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Abstract: This paper proposes a method to reconstruct and visualize landslide events based on pre-
and post-disaster remote sensing data. The proposed method establishes the dynamic equations of
the landslide evolution process and calibrates the model parameters based on pre- and post-disaster
remote sensing data. Based on the calibrated dynamic equations, we reconstruct and simulate the
historical landslide process and visualize the landslide evolution. The experimental results show that
our method could dynamically and realistically reconstruct and visualize the landslide evolution
process. Moreover, the landslide process simulation can also detect the maximum depth, maximum
sliding speed, maximum momentum, and other indicators during the evolution process, and the
visualization results can be used for subsequent hazard assessment, engineering implementation,
and other applications.
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1. Introduction

Landslides are one of the most widespread and frequent geological disasters in nature.
They pose a significant threat to hydraulic engineering due to the instability of reservoir
banks and the suddenness of the landslides. Landslides and the corresponding secondary
disasters cause tens of thousands of deaths and incur substantial economic losses each
year. The occurrence of landslides has had a significant impact on people’s lives and
the economy, and landslide safety has become the top priority in the field of hydraulic
engineering geological disaster prevention and control. The impact of landslides near
water conservancy projects is shocking, causing a large number of casualties and significant
economic losses worldwide every year [1]. For example, in January 2013, a landslide
occurred at the Zhaojiagou Reservoir in Zhaojiagou Village, Yunnan Province, China, killing
46 people and injuring 2 others. In addition, it buried 14 buildings, and approximately
210,000 cubic meters of debris tumbled down the steep hill. As of 4 p.m. on 12 January 2013,
43 dead individuals were discovered, and 5 individuals were still missing. Similarly, on
16 May 2021, a large-scale landslide occurred at the Daxingzhai Reservoir in Xingtian
Village, Shuangtang Street, Jishou City, China, killing three people and causing a direct
economic loss of 4.25 million yuan. On 9 August 2019, a landslide occurred around the
Motama Reservoir in Bangzhen, Myanmar, killing 70 people and destroying all 27 houses.
On 29 October 2022, landslides occurred in the reservoir area of Maguindanao del Norte, the
Philippines, and the death toll in the Bangsamoro region exceeded 155 people. Landslides
have become a major factor in the safety of hydraulic projects around the world. This
geological disaster causes economic losses by destroying water conservancy engineering
infrastructure such as water conveyance structures, water retaining structures, and water
release structures. In addition, landslides can cause serious damage to life, property, and
the environment, and have negative impacts on production, life, and ecology. The frequent
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occurrence of landslides has had a profound impact on the normal operation of water
conservancy projects and the ability to guarantee water quality [2].

Recent literature highlights the need for more efficient and accurate approaches to
landslide disaster management, with remote sensing data and physical dynamics being
identified as promising areas for research. However, there is still a need for methods that
can overcome the limitations of traditional monitoring methods and provide more effective
solutions for landslide disaster management. In locations prone to natural disasters, such
as landslides, monitoring these events is a crucial tool for obtaining real-time and accurate
data on the situation. Unmanned Aerial Vehicles (UAVs) have become one of the most
common methods used for landslide monitoring. In disaster areas, UAV monitoring is
commonly used to collect elevation DEM data and remote sensing image data, which serves
as the national three-dimensional data foundation for achieving the integration of air and
earth. Remote sensing photographs are also used to gather information about disasters,
and this has become an inevitable trend in technological innovation. Monitoring landslides
can overcome the limitations of topography, climate, and observation conditions. It can
also perceive the elevation, locations of sliding mass, earth volume, landslide scope, and
area before and after the landslide [3]. This information is critical for understanding the
extent of the disaster and for developing effective prevention and treatment strategies.
The reconstruction and visualization of the historical process of landslide catastrophes
in complicated terrain environments based on landslide monitoring has become a high
priority in the prevention and reduction of landslide disasters. Landslide monitoring recon-
struction and visualization of the historical process of landslide hazards are important for
understanding the causes of landslides, improving prediction and prevention, informing
emergency responses, and developing better engineering solutions. Dynamic visualiza-
tion of landslide disasters can enhance human perception and recognition of disasters,
strengthen the information management capability of landslide emergency, and play a
crucial supporting role in landslide disaster treatment decision making [4].

This study proposes a visual reconstruction method for the landslide process based
on pre- and post-disaster remote sensing data. The objectives of this research are to
develop a visual simulation of the landslide process and provide a scientific basis for
landslide emergency response and subsequent treatment. The method is built upon the
landslide physical dynamics and utilizes remote sensing data to reconstruct and visualize
the landslide event. Specifically, we focus on the key technologies and methods of landslide
spatial-temporal process dynamics reappearance and landslide disaster dynamic prediction
based on pre-disaster and post-disaster remote sensing data. By integrating physical
dynamics and remote sensing data, the proposed method can help overcome the limitations
of traditional monitoring methods and provide a more effective solution for landslide
disaster management. The goal is to achieve a visual simulation of the landslide process
and provide a scientific basis for landslide emergency response and subsequent treatment.

The significance of this research lies in its potential to improve landslide disaster
management and reduce the impact of landslides on human lives and infrastructure. By
providing a more accurate and comprehensive picture of the landslide event, this method
can inform decision making about disaster response, risk assessment, and mitigation efforts.
Overall, this study contributes to the development of better, more efficient approaches to
landslide disaster management, with the ultimate goal of reducing the impact of landslides
on human lives and infrastructure.

2. Literature Review

The proposed framework integrates landslide dynamic modeling with the reconstruc-
tion and visualization of a landslide event. Consequently, we review related literature on
two aspects: (1) landslide modeling; and (2) landslide visualization.
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2.1. Landslide Modeling

Landslide modeling is an essential tool for predicting the occurrence and behavior
of landslides, and has been the focus of a significant amount of research in recent years.
Depending on the underlying modeling principles and mechanisms, landslide modeling
can be partitioned into three categories.

Physically-based models [5] are widely used in landslide modeling due to their ability
to take into account the physical processes that govern landslide behavior. These models
incorporate equations describing the mechanics of slope failure, including the effects
of gravity, soil properties, and groundwater flow. Such models can provide detailed
information about the initiation and propagation of landslides, and can be used to simulate
the effects of different environmental conditions and triggering events [6–8]. However,
these models require extensive data on soil properties, topography, and other factors, which
can be difficult and time consuming to obtain.

Empirical models [9–11] are simpler and more computationally efficient than physically-
based models, and are often used when data are limited or when a quick assessment of
landslide susceptibility is required. These models are based on statistical relationships
between landslide occurrence and various environmental factors, such as slope angle, vege-
tation cover, and rainfall intensity. However, empirical models may not accurately capture
the underlying physical processes that govern landslide behavior, and their predictive
power may be limited in areas with different environmental conditions than those used to
develop the model.

Hybrid models [12,13] attempt to combine the strengths of physically-based and
empirical models, by incorporating both physical principles and statistical relationships
into the modeling process. These models can provide more accurate predictions of landslide
occurrence and behavior than purely empirical models, while requiring less data and
computational resources than physically-based models. However, hybrid models may
be more complex and difficult to implement than either purely empirical or physically-
based models.

Despite advances in landslide modeling, there are still significant challenges to be
addressed. These include the need for more accurate and comprehensive data on soil
properties, topography, and other factors; the need to improve our understanding of the
underlying physical processes that govern landslide behavior; and the need to develop
models that can be easily implemented and provide timely and accurate predictions of
landslide occurrence and behavior.

2.2. Landslide Visualization

The visualization technology of landslide dynamic evolution has been widely studied.
The main research directions are as follows. The first is the automatic drawing method of
landslide evolution map based on deep learning. Some scholars build a remote sensing
system for landslide image processing evolution analysis by using various remote sensing
data types related to ground deformation monitoring, optical data, landslide assessment,
forest fire post-burn area assessment, critical infrastructure monitoring [14,15], space-borne
interferometric synthetic aperture radar inversion technology [16,17], etc. The remote
sensing system for image processing and evolution analysis of landslides can provide
accurate and high-resolution terrain information of the landslide area, including measuring
the surface deformation of the landslide area with millimeter-level precision and informa-
tion about the temporal and spatial distribution of landslides. It can perform a detailed
analysis of terrain changes and detect edge Poe’s subtle movements and identify potential
hazards. Furthermore, it can realize the continuous monitoring of large-area and long-term
landslides, which is crucial for evaluating the evolution of landslides, understanding the
mechanism and triggering factors of landslides, and predicting future movements. Based
on this, some scholars [18] used the high-resolution optical satellite image based on cable
for landslide detection, which is more reliable in identifying the hidden areas of a landslide
hazard, and then carried out large-scale landslide detection with high precision and high
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timeliness. An improved U-Net model is proposed to segment the landslide semantics of
EO (Earth Observation) data at regional scale by using feature extraction blocks of CNN
landslide mapping. However, there are some limitations and challenges in the landslide
reconstruction system based on remote sensing, including that it may be affected by atmo-
spheric conditions such as clouds, rain, and atmospheric turbulence, which will reduce the
quality and accuracy of the data; multiple radar images need to be collected at different
times. These images may be affected by changes in viewing geometry, radar system, or en-
vironmental conditions, making the accurate comparison and analysis of data challenging;
the processing and analysis of remote sensing data can be computationally intensive and
time consuming, requiring specialized software and technical expertise; remote sensing
data may not provide sufficient information on the geological and hydrological conditions
of landslide areas, which may limit the understanding of landslide mechanisms and trig-
gers. Their operating costs can therefore be high, making them challenging to implement
in developing countries or in resource-limited settings.

Another strand of methods combines the simple two-dimensional landslide model
with the experimental test, and then constructs the three-dimensional prediction visual
model. For example, researchers [19] obtained two-dimensional simulation results of a
landslide area, the dip angle and influence depth based on a two-dimensional map of
landslide monitoring. Other researchers [20] combined field monitoring with experimental
tests and established a three-dimensional visualization model of landslide form prediction.
However, the simple two-dimensional landslide evolution is relatively limited in time
and space; therefore, the construction condition of a 3D prediction visualization model
is relatively harsh. This includes information about soil properties, topography, weather
conditions, etc. Developing a 3D visualization model is expensive, especially for large-scale
landslides. The cost of collecting data, modeling, and analyzing results can be prohibitive
for some organizations. Moreover, the method is difficult to test and the simulation
prediction model is difficult to contain microscopic information.

The third category is the refined visualization method for the landslide simulation of
a post-disaster state based on multi-source data fusion [21]. While techniques that focus
on post-disaster results and analysis are important, pre-disaster information is also critical
for understanding the factors that lead to landslide disasters. Earthquakes, geological
conditions, heavy rain, and other environmental factors can all contribute to pre-landslide
disasters, and are essential for disaster analysis and research. However, integrating data
from multiple sources can be challenging, particularly when the data are in different formats
or have varying levels of detail. The process of collecting, processing, and integrating data
can be time consuming, which can delay the availability of simulation results. This can be
problematic if stakeholders require timely information to make decisions. Therefore, it is
necessary to develop a real-time and time-efficient landslide dynamic evolution method
that integrates pre-disaster data with post-disaster analysis. This requires the development
of sophisticated data processing techniques that can handle different data formats and
levels of detail. The method should also be designed to provide timely information to
stakeholders, allowing them to make informed decisions in a timely manner.

In summary, it is essential to develop an accurate, quick, and data-efficient dynamic
evolution approach for landslides [22–28]. On the one hand, the multi-dimensional synthe-
sis dynamically expresses the changes in spatial position, geometric form, and attribute
information of geographical objects in the time dimension. On the other hand, it vividly
and intuitively reveals the evolution of the geographical spatial-temporal process, to better
reveal the relationship of landslide mechanics, acquire new knowledge, and discover the
law. After the landslide occurred, the visualization simulation and analysis of the landslide
process was carried out in the virtual geographic environment in the first time to realize
data reorganization and rapid understanding of the disaster situation, so as to provide a
scientific basis and important data support for disaster emergency treatment and further
assessment and prediction.
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3. Data Description

A massive landslide occurred at 21:20 on 23 July 2019, in the Chagou Formation of
Pingdi Village, Jichang Town, Shuicheng County, Guizhou Province. The plane shape of
the landslide is a long strip. After the landslide happened, the two original gullies along
the slope were shoveled and scraped, which further accelerated the landslide process. As a
result of the higher topography blocking some of them, the remainder transformed into a
high-speed debris flow that impacted the residential areas on the hill, affecting a total of
23 families, 77 persons, and 27 dwellings, with 23 individuals buried. As of 29 July, there
have been 43 fatalities and 9 missing persons.

Shuicheng County is located in the western part of Guizhou Province (N 26◦10′,
E 104◦35′), with a terrain that generally slopes from northwest to southeast. Shuicheng
County is situated in the northwest–southeast trending deformation zone of western
Guizhou, also known as the Shuicheng–Ziyun deformation zone. This zone stretches for
about 250 km in length and 20–50 km in width, with an overall trend of north 50◦ west to
south 50◦ east. The landslide belongs to the tectonic erosion and denudation mid-mountain
topography, with the highest elevation of the mountain behind the landslide being 2050 m
and the elevation at the front valley being 1100 m, with a relative height difference of
over 900 m. The regional topography is undulating, and the shape of the landslide is
similar to a “long boot” shape, controlled by the northwest–southeast trending mountain
on the northwestern side and the single-sided exposure to the east. The slope direction is
17◦ and the slope gradient is 30◦. The exposed rock types in the landslide area are, from
youngest to oldest: Quaternary residual accumulation of gravel and clay, with a thickness of
3–6 m; Triassic Jialingjiang Formation shallow gray mudstone, Feixianguan Formation
purple-red sandstone mudstone; Permian Xuanwei Formation (C11) gray-yellow sandstone
and pink sandstone, Permian Emeishan basalt dark gray basaltic intrusive rock and volcanic
intrusive rock, with a strong surface weathering and a relatively fragmented rock.

One month before the landslide occurred, the cumulative rainfall reached 371.9 mm,
which was 1.6 times the average rainfall for that month in previous years. The maximum
daily rainfall occurred on 12 July, with a value of 83 mm. In the week before the landslide
(17–23 July), rainfall was relatively dense, with a cumulative rainfall of 153.7 mm and the
maximum hourly rainfall occurring at 14:00 on 18 July, with a value of 26.3 mm/h. Statistical
analysis of the rainfall data suggests that the previous period of heavy rainfall and short-term
heavy rainfall may have been the main triggering factors for the landslide instability.

Figure 1 is the remote sensing image of the Chagou Formation before the landslide
event. The elevation of the peak is 2083 m above sea level, and the bottom of the slope is
1210 m above sea level. The height difference reaches 873 m within the horizontal distance
of 2690 m. The landslide erupted on a slope around 1540 m above sea level, 330 m from
the bottom.

Figure 2 is the remote sensing image of the Chagou Formation after the landslide.
According to the indications left by the landslide, this slope is not composed of stones, but
rather of loose dirt. Prior to the landslide, it rained consistently on 21–23, with significant
precipitation on 23 July. Consistent rainfall caused the soil water to melt, destabilizing the
soil and triggering a debris flow, which resulted in a large and highly dangerous landslide.
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4. Landslide Dynamics Modeling

The occurrence and evolution of a landslide depend on many factors, among which
the dynamic factor and the mechanical property that determines whether a slope material
will landslide or not are the most crucial determinants. The dynamic factor is controlled
by the law of natural action, and the most important action is the driving force produced
by gravity and atmospheric precipitation. The mechanical properties of the slope are
composed of the mechanical properties of the slope material itself and the mechanical
properties of the environment.

The two important factors controlling the occurrence and evolution of landslides are
not constant natural scientific quantities, but two variables that are constantly changing.
Gravity in the dynamic factors can be regarded as a constant measure, and its value is given
by F0 = mg, where m is the mass of sliding mass and g is the gravitational acceleration.
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However, the dynamic force produced by atmospheric precipitation is a variable force: the
precipitation impulse obtained by the mass m of the sliding mass per unit volume in a unit
time t is

∆F1 = q2
1t N (1)

where q1 represents the amount of atmospheric precipitation passing through the space
where the sliding mass is located per unit volume. The driving force of surface water flow
formed by atmospheric precipitation, seepage water generated during rainfall, groundwa-
ter, debris flow, etc., is proportional to the water flow or debris flow passing through the
landslide area, that is,

∆F2 =
ρq2

2t
S

N, (2)

where ρ is the density of the fluid; S is the cross-sectional area of the sliding mass receiving
fluid impact per unit volume. Since the area per unit volume is equal to 1, S = 1. Therefore,
the driving force controlling the landslide is a variable force:

Ft = F0 + ∆F1 + ∆F2 = mg + q2
1t + ρq2

2t N. (3)

Therefore, the driving force controlling the phenomenon of landslide motion can be
characterized as

Ft = F0 + εt N. (4)

In Equation (4), F0 and Ft are the initial driving force and terminal driving force of the
sliding mass, respectively; ε represents the changing rate of the driving force; t is the time.

The mechanical property of the slope is the second most important factor that specifies
the occurrence of the landslide. Generally, the progress of natural action, the change
(movement or deformation) in the slope material, and the characteristic value of the slippery
property of the slope quality change with time. Therefore, the slidability eigenvalue also
changes with time. Without loss of generality, let E0 be the initial eigenvalue of the
mechanical property, and let β be the changing rate of mechanical property. The slidability
eigenvalue E over the time horizon is captured by

Et = E0 + βt. (5)

Consider a slope with the slope angle α. The landslide event can be simplified as
a sliding mass moving along the slope. As mentioned before, the landslide event is
determined by time-varying driving force Ft and slidability eigenvalue Et. Below we model
the dynamics of the landslide and establish the dynamic equations of landslide events.

Without loss of generality, let xt, vt, and at be the moving distance of the sliding
mass, sliding velocity of the sliding mass, and the sliding acceleration of the sliding mass,
respectively. As shown in Figure 3, the driving force F and the resistance force R determines
the joint force F̂, which is given by

F̂ =
√

F2 + R2 − 2FRcos α N. (6)

Note that the resistance force R relates to the driving force through the slidability
eigenvalue E as

R = (1− E)F N. (7)

Plugging Equation (7) into Equation (6) leads to

F̂ = F
√

2(1− cos α)(1− E) + E2 N. (8)
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Equation (8) indicates that there is a unified relationship between the joint force, the
driving force and the slidability eigenvalue. Note that both the driving force F and the
slidability eigenvalue E are time varying. Substituting Equations (4) and (5) into Equation (8)
leads to the time-varying joint force as follows:

F̂ = (F0 + εt)
√

2(1− cos α)(1− E0 − βt) + (E0 + βt)2 N. (9)

By Newton’s second law of motion, the sliding acceleration is determined by

at =
F̂
m

=
(F0 + εt)

√
2(1− cos α)(1− E0 − βt) + (E0 + βt)2

m
m/s2. (10)

Given the acceleration at, the sliding velocity vt can be characterized as

vt = v0 +
∫ t

0
atdt m/s. (11)

Moreover, the sliding distance xt is given by:

xt =
∫ t

0

[
v0 +

∫ t

0
atdt

]
dt m. (12)

There are four model parameters, namely F0, E0, ε, and β, in the dynamic equations. To
reconstruct and visualize the landslide event, we need to calibrate these model parameters.
Below, we calibrate them based on the pre- and post-disaster remote sensing data.

For the initial driving force F0, we can estimate the volume of the sliding mass from
the actual landslide scenario and calculate the mass of the sliding by multiplying with
the density of the sliding mass, i.e., F0 = mg. For the remaining three model parameters
E0, ε, and β, we calibrate them based on the pre- and post-disaster remote sensing data.
Note that at the stationary state of the landslide, we have vt = 0 and at = 0. Moreover, the
sliding distance can be estimated by comparing the pre- and post-disaster remote sensing
data, and the duration of the landslide is given by the difference between the timestamps
of the pre- and post-disaster remote sensing data. Without loss of generality, let x̂ be the
sliding distance estimated from the pre- and post-disaster remote sensing data, and let t̂
be the time duration of the landside event. E0, ε, and β can be calibrated by solving the
following equations:

∫ t̂
0

[
v0 +

∫ t
0 atdt

]
dt = x̂

v0 +
∫ t̂

0
(F0+εt)

√
2(1−cos α)(1−E0−βt)+(E0+βt)2

m dt = 0

(F0+εt̂)
√

2(1−cos α)(1−E0−βt̂)+(E0+βt̂)
2

m = 0

. (13)
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Equation (13) involves three unknowns and three equations. Therefore, we can obtain
unique solutions for E0, ε, and β. Newton’s method can be used to numerically solve
the equation.

Finally, given the calibrated model parameters F0, E0, ε, and β, we can simulate the
movement of the sliding mass and reconstruct the landslide event based on the dynamic
Equations (10)–(12).

5. Visualization

According to the comparison and analysis of the site survey and remote sensing
images, the main sliding time is about 3 min, the main sliding direction is N 17◦ E, the
sliding mass in the high-instability state is about 70 × 104 m3, and the average overall
downward dislocation is 50 m. The residual sliding mass in the slip source region is
about 20 × 104 m3, and the average overall downward dislocation is 0.4 m. The slip
body that has left the slip source region is about 50 × 104 m3, with an average downward
dislocation of 2.2 m. Accordingly, dynamic characteristic parameters of sliding masses with
different volumes are obtained according to Equation (13), as shown in Table 1. According
to the dynamic parameters of the sliding mass with different volumes, the movement
displacement of the sliding mass at different times is obtained from Equation (12), as shown
in Table 2.

Table 1. Dynamic parameters of the sliding mass with different volumes.

Sliding Volume E0
1 ε 2 β 3

20 × 104 m3 0.5393 304.2114 1.8921
50 × 104 m3 0.1152 6.4018 0.1711
70 × 104 m3 0.0256 0.2326 0.0101

Note: 1 is the characteristic value of slippery property of slope material; 2 is the rate of change of applied force;
3 is the rate of change of waste of slope material.

Table 2. Movement displacement of sliding mass at different time.

Time (s)
Displacement(mm) Sliding Volume

20 × 104 m3 50 × 104 m3 70 × 104 m3

0 0 0 0
30 726 62 13
60 3243 130 27

120 14,688 756 172
150 26,250 1036 289
180 50 × 103 2.2 × 103 0.4 × 103

To realistically and dynamically display the surface information of the landslide
at different moments during the evolution of the landslide, we visualize the landslide
evolution process based on the calibrated dynamic equations. Specifically, we discretize
the whole duration of the landslide event and calculate the sliding distance xt at different
timestamps t based on Equation (12). Given xt, we can calculate the elevation of the slope
area at different timestamps t and reconstruct the evolution of the landslide event. Based
on the elevation data of the slope area at different timestamps, we can dynamically 3D
visualize the landslide evolution process as follows. First, we perform three-dimensional
segmentation according to the raster hope data with buried depth, that is, generate the
space data of the sliding mass; then we perform texture mapping on the accumulation
surface of the sliding mass at different timestamps and then perform real-time rendering on
the spatial data of the sliding mass with texture at different timestamps and visual display
to realize the three-dimensional dynamic visualization effect of the landslide process. The
detailed procedure of 3D visualization of the landslide process is shown in Figure 4.
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Figure 4. The procedure of 3D visualization of the landslide process.

Based on the realistic pre- and post-disaster remote sensing data of the landslide
occurring at 20:40 a.m. on 23 July 2019 in the Chagou Formation of Pingdi Village, Jichang
Town, Shuicheng County, Guizhou Province, we calibrate the model parameters in the
dynamic equations, simulate and reconstruct the historical landslide evolution process, and
dynamically visualize the landslide event following the procedure presented in Figure 4.
The dynamic 3D visualization of the landslide event is demonstrated in Figure 5.
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We can observe that the proposed approach realistically and dynamically reconstructs
and visualizes the landslide event. Furthermore, the landslide process simulation can also
detect the maximum burial depth, maximum sliding speed, maximum momentum, and
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other indicators during the evolution process, and the visualization results can be used for
subsequent risk assessment, engineering implementation, and other applications.

6. Conclusions

In this study, we proposed a landslide dynamic visualization method based on pre-
and post-disaster remote sensing data, and applied it to the mountainous area of Guizhou,
one of the most landslide-prone areas in China. The dynamic equations of the landslide
event are established and calibrated based on realistic remote sensing data, and the spatial-
temporal evolution process of the landslide event is reconstructed and visualized. Real-
world case studies demonstrate that the proposed technique reconstructs and visualizes
the landslide event accurately and dynamically.

The proposed approach of landslide reconstruction and visualization has extensive
potential applications and societal benefits. First, it provides better understanding of
landslide mechanisms. The physical dynamics method takes into account the mechanical
behavior of the soil and rock, as well as the water content and slope gradient, which are
all factors that contribute to landslide formation. By using this method, we can better
understand the mechanisms that lead to landslides and make more accurate predictions of
where they are likely to occur. Second, it enables a more accurate modeling of landslide
processes. By combining the physical dynamics method with remote sensing data, we can
create more accurate models of landslide processes. Remote sensing data, such as satellite
imagery, can provide information on changes in terrain and vegetation cover that may
indicate areas of instability. By incorporating these data into our approach, we can better
predict the timing and magnitude of landslides. Third, it ensures improved emergency
response. The pre-disaster and post-disaster visualization reconstruction method can help
emergency responders to better understand the scope and scale of a landslide disaster.
By visualizing the landslide process, they can identify areas that are most vulnerable and
prioritize their response efforts accordingly. This can help to minimize the loss of life and
property damage. Finally, it helps in better planning for future disasters. By using the
physical dynamics method and remote sensing data to reconstruct the landslide process,
we can identify areas that are most at risk for landslides in the future. This information
can be used to develop better land use policies and engineering solutions that can help to
prevent landslides from occurring in the first place.

The proposed method for reconstructing and visualizing landslide events based on pre-
and post-disaster remote sensing data presents a promising approach for understanding
the dynamic nature of landslides. However, there are several areas for future research and
development that could further improve the accuracy and usefulness of this method. On
the one hand, incorporating more factors and integrating other data sources could improve
the method’s accuracy. Our landslide dynamic modeling does not consider the detailed
geological, geomorphological, geotechnical, or hydrogeological characteristics. Incorpo-
rating these features into the landslide modeling could improve its accuracy; however, it
would also require a higher level of data. Therefore, incorporating data from ground-based
sensors, such as seismometers or tiltmeters, could provide more detailed information
about the behavior of a landslide and help to refine the model parameters. In addition,
integrating real-time weather data into the model could help to predict the likelihood of
future landslides and inform disaster response planning. On the other hand, the use of
machine learning algorithms to improve the accuracy of the calibration process is explored.
By leveraging large datasets of historical landslide events and associated remote sensing
data, machine learning algorithms could be trained to automatically adjust the model
parameters and improve the accuracy of the simulation results. Furthermore, there is an
opportunity to explore the integration of this method with other hazard assessment and
risk management tools. For example, the visualization results from the landslide process
simulation could be integrated with flood models or building vulnerability assessments to
provide a more comprehensive understanding of the potential impact of a landslide event.



Water 2023, 15, 2023 12 of 13

This could inform land-use planning, disaster response planning, and infrastructure design
and implementation.

In summary, while the proposed method for reconstructing and visualizing landslide
events based on pre- and post-disaster remote sensing data presents a valuable approach,
there are several areas for future research and development that could further enhance its
accuracy and usefulness. With continued research and development, this method has the
potential to improve our understanding of landslides and inform more effective hazard
assessment and risk management strategies.

Author Contributions: Dynamics analysis and texture mapping principles, J.Y.; visual presentation,
Y.G., W.C. and Q.M.; writing—original draft preparation, J.Y.; writing—review and editing, Z.L. and
B.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Open Research Foundation of Hubei Key Laboratory of
Disaster Prevention and Mitigation (China Three Gorges University) (2021KJZ01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all the reviewers for their detailed comments,
which have greatly helped to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tao, Z.; Zhang, H.; Peng, Y.; Zhao, S.; He, M. Architecture and engineering application of cloud service platform for landslide

monitoring multi-source system. Chin. J. Rock Mech. Eng. 2017, 36, 1649–1658.
2. Tian, H.; Liang, W. Harm analysis and prevention research of landslide. Chin. Folk. Resid. 2013, 11, 136.
3. Song, Y.; Fan, X.; Lu, X. Landslide disaster investigation using multi-temporal Remote sensing image and DEM data: A case

study of Xintan Area. J. Anhui Norm. Univ. (Nat. Sci. Ed.) 2006, 29, 276–280.
4. Lv, Y.; Ye, J.; Xu, Q.; Xu, Z.; Sun, Q.; Cheng, Y. Terrain modeling and three-dimensional visualization for large-scale landslide

disaster simulation. Geomat. Sin. Wuhan Univ. (Inf. Sci. Ed.) 2020, 45, 467–474.
5. Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res.

1994, 30, 1153–1171. [CrossRef]
6. Formetta, G.; Capparelli, G.; Versace, P. Evaluating performance of simplified physically based models for shallow landslide

susceptibility. Hydrol. Earth Syst. Sci. 2016, 20, 4585–4603. [CrossRef]
7. Borga, M.; Fontana, G.D.; Da Ros, D.; Marchi, L. Shallow landslide hazard assessment using a physically based model and digital

elevation data. Environ. Geol. 1998, 35, 81–88. [CrossRef]
8. Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility

assessment at regional scale. Catena 2021, 201, 105213. [CrossRef]
9. Guo, D.; Hamada, M.; He, C.; Wang, Y.; Zou, Y. An empirical model for landslide travel distance prediction in Wenchuan

earthquake area. Landslides 2014, 11, 281–291. [CrossRef]
10. Gomes, R.A.T.; Guimarães, R.F.; Carvalho, O.A.; Fernandes, N.F.; Vargas, E.A.; Martins, S. Identification of the affected areas by

mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nat.
Hazards 2008, 45, 197–209. [CrossRef]

11. Nowicki Jessee, M.A.; Hamburger, M.W.; Allstadt, K.; Wald, D.J.; Robeson, S.M.; Tanyas, H.; Hearne, M.; Thompson, E.M. A
global empirical model for near-real-time assessment of seismically induced landslides. J. Geophys. Res. Earth Surf. 2018, 123,
1835–1859. [CrossRef]

12. Goetz, J.N.; Guthrie, R.H.; Brenning, A. Integrating physical and empirical landslide susceptibility models using generalized
additive models. Geomorphology 2011, 129, 376–386. [CrossRef]

13. Li, Y.; Chen, W. Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning
techniques. Water 2020, 12, 113. [CrossRef]

14. Cui, Y.; Deng, J.; Xu, C. Volume estimation and stage division of the Mahu landslide in Sichuan Province, China. Nat. Hazards J.
Int. Soc. Prev. Mitig. Nat. Hazards 2018, 93, 941–955. [CrossRef]

15. Koca, T.K.; Koca, M.Y. Volume estimation and evaluation of rotational landslides using multi-temporal aerial photographs in
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