrain complexity, and other considerations, achieving large-
scale and high-resolution precipitation observations is difficult [38]. Ground-based radar
observations, which employ the active emission of electromagnetic waves and analysis of
signals scattered by raindrops, can obtain high-precision and high-resolution precipitation
data on a regional scale. However, this method still has several limitations, including short
time series, high cost, and high terrain requirements [39]. Presently, there are over 200
ground-based radars in China that are mainly concentrated in the southeast coastal areas
and sparsely located in the northwest region. Satellite remote sensing, on the other hand,
retrieves precipitation data by receiving cloud-reflected signals through satellite-borne
sensors, allowing large-scale and all-day precipitation observations, particularly in un-
gauged basins such as in Western China. However, the uncertainty and spatiotemporal
resolution of satellite remote sensing-based precipitation data remain crucial challenges
to be solved [40]. The most commonly used satellite remote sensing-based precipitation
datasets include TRMM (Tropical Rainfall Measuring Mission), GPM (Global Precipitation
Measurement), GSMaP (Global Satellite Mapping of Precipitation), and China’s Fengyun-2
series satellite precipitation data. Table 1 summarizes these mainstream satellite-based
precipitation products with the corresponding data acquisition methods, spatiotemporal
resolution, and coverage. Over the years, significant improvements have been made in
data acquisition methods and spatiotemporal resolution. Additionally, this table shows
the transitioning from traditional single-satellite-based retrieval to multi-sensor or multi-
satellite-based joint retrieval, such as the GPM series precipitation satellites. Figure 2
illustrates the composition of the GPM series precipitation satellites.

Researchers have employed different validation and evaluation methods to assess
the precision and uncertainty of satellite-based precipitation products across diverse re-
gions [41]. This study reviewed previous research related to the evaluation and inter-
comparison of these data products, aiming to enhance our understanding of their quality
and associated challenges within various areas. Table 2 presents a summary of author
names, data sources, study areas, and major conclusions from the corresponding reviewed
studies. In general, satellite-based precipitation products are becoming a reliable data
source with acceptable accuracy in various river basins around the world, especially in un-
gauged regions such as the Tibetan Plateau. On the other hand, calibration and validation
before data application are still indispensable in order to avoid uncertainty.
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Table 1. Summary of typical satellite precipitation products.

Product Method Spatial
Resolution

Temporal
Resolution

Spatial
Coverage

Temporal
Coverage

GPCP Infrared and microwave sensors 2.5◦ 1 month 60◦ N~60◦ S 1979~present

CMAP Satellite and ground data merging 2.5◦ 5 d 60◦ N~60◦ S 1979~present

TRMM Precipitation radar PR,
microwave TMI 0.25◦ 3 h 50◦ N~50◦ S 1997~2015

PERSIANN ANN based merging using
multi-satellite 0.25◦ 1 d 60◦ N~60◦ S 1982~present

CMORPH
MPRPH deformation algorithm for

microwave sensor and infrared
sensor data

0.25◦ 30 min 60◦ N~60◦ S 1998~present

GPM

Series satellites: equipped with
Ku/Ka dual-frequency precipitation

radar and multichannel
microwave imager

0.1◦ 30 min Global 2014~present

GSMaP GPM satellite retrieval by JAXA 0.1◦ 30 min Global 2014~present

IMERG NASA integrated satellite inversion
based on TRMM and GPM 0.1◦ 30 min Global 2000~present
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Table 2. Evaluation and inter-comparison of different satellite-based precipitation products over
different regions.

Study Data Area Conclusions

[42] (2020) GSMaP China

The calibration of GSMaP_NRT using a gauge-adjusted,
near-real-time GSMaP precipitation estimate

(GSMaP_Gauge_NRT) effectively reduced this bias and was
more consistent with gauge observations. The correction

scheme mainly acted on hit events and could hardly make up
the missed events of the satellite-based precipitation estimates.
The correction results were in good agreement with the original

GSMaP data globally.

[43] (2020) CMORPH/
IMERG United Arab Emirates

IMERG was significantly better than CMORPH in detecting
rainfall observed by the gauge network. Both products

performed quite well in rainfall detection, but reported rainfall
was not observed by the rain gauges at an alarming rate,

especially for light rain, while for moderate and intense (upper
quartiles) rainfall rates, performance was much better.

[44] (2021) IMERG/
TRMM United States

IMERG and its predecessor TRMM 3B42 performed
better in the eastern

CONUS than in the mountainous western CONUS. The
evaluation demonstrated the clear improvement in the IMERG

precipitation product, especially in reducing missed
precipitation in winter and summer and hit bias in winter,

resulting in better performance in capturing lighter
and heavier precipitation.

[45] (2022) PERSIANN/
GPCP Sudan

Satellite-based precipitation datasets had significant
uncertainties, and the quantile mapping (QM) method could be

applied to correct the systematic bias.

[46] (2022) PERSIANN/
GPCP Pakistan

The performance of the precipitation products was improved
by increasing the temporal and spatial scales. The feasibility of

certain precipitation products for streamflow prediction in
other semi-arid regions of the world should be further studied.
Combinations of different hydrological models should be used
along with a suite of precipitation products that have different

development mechanisms.

[47] (2022)

TRMM/
PERSIANN/

CMAP/
GPCP/

CMORPH

East Africa

All products showed systematic errors in rainfall retrieval that
decreased with an increase in rainfall amount

(>100 mm/month). CMORPH and TRMM showed consistently
high performance during March to May (MAM) and October to

December (OND) rainy seasons. The effect of elevation
variation was more evident during the OND season.

[48] (2022)
TRMM/

PERSIANN/
CMORPH

Tibetan Plateau

All products overestimated the precipitation at 0.1–5 mm/d
and underestimated the precipitation above 5 mm/d, especially
for PERSIANN. TRMM showed relatively stable performance

for various elevations and climate zones. For hydrological
model validation, TRMM had the best performance during the
calibration period. Overall, TRMM had the highest applicability

in the study area, however, its impact on the uncertainty of
hydrological modeling needs to be further studied.

[49] (2022) PERSIANN California, USA

PERSIANN-Cloud Classification System–Climate Data Record
(CCS–CDR) had the least bias among all PERSIANN family

datasets, while the two near-real-time datasets,
PERSIANN–Dynamic Infrared Rain Rate (PDIR), performed

significantly more accurately than PERSIANN-Cloud
Classification System (CCS). In simulating streamflow,

CSS-CDR and PDIR also had accurate estimations.
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Table 2. Cont.

Study Data Area Conclusions

[50] (2022) PERSIANN Contiguous United
States

The extreme gradient boosting (XGBoost) and random forest
algorithms were the most accurate in terms of the squared error
scoring function. The remaining algorithms could be ordered as
follows, from best to tworst: Bayesian regularized feed-forward

neural networks, poly-MARS, gbm, MARS, feed-forward
neural networks, and linear regression.

[51] (2023)

GPCP/
PERSIANN/
CMORPH/

GPM/
GSMaP

Xiangjiang Basin,
China

GSMaP ranked as the best-performing satellite precipitation
product with the overall statistical metrics, while GSMaP gave
the closest agreement with the observations. Additionally, the

GSMaP-driven model was also superior in depicting the
rainfall–runoff relationship. However, satellite remote sensing
still had difficulty accurately estimating precipitation over a

mountainous region.

[52] (2023)
IMERG/
TRMM/

PERSIANN
Central Asia

The performance of all products was more capable on a
monthly scale than on a daily scale. All products showed

underestimations in the summer season. They showed better
performance in capturing light precipitation events while

IMERG performed best in daily, monthly, and seasonal
estimations and was capable of being used in hydro-climatic

applications over the mountainous domain of Central Asia. The
performance of PERSIANN-CDR and TRMM was acceptable at

low topography.

[53] (2023) GSMaP/
IMERG Tibetan Plateau

The correction of precipitation measurements with the machine
learning method (XGBoost regression) outperformed the

traditional statistical method in accuracy metrics and frequency
distribution, offering a promising strategy for obtaining more
accurate precipitation measurements in high-altitude regions.

[54] (2023) PERSIANN/
IMERG

Contiguous United
States

Tree-based ensemble algorithms are adopted in various fields
for solving regression problems with high accuracy and low

computational costs. The results indicated that extreme
gradient boosting (XGBoost) was more accurate than random
forest and gradient boosting machine (gbm), and IMERG was

more useful than PERSIANN.

The construction of a digital twin basin necessitates high-precision, high-resolution,
and low-latency precipitation data. To improve the data accuracy, satellite-based precipi-
tation data need preprocessing, bias correction, or calibration to match the requirements
of digital twin basins. To date, the most promising approach for obtaining top-quality
precipitation data is through multi-source data merging [55,56]. The categories of data
merging algorithms include bias correction, interpolation distribution, multivariate re-
gression, and machine learning [57]. Tang [58] validated and evaluated the accuracy of
GPM satellite-based precipitation data globally, and proposed a deep learning algorithm
that merged passive microwave, infrared, and environmental data to enhance the data
quality. Liu [21] developed a multi-source data merging model for precipitation using the
random forest method and relied on radar precipitation and remote sensing precipitation
data in southwestern China. In terms of spatiotemporal resolution improvement, statistical
downscaling, dynamic downscaling, hybrid downscaling, optimal interpolation, and other
methods can be used. Sun et al. [59] employed an optimal interpolation algorithm to
create a high-resolution precipitation dataset for nearly 20 years based on ground-based
precipitation data and TRMM remote sensing-based precipitation data in Jiangsu Province.
For monitoring urban extreme precipitation, the latest technology permits the acquisition of
a 100-m grid and 1-min interval precipitation map using microwave link-based monitoring;
this technology is based on communication base stations [60]. Jiangyin City has imple-
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mented this technology to set up a network for monitoring in key urban areas, which has
significantly enhanced precipitation monitoring accuracy [61]. In addition, satellite-based
precipitation data should be available in real-time or near real-time to provide up-to-date
information for the requirements of digital twin basins. Delays in data processing, quality
control, and dissemination can affect the usefulness of satellite-based precipitation data for
digital twin basin applications such as flood forecasting.

In conclusion, the application of satellite-based precipitation data provides significant
potential for digital twin basin construction. However, there are still several challenges,
such as accuracy, resolution, and latency, that need to be assessed. Future research should
focus more on multi-source data merging, calibration and bias correction, high-resolution
retrieval algorithms, and modified downscaling algorithms. Additionally, attention must
be paid to computer hardware capabilities, such as parallel computing or GPU-accelerated
computing, which can help reduce the processing latency of satellite data.

3.2. Surface Temperature

Surface temperature is a critical variable for land surface biological and physical pro-
cesses, including vegetation photosynthesis, evaporation, and wildfire monitoring [62]. It
is also a key driving factor for water and energy cycles and holds significant research sig-
nificance in fields such as agriculture, ecology, hydrology, meteorology, and others [63]. Reli-
able surface temperature data are essential for hydrological modeling in digital
twin basins.

Ground-based meteorological stations serve as the primary method for surface tem-
perature observation, offering extensive time series data and high levels of accuracy. Sur-
face temperature data in areas lacking meteorological stations are obtained through in-
terpolation from nearby stations, leading to decreased accuracy in sparsely networked
regions [64,65]. Compared with ground-based temperature measurements, the advantages
of satellite-based surface temperature data include wide coverage, data consistency, cost-
effectiveness, and data accessibility. Since the 1980s, temperature retrieval algorithms have
been developed based on several earth-synchronous and polar orbit, sun-synchronous satel-
lites [64]. The temporal resolution of earth-synchronous satellite-based temperature data is
generally around 15 min, with a spatial resolution typically exceeding 5 km. On the other
hand, the spatial resolution of polar orbit, sun-synchronous satellite-based temperature
data is typically below 60 m, while the temporal resolution is usually greater than 2 days.
Currently, the primary methods for temperature retrieval include the atmospheric profile
extrapolation method, energy balance method, statistics method, temperature-vegetation
index method, and machine learning method [66]. Table 3 presents the details of main-
stream remote sensing temperature products, including the satellite carrier, sensor model,
spatiotemporal resolution, and time series. The table indicates that with advancements
in sensor technology, the spatial resolution of remote sensing temperature products has
progressed from an initial 1 km to 30 m, while the temporal resolution has improved from
16 days to 10 min.

Many studies have been conducted to validate the precision and uncertainty of satellite-
based surface temperature products across diverse regions. We reviewed previous research
related to the evaluation of these data products to enhance the understanding of data
quality and challenges. Table 4 presents a summary of author names, data sources, study
areas, and major conclusions from the corresponding reviewed studies. In general, the
accuracy of satellite-based surface temperature products varies a lot in different regions due
to the various land cover types, topography, heterogeneity, surface roughness, vegetation,
and climate [67]. For example, data retrieval in regions with dense vegetation cover suffers
more uncertainty compared to that in regions with bare soil or urban areas. In addition,
although land surface temperature retrieval based on Modis and Landsat is still the most
commonly used, the emergence of new satellites, such as Sentinel series and Fengyun
series satellites, will bring prospects for more accurate and higher resolution land surface
temperature retrieval in the future.
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Table 3. Summary of typical satellites for surface temperature retrieval.

Satellite Sensor Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

Terra/Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) 1 km 1 d 1999~present

Landsat5 Thematic Cartograph TM 60 m 16 d 1984~2012
Landsat7 Enhanced thematic mapper ETM+ 30 m 16 d 1999~2022
Landsat8 Land Imager OLI 30 m 16 d 2013~present
Landsat9 Land imager OLI-2 15 m 16 d 2022~present
GOES-16 Advanced Baseline Imager ABI 1 km 15 min 2016~present

Himawari-8 Multichannel visible infrared radiometer 500 m 10 min 2015~present
FY-4A Multichannel scanning imager 500 m 15 min 2018~present

Sentinel-3 Sea and Land Surface Temperature Radiometer 500 m 1 d 2016~present

Table 4. Evaluation of different satellite-based surface temperature products over different regions.

Study Data Area Conclusions

[68] (2017) MODIS Northeast China
Surface temperature could be accurately estimated using
remote sensing, but the model performance was varied

across different spatial and temporal scales.

[69] (2018) Himawari-8 East Asia

The accuracy of the algorithm was slightly dependent on
the season and time of day, showing better performance

during the warm season at night. Additionally, the
accuracy of the algorithm decreased when the lapse rate

exceeded 10 K and brightness temperature difference
exceeded 6 K.

[70] (2020) Landsat8 Conterminous United States

The uncertainty in downwelling and upwelling radiance
had a similar effect on LST in both daytime and nighttime,

but uncertainty from broadband emissivity was half as
much at night. Overall, all LST retrieval methods applied
to nighttime data provided highly accurate results with

different LSE models and lower bias compared to
in situ measurements.

[71] (2021) MODIS Global

Climate Forecast System Version 2 (CFSv2)-modeled
temperatures were combined with MODIS LST to derive a

continuous gap-filled global LST dataset at a spatial
resolution of 1 km. The gap-filled LST dataset had high

accuracy and could be used for various applications that
require continuous LST data. The accuracy was evaluated

in nine regions across the globe using cloud-free LST
(mean values: R2 = 0.93, RMSE = 2.7 ◦C).

[72] (2021)
Landsat5/
Landsat7/
Landsat8

Conterminous United States

The Landsat LST product had a relatively consistent
performance among Landsat 5, 7, and 8 sensors and could

be used for various applications over snow-free land
surfaces, snow-covered surfaces, and water surfaces.

[73] (2021) Landsat8/
MODIS Gansu, China

The fusion algorithm produced good results, and
ESTARFM had the highest fusion accuracy compared to
STARFM and FSDAF. The Landsat 8 LST product was
highly consistent with ground measurements, and the

fusion images were highly consistent with actual Landsat
8 LST images, indicating the reliability of

the fusion results.
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Table 4. Cont.

Study Data Area Conclusions

[74] (2021) Sentinel-3 Valencia, Spain

The study proposed emissivity-dependent split-window
algorithms with angular dependence for the Sentinel-3

SLSTR sensor. It was found to provide more accurate and
precise LSTs than the current version of the operational

SLSTR product.

[75] (2022) MODIS Global

The data interpolating empirical orthogonal functions and
the CDF-based correction method could effectively

reconstruct missing LST data and guarantee acceptable
accuracy (with RMSEs of 1–2 K and R values of

0.820–0.996) in most regions of the world at
0.05◦ pixel grid.

[76] (2022) MODIS Heihe Basin, China

The scheme proposed in this study was able to accurately
reconstruct missing values and improve the accuracy of

the interpolation method to a certain extent when
reconstructing MODIS land surface temperature.

[77] (2022) Sentinel-3 Košice, Slovakia

A multiple linear regression model based on spectral
indices and LST from Landsat 8 data could be used to
predict LST at 10 m resolution using Sentinel-2 data,

resulting in a better perception of the LST field associated
with land cover features present in the urban

environment, aiding in urban decision-making and
planning to improve citizens’ quality of life.

[78] (2023) FY-4A China

Overall, the preferred algorithm exhibited good accuracy
and met the required accuracy of the FY-4A mission.
However, the validation showed that the FY-4A LST

official product accuracy was low in seasons with large
atmospheric water vapor.

Although satellite-based surface temperature data have been used in many studies,
several challenges need to be solved, including atmospheric interference, cloud cover, and
data gaps [79]. On the other hand, higher temporal and spatial resolutions are necessary
to fulfill the needs of digital twin basin requirements. Therefore, many scholars have
developed relevant algorithms to improve the spatiotemporal resolution of land surface
temperature. For example, Chen et al. [80] presented a dictionary merging algorithm
based on polar orbit, sun-synchronous satellite Fengyun-3 and earth-synchronous satellite
Fengyun-4 data to acquire Hunan Province’s temperature data with a 1 h temporal reso-
lution and a 250 m spatial resolution. However, the uncertainty caused by atmospheric
radiation in specific regions may affect the quality of satellite-based temperature products;
therefore, some scholars have conducted temperature merging experiments involving
ground observations and remote sensing temperatures for better results. For instance, Zhou
et al. [81] improved the effectiveness of temperature retrieval by utilizing the HASM-GWR
merging algorithm based on 190 station-based temperature series and MODIS remote
sensing temperature data.

While satellite-based surface temperature products offer great utility for digital twin
basins with advances in sensors and algorithms, mitigating the challenges such as at-
mospheric and cloud interference remains crucial to generating suitable data with good
quality. Future research should focus more on calibration and validation, multi-sensor joint
retrieval, and new algorithm development such as reinforcement learning.
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3.3. Evapotranspiration

Evapotranspiration refers to the combined process of evaporation and transpira-
tion that occurs in the basin water cycle, which encompasses soil evaporation, vegeta-
tion transpiration, canopy interception evaporation, and water surface evaporation [82].
Evapotranspiration serves as a fundamental link between the atmosphere, hydrosphere,
and biosphere, and constitutes a core variable in the balance of water and energy in the
earth’s land surface [83]. Over half of global precipitation and solar energy enter the
earth’s water and energy cycles via evapotranspiration, making it crucial to many re-
search fields including hydrology, water resources, agricultural irrigation, and drought
monitoring [84,85]. Accurate evapotranspiration data have important decision-making
significance for the functions of digital twin basins, such as drought monitoring and water
resource management.

Evapotranspiration can be obtained using instruments such as lysimeters and large-
aperture scintillometers [86]. However, the spatial representativeness of local evapotranspi-
ration is inadequate due to the presence of complex underlying surfaces [87]. Consequently,
researchers have proposed both empirical and physical methods to calculate evapotran-
spiration. The Penman–Monteith equation is the most widely employed method for its
consideration of energy balance and water vapor diffusion principles. It provides a sim-
ple and accurate calculation, relying solely on meteorological data such as temperature,
water vapor pressure, and wind speed. However, its accuracy is influenced by both me-
teorological data and the presence of complex underlying surfaces [88,89]. Advances in
remote sensing technology have made it possible to acquire large-scale and high-precision
meteorological and underlying surface data. Using the Penman–Monteith equation and
high-quality underlying data, researchers have established the relationship between vegeta-
tion indices, soil, vegetation, and near-surface atmospheric impedance parameters through
machine learning and data assimilation. This enables further calculation of evapotranspira-
tion data, exemplified by products such as MOD16, PLSH, and MTE [90]. Table 5 presents
the globally recognized satellite-based evapotranspiration datasets and provides details
on the associated data acquisition methods, spatial resolution, temporal resolution, and
temporal coverage. The development of evapotranspiration products has evolved from
being based on single MODIS data and the Penman–Monteith equation to incorporating
multiple satellites, models, and algorithms. The most recent product is able to provide
evapotranspiration data at a spatial resolution of 30 m and a temporal resolution of 1 day.

Table 5. Summary of typical satellite-based evapotranspiration datasets.

Dataset Method Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

GLEAM Priestley–Taylor formula based on VOD 1 km 8 d 1980~2021

GLASS_v4 Bayesian model averaging method 1 km 8 d 1981~2021

PLSH penman-monteith equation 0.08◦ 1 month 1982~2013

MTE Multi-mode integration 0.08◦ 1 month 1982~2016

MOD16 improved penman-monteith equation 500 m 8 d 2000~present

BESS-STAIR Landsat and MODIS data merging 30 m 1 d 2000~2017

FLUXCOM Machine learning algorithms based on MODIS
and meteorological data 0.5◦ 8 d 2001~2015

SSEBop SSEB model based on MODIS and Landsat data 1 km 8 d 2003~present

It is not easy to evaluate satellite evapotranspiration data on a global scale due to the
lack of reliable and consistent ground-based observation data [91]. However, many scholars
have conducted validations and inter-comparisons of different satellite evapotranspiration
products on a regional or basin scale. Previous studies related to the evaluation and inter-
comparison of these data products were reviewed here to enhance the understanding of
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data quality and challenges [92]. Table 6 presents a summary of author names, data sources,
study areas, and major conclusions from the corresponding reviewed studies. Overall, the
accuracy of each evapotranspiration product varies in different parts of the world. The
table indicates that the selection of satellite evapotranspiration products should be carefully
conducted based on the existing research and the climatic and geographical characteristics
of the study area. Moreover, it is worth noting that the satellite and model merging-based
product such as BESS, MTE, and SSEBop tend to generate more precise evapotranspiration
estimates compared to the single Mod16 dataset. Hence, incorporating multiple sources of
information is essential to improving regional evapotranspiration estimations.

Table 6. Evaluation and inter-comparison of different satellite-based evapotranspiration products
over different regions.

Study Data Area Conclusions

[93] (2018) MOD16 Northwestern Mexico

The MOD16 ET product showed a good correlation with the
eddy covariance measurements, but with a significant

underestimation. The MOD16 ET product was more accurate in
winter than in summer.

[94] (2020) MOD16/
GLEAM Australia

AWRA-L ET followed by GLEAM agreed best with flux tower
measurements over Australia. AWRA-L and GLEAM

outperformed GLDAS and MOD16 ET over forest biome.

[95] (2021) GLEAM Iran

GLEAM, ERA5, and GLDAS datasets were more suitable for
estimating ET for arid rather than humid basins in Iran and
provided better ET estimates in hyper-arid and arid regions

from central to eastern Iran than in the humid areas.

[96] (2021) SSEBop/
MOD16 Europe

Both MOD16 and SSEBop products showed a similar
relationship with ground observations, but neither was accurate
enough to be a robust basis for studying ET changes in the Alps.

The study also identified discrepancies in trends and low
correlations between ET and climate variables.

[97] (2021)

PLSH/
MTE/

GLEAM/
MOD16

United States

GLEAM, PLSH, and PML showed the best performance on a
yearly scale, while PLSH outperformed others on a seasonal

scale. Combining artificial intelligence algorithms or
data-driven algorithms with physical process algorithms could
further improve the accuracy of ET estimation algorithms and

their capacity to be applied in different climate regions.

[98] (2021) GLASS Ganjiang Basin, China

Model parameters calibrated by all selected ET datasets
produced satisfactory results in streamflow simulations, but the
quality was dependent on the calibration schemes and accuracy

of ET datasets.

[99] (2022)
GLASS/
MOD16/
GLEAM

Haihe Basin, China

The GLASS_ET data had the smallest average deviation (BIAS)
value. The GLEAM_ET data had higher accuracy. The low

values of MOD16_ET were overestimated and the high values
were underestimated. Most of the ET products had higher R

values in spring and lower R values in summer, and the RMSD
values of most of the products were highest in summer.

[100] (2022)

BESS/
MOD16/
GLEAM/
SSEBop

South America

The results indicated that while most of the datasets tended to
overestimate, there were moderate correlations and similar

errors when compared with ET estimated from water balance.
However, improvements are needed mainly in the humid

tropics to achieve lower uncertainties and higher accuracy of ET
estimates for water resource management purposes.
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Table 6. Cont.

Study Data Area Conclusions

[101] (2022) GLEAM/
FLUXCOM East China

Incorporating ET data into all three Scheme II variants was able
to improve the performance of extreme flow simulations

(including extreme low and high flows). PML could be utilized
for multi-variable calibration in drought forecasting, and

FLUXCOM and GLEAM were good choices
for flood forecasting.

[12] (2022)
GLASS/
BESS/

MOD16

Mekong River Basin,
Southeast Asia

MOD16 did not perform well as compared to the other
products. The performance of each product varied across

different vegetation types. ET ranges of these four products
showed great differences in croplands, grasslands, and shrubs.

None of the four ET products showed either a consistent
temporal trend nor a uniform spatial distribution.

Current satellite-based evapotranspiration products typically exhibit a temporal res-
olution ranging from monthly to ten-day intervals, accompanied by a spatial resolution
exceeding 10 km. Figure 3 shows the global distribution of evapotranspiration derived
from the MOD16 product. However, for the development of a digital twin basin, it is
necessary to acquire evapotranspiration data at a daily or hourly resolution. Therefore,
enhancing the temporal and spatial resolution represents a critical objective in remote
sensing evapotranspiration estimation for digital twin basin construction. To accomplish
this goal, researchers have undertaken a lot of investigations. For instance, Yao et al. [102]
proposed the Taylor merging algorithm, which integrates five Landsat evapotranspiration
products with eddy covariance measurements to generate a global evapotranspiration
product at a 30 m resolution. Ke et al. [103] employed machine learning algorithms to
downscale existing remote sensing products, achieving a spatial resolution of 30 m and a
temporal resolution of 8 days.
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In conclusion, satellite-based evapotranspiration estimates offer significant potential
for digital twin basin construction, especially in areas where meteorological and underlying
surface data are limited. However, the temporal and spatial resolutions of satellite evapo-
transpiration still cannot satisfy the requirement of various digital twin basin functions,
such as flood forecasting. Consequently, greater emphasis should be placed on techniques
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such as data assimilation, data merging, and the development of high-resolution algorithms
in order to address this issue. Additionally, the underlying surfaces of diverse river basins
undergo frequent changes throughout the year, often due to intense human activities.
Therefore, the acquisition of precise data pertaining to land cover, vegetation, and albedo is
crucial to improving the accuracy of evapotranspiration estimates [104].

3.4. Water Level

The water level of rivers and lakes represents a crucial variable in various fields,
including hydrology, water resource management, water conservancy, port and channel
design, and other related disciplines. Additionally, it plays a pivotal role as the primary
monitoring element in flood forecasting and water resource management, which are among
the most vital functions in the application of digital twin basins [105]. Water gauge-
based observations at hydrological stations represent the most direct and accurate method
for measuring water levels. Through advancements in water conservancy information
technology and wireless transmission, automatic water level gauges enable real-time
monitoring of specified sections and facilitate data reporting [106]. However, the density of
water level monitoring stations in western China, specifically in the Qinghai-Tibet Plateau
and Northwest China, is significantly lower than in eastern China. Consequently, this
disparity poses challenges in hydrological simulations and forecasting within these regions,
as well as obstacles in the construction of a digital twin basin.

In recent years, satellite altimetry technology has been employed to monitor the
water levels of rivers and lakes. The principle involves calculating the vertical distance
between the satellite and the water surface, thus determining the water level elevation
using the satellite’s sensor, which receives the reflection signal from the water surface [107].
By observing the difference in height between sea level and the satellite’s altimeter, the
elevation of the water surface at the satellite’s current position can be determined, taking
into account the difference between sea level and the geocentric radius of the earth ellipsoid.
Several altimetry satellites have been launched, such as the Jason_1, Jason_2, and Jason_3
series launched by NASA and CNES since 2001, the Sentinel series launched by ESA
since 2014, and the ICEsat satellites launched by NASA in 2003 and 2018. China has
also launched the HY-2A, HY-2B, HY-2C, and HY2-D marine series satellites since 2011,
equipped with sensors such as radar altimeters and microwave radiometers, enabling
all-weather, continuous, and high-frequency monitoring of the global ocean and land
environments [108]. Numerous researchers have conducted studies in various fields based
on satellite altimetry data. For example, Wang et al. [109] assessed the accuracy of water
level data obtained through Jason_2 satellite altimetry by comparing it with water levels
measured using hydrological gauges. The results demonstrated that satellite-based water
levels displayed similar trends to actual water level values in the middle Yangtze River.
Zhang et al. [110] utilized ICEsat satellite altimetry data to establish time series of lake
water levels for lakes in the Qinghai-Tibet Plateau from 2003 to 2009 and from 2018 to
the present. They developed a relationship between the lake water level and lake area by
incorporating Landsat-observed lake area sequence data. This allowed them to estimate
and reconstruct the lake water level sequence for the Qinghai-Tibet Plateau from 1970 to the
present. Therefore, satellite altimetry technology serves as an effective auxiliary method for
spatial and temporal interpolation and enhancement of water level data in both gauged
and ungauged basins. Table 7 presents a summary of key details regarding typical altimetry
satellites, including their names, launch organizations, sensor types, satellite altitudes, data
accuracy, temporal resolution, and coverage.
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Table 7. Summary of typical altimetry satellites.

Satellite Institution Sensor Satellite
Altitude

Data
Accuracy

Temporal
Resolution

Temporal
Coverage

ERS-1/2 ESA Radar altimeter
RA/AMI/ATSR-2 782 km 10 cm 35 d 1991~2011

Topex CNES/
NASA

Poseidon altimeter
PA/AMR 1336 km 10 cm 16 d 1993~2005

Jason-1/2/3 CNES/
NASA

Poseidon
altimeter/JMR 1336 km 3.3 cm 10 d 2002~present

Cryosat-2 ESA Interference radar
altimeter SIRAL 717 km 4 cm 30 d 2011~present

HY-2A/2B/2C/2D CNSA Radar altimeter/laser
range finder 971 km 4 cm 10 d 2011~present

Sentinel-3A/3B ESA Synthetic aperture
radar altimeter 814 km 4 cm 27 d 2016~present

SWOT NASA Radar altimeter 891 km 2 cm 11 d 2022~present

Water level observations based on altimeter satellites has made it possible to perform
runoff simulations and flood forecasting in ungauged regions as well as achieve continuous
observations of lakes and reservoirs with low-cost. However, several scientific challenges
must be addressed while applying satellite altimetry data to create digital twin basins.
Firstly, it is essential to develop an algorithm for water level estimation according to
the characteristics of the terrain, land cover, and data frequency. For instance, Mo [111]
employed an adaptive waveform re-tracking method to rectify errors caused by noise
effects in altimetry waveforms around detected objects. Additionally, satellite altimetry
data precision in the Hongze Lake area was enhanced using a data quality screening
method. Secondly, it should be noted that satellite altimetry currently requires water
bodies with a width greater than 300 m in order to obtain water level measurements. This
implies that only large rivers and lakes are suitable for such measurements. The launch
of more advanced fully focused synthetic aperture radar could enable higher-resolution
water level measurements for rivers, lakes, and reservoirs [112]. The SWOT (Surface Water
and Ocean Topography) satellite, launched in December 2022, will provide global water
surface elevation measurements for rivers wider than 100 m and lakes with widths of
250 m by 250 m, with an impressive 2 cm error level. The launch of this satellite heralds a
new era of comprehensive and continuous advancements in the field of global hydrology.
https://swot.jpl.nasa.gov/ (accessed on 18 December 2022).

Table 8 presents the detailed information of relevant studies for developing altimetry
satellite algorithms over different regions, including author names, data sources, study
areas, and major conclusions from the corresponding reviewed studies. Although satellite
altimetry technology offers data in ungauged basins, current missions primarily focus
on subsatellite water bodies, resulting in limited monitoring capabilities for certain lakes
and reservoirs with low sampling frequencies. The implementation of multiple altimetry
missions will significantly enhance the lake water level database, rectifying this deficiency.

Satellite altimetry technology plays a pivotal role in providing essential data support
for hydrological simulation, particularly in regions with limited data availability. How-
ever, it is worth noting that certain river basins currently face limitations in utilizing this
technology due to inadequate satellite coverage. Fortunately, with the continuous launch
of additional satellites, this coverage gap is gradually being addressed, and the potential
of satellite altimetry in these areas will be realized. The research and development of
convenient, rapid, and efficient data processing methods, such as machine learning-based
waveform classification extraction and re-tracking, form a crucial foundation for utilizing
vast height measurement data and represent a fundamental research direction in the field
of height measurement.

https://swot.jpl.nasa.gov/
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Table 8. Evaluation of altimetry satellite algorithms over different regions.

Study Data Area Conclusions

[113] (2010) ERS-2 Amazon Basin
Ice-2 and Ice-1 tracking algorithms in the ENVISAT data
performed almost equally well. ENVISAT altimetry was

clearly an improvement over ERS-2 altimetry.

[114] (2015) Cryosat-2 Ganges–Brahmaputra
River Basin

A key concern for the CryoSat-2 orbit has been its long repeat
period of 369 days, which is usually undesirable for river and
lake monitoring. The CryoSat-2 data could indeed be used for

such monitoring by utilizing the high spatial coverage and
sub-cycle period of 30 days.

[115] (2015) HY-2A/2B/2C/2D Global

The statistical results from single- and dual-satellite altimeter
crossover analysis demonstrated that HY-2A fulfilled its

mission requirements (a mean relative bias of −0.21 cm with
respect to Jason-2, and a standard deviation of 6.98 cm from

dual-satellite crossover analysis). The wavenumber spectra of
HY-2A and Jason-2 sea-level anomalies showed similar
spectral content, verifying the performance of HY-2A

altimetry to be similar to that of Jason-2. Open issues and the
remaining HY-2A data problems were identified, allowing

prospective future studies to achieve further improvement of
its accuracy.

[116] (2016) ERS-2 West Africa/
Amazon Basin

Low bias and RMSE values for altimeter heights and
backscattering were found between ENVISAT and ERS-2 over
ocean and flat areas over land and ice sheets with generally

better results obtained using CTOH data. Comparisons with
in situ water stages also showed good agreement for Ice-2 and

especially Ice-1 retracker-derived water levels (R > 0.95).

[117] (2018) Cryosat-2 Po River, Italy

The small across-track distance of CryoSat-2 means that
observations are distributed almost continuously along the

river. This allowed resolving channel roughness with higher
spatial resolution than possible with in situ or virtual station

altimetry data. Despite the Po River
being extensively monitored,

CryoSat-2 still provided added value thanks to its unique
spatiotemporal sampling pattern.

[118] (2019) Sentinel-3A/3B Global

Computed a new local mean sea surface (MSS) model along
the Sentinel-3A ground track. The improvement observed on

Sentinel-3A sea level anomalies (SLA) was significant: the
residual error was 0.2 cm2, i.e., 17% of the SLA variance

between 15 and 100 km, or 57% less than the gridded MSS
model error.

[119] (2020) Sentinel-3A/3B Australian coastal region

Sentinel-3A could provide precise SLAs at finer spatial scales.
The quality of Sentinel-3A SLAs was superior to that of the

retracked Jason-3 dataset in terms of smaller STDs at
crossover points (8.8 cm vs. 10.7 cm).

[120] (2022) Jason Caspian Sea

To reduce the noise level in Jason altimeter waveforms,
singular spectrum analysis (SSA), empirical mode

decomposition (EMD), and the combination of SSA and EMD
were used to obtain the denoised waveforms. Using the

combined denoising method to reduce the noise level was
beneficial to improving the accuracy of the MSSH model.

[121] (2022) Sentinel-3A/3B Southern coastal waters
of Vietnam

Successful retrieval demonstrated the potential for daily
monitoring when combining observations from S-3A/B to
further improve our understanding of the spatiotemporal

dynamics of coastal ecosystems.
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Table 8. Cont.

Study Data Area Conclusions

[122] (2023) TOPEX Global

The main component of the measurement correction resolved
the optical phase center variations of the T/P LRA. In

addition, systematic station range biases and, to a small
extent, geophysical effects were considered. The latter effect
was minimized and averaged out by using SLR observations
from the entire mission lifetime for the determination of the

correction function (with the overall root mean square of SLR
residuals of 1.97 cm).

[123] (2023) Sentinel-3A/3B Songhua River Basin,
Northeast China

The performance of Sentinel-3A altimetry in the Songhua
River Basin was not poor. It confirmed that a near-parallel
orientation of the river with respect to the satellite ground
track often led to poorer performance at virtual stations. If
one is aiming to calibrate a hydrodynamic or hydrological

model by combining altimetry, VSs with near-parallel
orientation are not necessary to be considered when the
percentage of the non-parallel crossings of all crossings

is big enough.

3.5. River Discharge

River discharge is a crucial variable in real-time flood forecasting, water resource
management, river ecosystem protection, and other related fields. It is highly indicative
in various assessment areas, such as climate change, water security, and socioeconomic
aspects [124]. However, accessing discharge data is usually challenging as it is typi-
cally managed by government agencies. In addition, obtaining discharge data in areas
without hydrological stations can be difficult [125]. Recently, advances in sensors and
computer vision algorithms have emerged as a new approach for measuring river dis-
charge [126]. River discharge measurement can be categorized into two types based on
different remote sensing techniques: satellite remote sensing and unmanned aerial vehicle
(UAV) measurements.

Satellite remote sensing-based river discharge measurement offers several advantages,
including cost-effectiveness and the ability to provide continuous and global measurements
regardless of weather conditions [127]. The principle involves extracting essential parame-
ters from satellite imagery, such as river width, water level, and water surface area, based
on optical and microwave remote sensing techniques. These parameters are then utilized
to establish empirical models that relate river discharge to the extracted parameters. By
calibrating these models, river discharge can be accurately estimated [128]. For instance,
Majin et al. [129] developed an empirical model for the Heihe River using Landsat satellite
data, demonstrating a high correlation coefficient (above 0.9) between estimated and mea-
sured discharge. Similarly, Chen et al. [130] proposed a method based on SPOT5 remote
sensing images and digital elevation models (DEMs) to estimate discharge in the Dongjiang
River Basin. On a global scale, Lin et al. [131] devised a fusion framework incorporating
site observations, model simulations, and satellite data. The framework employed machine
learning algorithms to reconstruct runoff volume for approximately 2.94 million rivers,
achieving a resolution of 0.1◦ and a sequence length spanning approximately 35 years.

However, satellite remote sensing-based river discharge still encounters several sci-
entific challenges. Firstly, it is limited to rivers with widths exceeding the coverage range
(typically 100 m) of satellite sensors. Secondly, the revisit period of satellite passes is typi-
cally longer than 3 days. Both challenges result in limitations for applications such as hourly
flood forecasting in small river basins [132]. Thirdly, the complex morphology of rivers,
including meandering, braiding, and changing river widths, can introduce uncertainties in
satellite-based discharge measurements, making it challenging to obtain accurate and con-
sistent results. However, the launch of the SWOT satellite in December 2022 holds promise
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for significant advancements in this field. As the world’s first specialized water-monitoring
satellite, SWOT incorporates wide-width altimetry technology, enabling high-resolution
dynamic monitoring of rivers, lakes, reservoirs, and oceans globally. Notably, SWOT of-
fers five times greater target data accuracy than previous observation satellites, such as
JASON, facilitating breakthroughs in satellite remote sensing-based discharge measure-
ment. Furthermore, future developments in new sensors, continuous retrieval algorithm
optimizations, and multi-data assimilation technology are expected to further enhance the
capabilities of satellite-based river discharge measurement [133].

River discharge measurement using unmanned aerial vehicles (UAVs) has witnessed
rapid development in recent years. This technology can be classified into image discharge
measurement, radar discharge measurement, and video discharge measurement, depend-
ing on the sensors employed [134]. Image discharge measurement, similar to satellite
remote sensing, benefits from UAVs’ enhanced maneuverability and resolution, resulting
in higher spatiotemporal resolution data [135]. Radar discharge measurement relies on
Doppler radar carried by UAVs, utilizing the Doppler effect. Video discharge measurement
utilizes the stereo-vision particle-image method, where water surface flow rate is estimated
by extracting features such as floating objects, ripples, and bubbles, followed by tracking
matching. River discharge is then calculated based on the river section file [136]. For exam-
ple, Zhao et al. [137] utilized UAV images and digital surface models (DSMs) to extract point
cloud data, allowing for the estimation of river hydraulic parameters and discharge in small
watershed areas where measured river section files were unavailable. However, UAV-based
river discharge measurement has certain limitations, including reduced measurement accu-
racy in the absence of floating objects on the river surface and challenges in takeoff during
extreme precipitation conditions. Despite these challenges, UAV-based measurements offer
several advantages, such as affordability, ease of maintenance, maneuverability, and high
accuracy, positioning them as crucial tools in contemporary flood analysis and discharge
measurement techniques. More accurate data will be obtained with advancements in image
recognition algorithms and UAV technology. Notably, numerous hydrological stations
across China have adopted UAV-based discharge measurement as a regular monitoring
practice, providing vital data support for digital twin basin construction.

In general, UAV-based river discharge measurement technology has been applied in
the real world hydrometry, while satellite-based river discharge measurement technology
is still in the development and calibration stage. Improving the accuracy and applicability
of satellite remote sensing-based river discharge measurement requires ongoing research
and development efforts [138]. Further exploration and refinement of empirical models,
integration of diverse data sources, and the utilization of advanced machine learning tech-
niques are essential for enhancing the reliability and spatial coverage of river discharge
estimations. Continuous advancements in satellite technology and data processing algo-
rithms will contribute to the broader utilization of satellite remote sensing-based methods
for monitoring river flow and supporting the construction of digital twin basins [139].

3.6. Soil Moisture

Soil moisture is among the most active variables in land surface processes [140]. It
plays a crucial role in controlling various atmosphere–land surface hydrological fluxes
and energy processes, such as precipitation distribution, evapotranspiration, runoff, in-
filtration, and numerous biotic and ecological processes [141]. Soil moisture serves as
a primary focus variable in research fields such as hydrology, ecology, and agriculture,
acting as a vital link for interdisciplinary studies. Its wide-ranging applications include
land surface hydrological process simulation, water resource management, environmental
ecological process simulation, and agricultural irrigation research [142,143]. Consequently,
accurate estimation of soil moisture becomes indispensable in the development of digital
twin basins.

Currently, three primary methods are employed to acquire soil moisture: in situ
measurement, model simulation, and satellite remote sensing-based retrieval [144]. In
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situ measurement stands as the most accurate approach utilized by key soil moisture
stations in water conservancy and by agriculture departments. However, this method is
complex, time-consuming, and impractical for large-scale monitoring [145]. Hydrological
models serve as valuable tools for simulating hydrological cycle processes. Advancements
in model structures, parameterization schemes, and data accuracy have enabled these
models to offer high-precision, large-scale, and spatiotemporal continuous soil moisture
estimates [146,147]. However, the accuracy of model simulations can be influenced by
factors such as the precision of driving data and the model itself. For instance, Wu et al. [148]
discovered that the absence of an irrigation module led to lower simulation accuracy of soil
moisture in irrigated areas compared to that in other regions using the variable infiltration
capacity (VIC) model. Figure 4 illustrates the spatial distribution of soil moisture obtained
using the three data sources, i.e., in situ measurements, SMAP, and VIC, demonstrating
a general similarity. The figure demonstrates that satellite remote sensing-based retrieval
of soil moisture encounters spatial coverage limitations, particularly in capturing data
from snow-covered areas. In addition, the inter-comparison also demonstrates that overall
retrieval values are lower than in situ measurements and model data.
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The recent advances in microwave remote sensing technology have facilitated the
accurate monitoring of soil moisture over large areas [149]. Unlike optical remote sensing,
which is susceptible to atmospheric conditions, clouds, and precipitation, microwave
remote sensing utilizes longer wavelengths and possesses strong penetration capabilities
through vegetation and soil. It can penetrate up to 5 cm below the surface and enables
all-day and all-weather monitoring, thus emerging as the most promising technique for
quantitative soil moisture sensing [150]. Soil moisture retrieval through microwave remote
sensing involves establishing a relationship between soil dielectric properties and soil
moisture content. The representative algorithms of satellite-based soil moisture retrieval
include single channel algorithm, dual channel algorithm, Land parameter retrieval model,
etc. Prominent soil moisture products derived from microwave remote sensing include
SMAP (Soil Moisture Active Passive), SMOS (Soil Moisture and Ocean Salinity), and CCI
(Climate Change Initiative) [151,152]. Table 9 provides a comprehensive summary of the
prevailing satellite-based soil moisture products, including the product names, satellite
platforms, launching agencies, sensors, bands, inversion algorithms, spatial resolution,
temporal resolution, and temporal coverage.

It is essential to validate and evaluate satellite-based soil moisture products before their
utilization due to the uncertainties associated with retrieval algorithms and environmental
effect factors [153]. Numerous scholars have conducted evaluation and inter-comparison
studies to assess the accuracy of different remote sensing products across various regions
worldwide [154,155]. Table 10 provides a summary of these studies, presenting key in-
formation such as data sources, regions, and notable findings. This compilation serves
as a valuable reference for selecting appropriate satellite soil moisture data in different
regions. Among these products, SMAP and CCI demonstrate high accuracy in capturing
the temporal trends of real soil moisture patterns across diverse regions globally. The long
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time series of CCI data is particularly suitable for climate change research, while SMAP is
well-suited for applications such as drought monitoring. Although SMOS data is suscep-
tible to radio frequency interference (RFI), the subsequent implementation of improved
retrieval algorithms (SMOS-IC) has significantly enhanced the data quality [156,157].

Table 9. Summary of typical satellite-based soil moisture products.

Product Satellite Institution Sensor Band Retrieval
Algorithm

Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

SSM/I DMSP NOAA Passive K band
19.3 Ghz LPRM 69 × 43 km 3 d 1987~2007

AMI-WS ERS ESA Active C band 5.3 Ghz WARP 50 × 50 km 3 d 1991~2006
TMI TRMM NASA Passive X band

10.7Ghz LPRM 59 × 36 km 3 d 1997~2015

AMSR-E Aqua JAXA Passive
C/X band
6.9 Ghz/
10.7 Ghz

Dual-channel retrieval
algorithm 76 × 44 km 3 d 2002~2011

AMSR2 GCOM-
W1 JAXA Passive

C/X band
6.9 Ghz/
10.6 Ghz

Dual-channel
retrieval algorithm 35 × 62 km 3 d 2012~present

Windsat Coriolis NOAA Passive
C/X band
6.8 Ghz/
10.6 Ghz

Multipolar maximum
likelihood estimation 25 × 35 km 3 d 1997~2012

ASCAT MetOp ESA Active C band 5.3 Ghz Channel detection
algorithm 25 × 25 km 3 d 2007~present

SMOS SMOS ESA Passive L band 1.4 Ghz Dual-parameter iterative
algorithm L-MEB 40 × 40 km 3 d 2009~present

SMAP SMAP NASA Active/
passive L band 1.4 Ghz

Single-channel
polarization

Algorithm SCA
36 × 36 km 3 d 2015~present

Sentinel Sentinel ESA Active C band 5.4 Ghz Machine learning
algorithm 1 × 1 km 3 d 2015~present

CCI
FY/SMOS/

AMSR/
ASCAT

ESA Active/
passive

Multi-band
1.4 Ghz,
5.3 Ghz,
10.7 Ghz

TC-based merging
algorithm 0.25◦ × 0.25◦ 1 d 1978~2022

Table 10. Evaluation and inter-comparison of different satellite-based soil moisture products over
different regions.

Study Data Area Conclusions

[23] (2015)
CCI/

ASCAT/
AMSR-E

Global

The CCI quality showed an upward trend over time, but a consistent decrease of
all performance metrics was observed for the period 2007–2010. The evaluation

was conducted using ISMN globally. The data quality of CCI products (with R of
0.46 and RMSE of 0.05) was better than that of other products, except ASCAT. The

possible reason for this result was the re-scale algorithm during data merging.

[158] (2016)
SMOS/

ASCAT/
AMSRE

Global

Global comparison indicated that SMOS behaved well compared to
AMSRE/ASCAT/ECMWF soil moisture and gave consistent results over all

surfaces from very dry (African Sahel, Arizona) to wet (tropical rain forests). RFI
(radio frequency interference) was still an issue even though detection had been
greatly improved through the significant reduction of RFI sources in several areas

of the world.

[159] (2017) SMAP/
AMSR2 United States

SMAP soil moisture retrieval was generally better than AMSR2 soil moisture data.
The remote sensing-based retrievals showed the best agreement with in situ

measurements over the central Great Plains and cultivated crops throughout the
year. In particular, SMAP soil moisture data showed a stable pattern for capturing

the spatial distribution of surface soil moisture.

[160] (2017) AMSR2/
AMSR-E Australia

Both AMSR2 C- and X-band SM products were found to show similar temporal
patterns and spatial agreement with AMSR-E C- and X-band SM. Despite

advances in AMSR2 technology, including superior radiometric sensors and
spatial resolution, there were no substantial differences found in LPRM retrievals

at resolutions of 1/2◦ × 1/2◦ compared to AMSR-E.
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Table 10. Cont.

Study Data Area Conclusions

[161] (2018)
SMAP/
SMOS/
ASCAT

Global

The evaluation was based on triple collocation-based analysis. It showed the
advantage of SMAP (with a global average anomaly correlation of 0.76) over

SMOS (0.66) and ASCAT (0.63). In over 50% of retrievals, SMAP had the optimal
performance. In North America, Europe, Southern Asia, and eastern Australia,
SMAP and SMOS outperformed ASCAT. ASCAT’s overall retrieval was better
than SMAP and SMOS in high-latitude regions of Eastern Asia, certain parts of
South America (primarily Argentina), and southwestern Australia. In western

United States, Central Asia, and the majority of internal pixels in eastern Australia,
SMOS showed greater R values than SMAP.

[162] (2018)

AMSR2/
AMSR-E/

SMOS/
CCI

Global

CCI_C performed better than both CCI_A and CCI_P considering the temporal
variation tendency and absolute value. The ascending data (AMSR_A, SMOS_A)
generally outperformed the corresponding descending data (AMSR_D, SMOS_D).

AMSR exceeded SMOS in terms of the coefficient of correlation.

[163] (2019) CCI/
SMOS Spain

The combined CCI and SMOS SM products matched very well, although SMOS
and CCI underestimated and overestimated ground soil moisture measurements,
respectively. Merging SMOS in the CCI database could enhance its performance.

[164] (2019)
CCI/SMOS/

SMAP/
AMSR2

Global

The data quality was evaluated based on ISMN. SMAP (ubRMSE = 0.047) and CCI
(ubRMSE = 0.041) products were superior to other soil moisture products with
advantages in different regions. Compared with the original products of SMOS
(ubRMSE = 0.060), the accuracy of SMOS-IC (ubRMSE = 0.048) had been greatly
improved, especially in areas with dense vegetation. However, in high VOD, high

roughness, topographic complexity and heterogeneity, and tropical or desert
regions, soil moisture products still needed to be improved.

[165] (2019) ASCAT Global

The performance was evaluated using nine in situ measurement networks.
ASCAT predictions overestimated the observed values at all of the sites in

Australia. The performance of ASCAT was better in grassland land cover (with R
range from 0.46 to 0.90) types.

[166] (2019) SMAP Global

The evaluation was conducted based on observations from ISMN. The ubRMSE of
SMAP_A and SMAP_P were 0.055 and 0.054, respectfully. Overall, higher
accuracy was noted over zones where the soil organic carbon was low, the

vegetation density was relatively sparse, locations in the temperate and arid
climate zones, and where the mean LST was high. Data quality of SMAP needed

to be improved in areas with dense vegetation and low temperature.

[148] (2020)
CCI/

SMOS/
SMAP

China

In general, SMAP was the most reliable product, reflecting the main
spatiotemporal characteristics of soil moisture, while SMOS had the lowest

accuracy. In irrigated areas, the accuracy of CCI was reduced due to the land
surface model used for the rescaling of the CCI_COMBINED soil moisture

product during the merging process, while SMAP and SMOS preserved the
irrigation signal.

[167] (2020) Sentinel-1 India

The modified Dubois model provided a good estimate of soil moisture in a region
of heterogeneous land cover. The VV polarization of Sentinel-1A was suitable for
soil moisture monitoring because the VV polarization was more sensitive to the

soil contribution while VH polarization was more sensitive to
the vegetation contribution.

[168] (2022) SMAP/
Sentinel-1 Global

The overall accuracy of SMAP/Sentinel-1 product was acceptable with an average
correlation coefficient of 0.67 and ubRMSE of 0.08. The enhanced SMAP product
had better performance in estimating SM and a higher actual revisit time than the
SMAP/Sentinel-1 product. The accuracy of the SMAP/Sentinel-1 SM product was
nearly independent of the presence of water bodies and urban areas, soil texture,

and seasonal variation, except the vegetation cover.

[169] (2023) CCI/SMAP Tibet, China
The optimal random forest method based on climate, terrain, land cover, and

vegetation could improve the accuracy of the original CCI data, which had higher
spatiotemporal coverage and closer accuracy than SMAP data.



Water 2023, 15, 2040 22 of 31

The application of satellite-based soil moisture into digital twin basins presents several
challenges, including the retrieval of root zone soil moisture and the enhancement of soil
moisture spatiotemporal resolution to meet digital twin basin requirements. To address
these challenges and facilitate the construction of digital twin basins, improvements can be
implemented in various ways. One approach is to integrate data from multiple satellite
missions, leveraging their respective strengths to improve spatial and temporal resolution.
For instance, a joint retrieval technique combining SMAP and Sentinel sensors could
produce high-resolution soil moisture data at the 1 km scale [170]. Furthermore, data
assimilation techniques should be employed to effectively merge satellite soil moisture
observations with hydrological models, remote sensing data, and in situ measurements,
enabling more accurate and comprehensive hydrological assessments such as root zone
soil moisture retrieval [171]. Finally, the development of new algorithms, such as machine
learning, holds promise for integrating satellite soil moisture data with other pertinent
environmental variables, including precipitation, temperature, topography, and land cover,
to improve soil moisture retrieval [172,173].

3.7. Vegetation

Vegetation data is a focal point of research in diverse disciplines, including hydrology,
ecology, climatology, and agronomy. It serves as a fundamental variable for analyzing
drought, land cover change, climate change assessment, and evaluating soil erosion [174].
The availability of high-resolution and high-precision vegetation data is crucial for the
construction of digital twin basins [175].

Remote sensing vegetation indices are highly effective in acquiring vegetation char-
acteristics of underlying surfaces [176]. Various techniques are employed for vegetation
classification, including supervised and unsupervised classification, decision tree, artifi-
cial neural networks, support vector machine, deep learning, and reinforcement learn-
ing [177,178]. With advancements in quantifying vegetation parameters, a wide range
of vegetation indices have been developed for different applications, such as the normal-
ized difference vegetation index (NDVI), enhanced vegetation index (EVI), leaf area index
(LAI), and vegetation optical depth (VOD) [179,180]. Currently, the most widely used
satellites for vegetation parameter retrieval are the MODIS, Landsat, SPOT, and GF satellite
series. Table 11 provides a summary of information on typical satellite-derived vegetation
products, including satellite names, launching agencies, sensor types, spatial resolution,
temporal resolution, and temporal coverage. However, as highlighted by Zhao et al. [181],
remote sensing-based vegetation retrieval still encounters challenges such as pixel mixing,
scale effects, errors in physical models, and parameter uncertainties. Therefore, research
efforts should be directed towards the development of multi-source and multi-method
merging techniques.

Table 11. Summary of typical satellites for vegetation retrieval.

Satellite Institution Sensor Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

Terra/Aqua NASA MODIS 1 km 8 d 2000~present
Landsat7 NASA ETM+ 30 m 8 d 2000~present

Landsat8/9 NASA OLI/TIRS 15 m 8 d 2013~present
SPOT6/7 CNES Astrium 1.5 m 26 d 2012~present

Sentinel-2A ESA Full spectrum imager 10 m 5 d 2015~present
GF-2 CNSA Panchromatic camera 1 m 69 d 2015~present

Retrieving vegetation parameters from satellite data is the predominant approach for
acquiring large-scale and long-term vegetation characteristics [178]. However, it poses
challenges in meeting the requirements of spatial resolution, temporal resolution, and data
accuracy for field-scale monitoring, such as crop growth monitoring [182]. As a result,
researchers have increasingly explored the utilization of unmanned aerial vehicle (UAV)
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remote sensing technology for land surface vegetation monitoring [183,184]. For instance,
Cao et al. [185] developed a rice leaf area index (LAI) monitoring model in the town of
Jiebu using high-resolution UAV images, analyzing the correlation between rice LAI and
UAV images at different growth stages. In another study, Chen et al. [186] effectively
estimated vegetation coverage in Wendeng county by integrating UAV and remote sensing
data through the pixel dichotomy model. Moreover, satellite-based vegetation monitoring
should focus more on data merging, machine learning algorithms, and data assimilation in
the future.

4. Conclusions and Discussion

A digital twin basin refers to a digitalized virtual representation of a real-world
physical basin, which enables an enhanced understanding of the water cycle, provides
real-time forecasting and interaction, and supports precise decision-making. Constructing
a digital twin basin poses significant challenges as it requires obtaining essential surface
variables with large-scale coverage, all-weather capability, high data accuracy, and high
spatiotemporal resolution. The advancements in remote sensing sensor performance, re-
trieval algorithms, and multi-source information acquisition has made remote sensing a
promising technology for retrieving essential variables, including meteorological, hydrolog-
ical, and vegetation variables. This paper provides a comprehensive review and discussion
of the retrieval principles, data status, advantages and challenges, and evaluation and
inter-comparison of remote sensing-based retrieval for precipitation, surface temperature,
evapotranspiration, water level, river discharge, soil moisture, and vegetation, as well as
their applications and prospects in digital twin basin construction. The major conclusions
are summarized as follows:

Remote sensing-based retrieval possesses several advantages over traditional ground-
based observations, including large-scale coverage, lower representativeness error, and
cost-effectiveness. In recent years, advancements in sensor technology and algorithms have
significantly improved the accuracy, coverage, and spatiotemporal resolution of remote
sensing-based retrieval. Consequently, remote sensing has found wider applications in
various fields, such as drought monitoring, precipitation forecasting, and water resource
management. Remote sensing facilitates data acquisition for constructing digital twin
basins, particularly in regions lacking ground-based stations. However, data validation
from previous studies has indicated that the accuracy of remote sensing-based retrieval
differs significantly across regions of the world due to various underlying land covers,
climate features, and environmental characteristics. This suggests that utilizing unverified
remote sensing data may introduce significant uncertainties in some regions. Thus, before
applying remote sensing data in a digital twin basin, we should emphasize the importance
of data calibration and validation based on reliable reference data, as well as data selection
according to the inter-comparison results from previous studies.

In certain applications, such as hourly flood forecasting, hydrological simulation in
small basins, and urban precipitation monitoring, significant challenges persist in obtaining
key surface variables through satellite remote sensing-based retrieval. These challenges
include inadequate temporal and spatial resolutions, as well as considerable time latency.
Addressing these challenges effectively requires the utilization of radar technology with
higher resolution, flow measurement technology based on unmanned aerial vehicles, the
advancement of downscaling algorithms, etc. Furthermore, the increasing number of
satellite launches and the accumulation of ground-based observation values provide an
opportunity to leverage multi-source observation information. Some river basins already
possess the foundations for big data algorithms, emphasizing the need for further develop-
ment and enhancement of techniques such as multi-source data fusion, data assimilation,
data bias correction, machine learning algorithms, and multi-sensor joint inversion. With
the launch of satellites in thematic series such as the Sentinel series and FY series, more and
more multi-source observation information has become available. At the same time, with
the accumulation of observational data, some basins have satisfied the requirements of big
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data models. Therefore, more attention should be paid in the future to data merging, data
assimilation, bias correction, machine learning algorithms, and multi-sensor joint retrieval.

To improve the availability and reliability of remote sensing data, it is necessary to
develop algorithms that can standardize data from different remote sensing sources con-
sidering variations in location, observation time, grid scale, and data format. Establishing
an integrated data platform is essential, encompassing functions such as data access, data
quality control, data standardization, data interface services, and other related features.
Additionally, future research should also focus on high performance computing and devel-
oping corresponding acceleration algorithms to expedite remote sensing data processing
and reduce output delays. These research directions aim to accelerate the application of
remote sensing in the construction of digital twin basins.
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