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Abstract: This study aims to couple the support vector machine (SVM) model with a hydromete-
orological wireless sensor network to simulate different types of flood events in a montane basin.
The model was tested in the mid-latitude montane basin of Vydra in the Šumava Mountains, Central
Europe, featuring complex physiography, high dynamics of hydrometeorological processes, and the
occurrence of different types of floods. The basin is equipped with a sensor network operating in
headwaters along with the conventional long-term monitoring in the outlet. The model was trained
and validated using hydrological observations from 2011 to 2021, and performance was assessed
using metrics such as R2, NSE, KGE, and RMSE. The model was run using both hourly and daily
timesteps to evaluate the effect of timestep aggregation. Model setup and deployment utilized the
KNIME software platform, LibSVM library, and Python packages. Sensitivity analysis was performed
to determine the optimal configuration of the SVR model parameters (C, N, and E). Among 125 simu-
lation variants, an optimal parameter configuration was identified that resulted in improved model
performance and better fit for peak flows. The sensitivity analysis demonstrated the robustness of
the SVR model, as different parameter variations yielded reasonable performances, with NSE values
ranging from 0.791 to 0.873 for a complex hydrological year. Simulation results for different flood
scenarios showed the reliability of the model in reconstructing different types of floods. The model
accurately captured trend fitting, event timing, peaks, and flood volumes without significant errors.
Performance was generally higher using a daily timestep, with mean metric values R2 = 0.963 and
NSE = 0.880, compared to mean R2 = 0.913 and NSE = 0.820 using an hourly timestep, for all 12 flood
scenarios. The very good performance even for complex flood events such as rain-on-snow floods
combined with the fast computation makes this a promising approach for applications.
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1. Introduction

Flood forecasting is a challenging discipline in hydrological science because it aims to
provide accurate, reliable, and timely forecasts of highly dynamic phenomena in complex
environmental contexts [1–3]. Conventional hydrodynamic models are based on proven
physical principles and known equations, providing a clear and intuitive understanding
of the simulated process and system. This makes it easy to understand the simulation
results and to identify and correct potential errors in the model setup or data sources.
Using proven theoretical principles enables the design of models for universal use, facili-
tates interpretation of their results, and makes the modeling process transparent [4]. On
the other hand, hydrodynamic models typically require specific and detailed input data
describing the physical properties of the simulated system, whose availability is often
limited or burdened by uneven levels of detail or quality [4–6]. Especially in remote areas,
such as montane basins, information on channel cross-sections, bed material properties,
roughness coefficients, soil properties, etc. may be lacking, sparse, generalized, or outdated.
Demanding and complex model setup, calibration, and long computation times make the
use of conventional hydrological and hydrodynamic models cumbersome for operational
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forecasts, especially in highly dynamic environments. With the rising variability of hy-
drometeorological processes, the need for timely hydrological forecasts has opened a niche
for the application of data-driven models [7,8].

Machine learning (ML) is a dynamic and rapidly evolving area of research with signif-
icant potential in the field of hydrologic and hydrodynamic modeling [7–9]. Over the past
decade, the use of ML models has rapidly matured from an experimental research endeavor
to a mainstream approach encompassing a wide range of tools and applications [8,10,11].
Among the most widely used ML methods in hydrology are artificial neural networks
(ANNs), long short-term memory (LSTM) networks, and support vector machines (SVMs).
ML models have proven to be effective in situations where conventional models fail due to
the complexity of the system or changing environmental conditions [12,13]. The choice of a
particular model depends mainly on the nature of the task, the input data, the complexity
of the environment, and the associated uncertainties.

SVM models are considered to be advantageous over ANN and LSTM networks in
specific conditions, particularly when dealing with small datasets or datasets with high-
dimensional features where overfitting can be a problem [14]. SVM models can efficiently
handle nonlinear relationships between input and output variables, which is particularly
useful in hydrological applications where nonlinear relationships are often present.

Such properties meet the needs of hydrological modeling based on inputs from wire-
less sensor networks. While the density of monitoring data is high compared to conven-
tional monitoring, the time series from sensor networks are relatively short compared to
the long-term studies. Sensor-based data are often burdened by uncertainties stemming
from the nature of monitoring or complex environments that lead to nonlinearity in the
inputs [15,16], where the robustness of SVM models can be beneficial.

SVM models have demonstrated their capability in hydrology in various environments
and applications [14,17–19]. Due to promising results in a pilot study [20], an SVM-based
model was chosen as the basis for this study.

Machine learning models can benefit from the rapidly growing availability of data,
both from new sensors and from digitized historical archives. Machine learning (ML)
models, employing a wide range of machine learning algorithms, can achieve high accuracy
in predictions and forecasts, especially when trained on large and diverse datasets [7]. This
can be particularly useful in complex and nonlinear systems, as represented by hydrological
processes. ML models, however, remain black-box tools that are not rooted in the laws of
physics, hydrology, or meteorology [21]. The quality of the models depends largely on the
quality and structure of the input data; thus, responsible curation of the data sources is
crucial for understanding the model behavior and assessing the risk of model overfitting or
fitting to a false signal in data [22].

For hydrological research, the accurate and reliable monitoring of water levels is im-
portant for correctly determining discharge values, enabling analysis and modeling runoff.
The potential of water level measurement techniques has been significantly enhanced in
the last two decades by new sensing technologies. Distributed sensors, offering automated
monitoring, provide measurements with unprecedented precision and a high frequency
of monitoring [15,16]. In addition to water level monitoring, networks can collect data
on a wide range of hydrometeorological variables, such as precipitation, air temperature,
wind speed, solar radiation, snow depth, soil moisture, or hydrochemistry [23–26]. An
important aspect of sensor networks for hydrological forecasting is their ability to provide
near-real-time data availability due to digital mobile network (GSM), radio, or satellite data
transfer [6].

Sensor networks are particularly important for secure monitoring in remote areas with
limited coverage of conventional data sources [26]. Automated monitoring of water levels
is frequently used in urbanized environments, where rapid runoff generation requires
timely detection and the issuance of potential warning messages [27]. Sensor networks
are also of particular importance in remote areas, such as river headwaters in montane
or protected areas [15], which are decisive for runoff generation but often feature sparse
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networks of conventional monitoring, often limited to gauging stations at the outlets of
principal basins due to the physical inaccessibility of the basin.

Conceptual models used for complex hydrological forecasting depend on a number of
variables for which data are often not available with sufficient accuracy. This is typically
the case for complex events such as rain-on-snow floods. The complex simulations that are
run over large catchments are often time-consuming. For predictions in small catchments
with rapid flood evolution, the combination of inaccuracy and slow prediction times results
in high uncertainty and limited usability of the model predictions. Therefore, the use
of sensor networks to automatically monitor rainfall–runoff processes in the peripheral
parts of catchments, with near-real-time data access, could help fill the gap in the ability to
provide flood forecasts with adequate timeliness and reliability.

The principal research questions of this study were (i) whether an automated sensor
network distributed in the catchment headwaters can be used for reliable prediction of
discharge in a montane basin outlet, (ii) whether an SVM machine learning model can
accurately predict flood discharges in a basin with complex physiography and for a vari-
ety of flood types, and (iii) whether the aggregation of the timestep of the observations
from the sensor network has an effect on the model performance and the robustness of
the simulation.

The study was conducted in the mid-latitude montane basin of Vydra in the Šumava
Mountains, which features frequent flooding. Most of the basin area is located in a National
Park with restricted access and is equipped with only one long-term discharge monitoring
station in the outlet. In the headwaters, there is an experimental wireless sensor network
operated by Charles University in Prague, providing automated hydrometeorological
monitoring in nested sub-catchments with online access. On the basis of a preceding pilot
study [20], a machine learning model using a support vector machine (SVM) algorithm
was used to simulate discharge. Using the SVM model, the sensor network data from
headwaters were used to simulate discharge in the basin outlet, with the long-term official
monitoring data as a reference.

The principal types of flood situations occurring in the region were simulated, includ-
ing floods from regional-scale frontal precipitation, floods from convective storms, floods
from spring snowmelt, and floods from rain-on-snow events.

2. Materials and Methods
2.1. Study Area

The study area was the upper Vydra basin, located in the headwaters of the Šumava
Mountains (Bohemian Forest), a mountain range at the border between the Czech Repub-
lic and Germany in Central Europe (Figure 1). The basin, with an area of 90.1 km2, is
located at an average altitude of 1112 m, with the outlet at Modrava (49◦1′30.0216′′ N,
13◦29′47.1624′′ E). The annual total precipitation reaches 1378 mm, with approximately 40%
occurring in the form of snow [28]. The drainage network is formed by small streams with
a rapid runoff response to initial precipitation [29].

The selection of this study area was motivated by the combination of suitable char-
acteristics reflecting the needs of the study, specifically, the complexity of physiography
and high variability of hydrometeorological processes, along with the appropriate setup of
monitoring in the form of nested catchments, long-term operating hydrometeorological
station at the outlet, and existing experimental wireless sensor network, as well as studies
on the dynamics of hydrometeorological processes in the broader context [28,30,31].

The upper Vydra River basin is the source zone of frequent flooding, including large
floods such as the flood in August 2002 [30]. The feature diversity of physiographic condi-
tions and their recent alteration resulted in variable dynamics of the runoff response across
the basin. Due to its position at the divide of a mountain range and variable topography,
the basin has an uneven rainfall distribution, with an important effect of a precipitation
shadow toward the inland part. The basin has large headwater areas covered by peatlands,
significantly affecting the speed of runoff generation. Specifically, the Rokytka peatbog
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in the southwestern part of the basin represents the largest montane peatland complex in
Central Europe [32]. The basin has undergone extensive forest disturbance due to repeated
waves of bark beetle outbreaks after windstorms since the 1990s [28] and has experienced
an increase in air temperatures since the mid-1980s, affecting evapotranspiration, seasonal-
ity, and runoff variability [33]. The physiography of the basin and the recent transition of its
environmental conditions have contributed to rapid runoff generation and the unreliable
predictability of peak flows.
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Figure 1. Study area of upper Vydra basin with the outlet at Modrava station (MOD), and sub-
catchments of Roklanský (ROK), Březnický (BRE), and Ptačí (PTA) brooks.

2.2. Sensor Network

Data for this study were acquired from the long-term official gauging station at the
basin outlet, operated by the Czech Hydrometeorological Institute, and from monitoring at
selected experimental catchments, operated by Charles University at the basin headwaters.
The outlet station of the Vydra basin, located at Modrava (MOD), is a part of the official
hydrological monitoring and flood forecasting service. The station provides daily obser-
vations of water levels and discharges since 1933. Since 2002, the data are provided using
an hourly timestep [34], allowing them to be used as a reference dataset and target for the
model network in the simulated period.

Since 2005, a network of experimental sub-catchments has been established in the
basin, built and operated by Charles University and comprising 10 catchments with areas
of 2–5 km2, located in the selected parts of the basin [28]. The experimental catchments
are comparable in terms of size and basic topographic parameters, but differ in terms
of patterns of forest vegetation, land-cover structure, management practices, and levels
of forest disturbance. The network consists of water level gauges using ultrasonic and
hydrostatic pressure sensors and automatic meteorological stations (Figure 2). Regular
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direct discharge measurements are carried out to obtain accurate and up-to-date rating
curves for each station.
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meteorological station at ROK. Photos by J. Langhammer.

The experimental sub-catchments of the Ptačí (PTA), Březnický (BRE), and Rokytka
(ROK) brooks in the basin headwaters (Figure 1) were used as the principal data sources
for short-interval automated monitoring of hydrometeorological processes. The sensor
network here monitors water levels, snow depth, precipitation, and air temperatures
(Table 1). The monitoring is performed automatically using a 10 min timestep, with daily
data transmission via GSM to the central cloud storage, enabling online access to data. The
sensor network was built and has been operated by Charles University (CU) since 2005 [28].
The water level data monitoring system employs Fiedler US1200/US3500 [35] ultrasonic
water level meters and Fiedler M4016-G3 telemetric stations [36]. Water levels are observed
at the outlets of the PTA, BRE, and ROK catchments. Monitoring at the outlet from the
Vydra basin at Modrava (MOD) is secured by the Czech Hydrometeorological Institute
(CHMI) using the same devices as in the experimental catchments (Table 1).

Precipitation is observed at ROK, BRE, PTA, and MOD by a Fiedler SR03 rain gauge [37],
coupled with automatic weather stations connected with cloud data storage using the same
M4016-G3 stations as the water level stations (Table 1). Snowpack measurements are
performed at stations located at the outlets of MOD, PTA, and ROK. In all locations,
ultrasonic snow depth measurements are performed using a Fiedler US3500 ultrasonic
sensor [36] with central cloud data storage. All devices operate in a 10 min interval
of measurement.

Table 1. Sensor network and observed parameters.

Parameter Stations Start of
Monitoring

Monitoring
Interval

Data
Provider

Water levels ROK, BRE, PTA 2006 10 min CU
MOD 1933 1 h CHMI

Precipitation ROK, BRE, PTA, MOD 2008 10 min CU

Snow cover ROK, BRE, PTA 2011 10 min CU

Air Temperature ROK, BRE, PTA 2008 10 min CU

2.3. Input Data

From the monitoring data, a dataset covering the monitoring period 2011–2021, when
all observed hydrometeorological parameters overlapped and were consistent, was pre-
pared for the model setup. The observed data were aggregated in two levels of granularity.
The hourly timestep was used to unify the timestep of experimental observations with
the interval of monitoring at the reference CHMI station (MOD), which was used as the
target for the prediction model. The daily timestep was then used to test the effect of
data aggregation on model performance and to fit to the long-term official reference data
provided using a daily step. In both cases, the same structure of input data was used.
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On the basis of the observed data, there were calculated addition indices providing
supplementary information about the basin conditions, such as the potential evapotranspi-
ration (PET), baseflow index (BFI), and antecedent precipitation index (API) (Table 2).

Table 2. Calculated indices.

Indicator Stations Source Data Timestep Method

Baseflow index ROK, BRE, PTA, MOD Hourly discharges at stations 1 h Digital recursive filter [38]

API 30
API 7 MOD, BRE, ROK Hourly precipitation at stations 1 h Antecedent precipitation index [39]

PET MOD, BRE, ROK Hourly air temperatures at stations 1 h Potential evapotranspiration,
Oudin method [40].

Potential evapotranspiration was calculated using the Oudin formula [40]. In the
mountain area where the study was conducted, other PET calculation techniques necessi-
tated direct evapotranspiration measurements or auxiliary data, which were unavailable.
Despite relying solely on air temperature as a determinant variable, the method demon-
strated reliability in different geographic conditions [41,42]. For PET calculation, the PE-
Oudin Python package [43] was used. The baseflow index (BFI), as an important index of
basin preconditions for runoff generation, was calculated using a digital recursive filter [38]
using the Python package hydrogeo/hydro [44]. The antecedent precipitation index (API)
was calculated in two timespans, for 30 and 7 days. The 30 day API is a de facto standard
for the determination of basin wetness preconditions on a longer timescale. The 7 day
interval reflects the preconditions in a small basin with a rapid runoff response [30]. API
calculation was performed using a generic formula proposed by Kohler and Linsley [39]
with an evapotranspiration constant value of C = 0.93, as used by the CHMI for official
calculations [45].

Prior to application in the model, the input parameters were tested for cross-correlations
to avoid inclusion of redundant parameters, duplicating the same signal, and some pa-
rameters were, thus, excluded on this basis. Specifically, the calculated values of PET and
BFI were retained for only one station (PTA) because of very high correlations among
the stations. The resulting list of variables used as input for model training is given in
Tables 1 and 2. Prior to model training, all variables were normalized to reduce the im-
pact of features with large variances and to improve the convergence of the optimization
algorithm [46].

2.4. Model Setup

The support vector machine (SVM) algorithm was chosen as the modeling approach
in this study because of its robustness, computational performance, and efficiency, which
has been demonstrated in a number of studies from different environments [14,17,20]. The
SVM is considered to be among the most robust prediction methods because it seeks to
minimize an upper bound of the generalization error rather than the training error [47]. In
addition, the solution is globally optimal under conditions that can often be met, while
other machine learning algorithms, such as ANNs, can converge to local minima [48]. The
applicability of the SVM model to data from a hydrometeorological sensor network was
also successfully tested in a pilot study [20].

SVMs differ from neural networks and have recently become the most commonly
used machine learning technique in many disciplines [49]. The SVM is a non-probabilistic
classifier based on the separation of cases into distinct classes, applicable to both static and
dynamic data.

The main principle of SVM classification is to transform the original input space into
a higher-dimensional representation [50] By increasing the dimensionality of the data
space, SVM becomes capable of finding a linear solution to separate data that may not be
discernible in the original data space. It is assumed that, if the data are mapped into a
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space with a sufficient number of dimensions, a linear plane, i.e., a hyperplane, capable of
separating the samples should be identifiable [51].

In SVM models, this dimensionality transformation is achieved by the kernel, which
operates on different principles such as linear, polynomial, radial basis, or sigmoid [52]. The
position of the separating hyperplane is determined according to of the location of certain
points, called support vectors, which define the boundaries of the plane. The optimal
solution then aims to maximize the margin around the separating hyperplane [53].

The training phase of the model is based on a complex dataset with marked samples
of selected categories. For such a sample, augmentation of the data space dimensionality is
performed to find a hyperplane that separates the data into categories. Complex coverage
of the distinguished categories in the training sample is essential for the ability of the model
to recognize them in the simulation dataset. In this study, support vector regression was
used for the classification of time series data. Specifically, the nu-SVR algorithm from the
LibSVM library [52] was used for model training and forecasting.

Model setup, training, and simulations were performed using the KNIME 4.7.1 Ana-
lytics Platform (Berthold et al., 2009), providing a complex environment for data science,
scientific calculations, and modeling. The KNIME platform uses workflows based on visual
programming and Python 3 for further integrations. The SVM model was calculated using
the LibSVM library. The LibSVM learner was deployed using the nu-SVR type of SVM
for regression learning on time series and with the generic parameters of kernel. The
SVR parameters of Cost, Nu, and Epsilon were derived on the basis of the results of the
sensitivity analysis, which tested the model performance under varying parameter values.

The modeling network consists of several interlinked blocks: (i) input data preprocess-
ing, including nodes for data import, joining of data from different sources, computation of
derived indices, selection of variables, and data normalization; (ii) the definition of valida-
tion periods and simulation scenarios, defining several events for each type of flood in the
time series; (iii) the LibSVM model trainer; (iv) the LibSVM model predictor using the vali-
dation and simulation scenarios; (v) postprocessing and visualization results using Python
scripting for the calculation of model performance metrics and visualization. The workflow
was deployed using KNIME Analytics Platform 4.7.1. All calculations were performed on
an iMac Pro workstation with an Intel Xeon eight-core 3.2 GHz processor, with 128 GB of
RAM and a GPU Radeon Pro Vega 64 16 GB HBM2 for CUDA computing acceleration.

To assess the model performance, four standard metrics were calculated for each
simulation: the Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), coefficient
of determination (R2), and root-mean-square Error (RMSE). All these metrics, calculating
the goodness of fit between the simulated and observed time series, are widely used
in assessing model performance, while NSE and KGE specifically belong to the most
popular metrics in hydrologic research [54,55]. The applied metrics have similar common
underlying principles, but they handle the measures of data variability and noise differently,
thus featuring different sensitivities to the scale of the data, which is important, especially
if there are large differences in the magnitudes of the observed and simulated data. Not
relying on a single metric is important for complex testing of the model performance and
for understanding model uncertainties [55]. Calculation of the goodness of fit between the
simulated and observed values was performed in Python using Hydroeval library [56],
baseflow separation was calculated using the Hydrograph-py library [57], general statistical
calculations were performed using the NumPy and SciPy [58] libraries, and visualization
was performed using the Matplotlib library [59].

2.5. Model Training, Validation, and Simulation Scenarios

For model training, a sample covering a complex set of events typical for runoff
situations and covering the principal typological categories of runoff events in the region
was selected, including floods from frontal precipitation and floods from convective storms,
snowmelt, and rain-on-snow events. The period of the hydrological years from 1.11.2013 to
31.10.2015 was used for model training.
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For model validation, the approach of complete separation of training and test data
was used to secure unbiased performance of validation [60]. The validation period was
then the hydrological years of 2012 and 2015, covering the periods of 1.11.2011 to 31.10.2012.
These periods comprise a complex set of hydrological situations with different intensities
of hydrometeorological processes and, thus, magnitudes of the events.

A total of 12 scenarios were defined for the simulations, selected from events with
flows above Q90 (90th percentile of daily flows) that occurred during the monitoring period.
The simulation scenarios covered the principal types of flood events resulting from differ-
ent initial situations, including (i) spring snowmelt, (ii) rain-on-snow events, (iii) frontal
precipitation, and (iv) convective storms. For each of the major flood types, three events
were selected, including a high-magnitude event that occurred during the observed period.
These events were supplemented by events with different patterns of hydrometeorological
situations to test the ability of the model to cope with complex situations.

Floods from frontal precipitation were represented by the events from spring 2013, fall
2017, and fall 2020. The most intense flood from frontal precipitation was the event from
June 2013, resulting from an extensive low-pressure zone that developed over a large part
of Europe. The precipitation totals in the period 1–3 June 2013 corresponded to a 20 year
precipitation return period [61]. The flood crest at the MOD station was reached on 2 June
at 54.6 m3·s−1, corresponding to a 5–10 year flood with amplified effects in lowlands, where
it exceeded the magnitude of a 100 year flood [61]. The other simulated floods from frontal
precipitation were from October 2017, which represented a single-peak event, and from
November 2020, which represented a flood from lasting frontal precipitation, resulting in a
series of recurrent peak flows.

For floods from convective storms, events from July 2014, June 2016, and June 2018
were selected. The most extreme event was the flood from 25 June 2016. This convective
storm formed in a humid and unstable air mass with daily air temperatures exceeding
30 ◦C and resulted in a series of thunderstorms with torrential rain, strong winds, and hail.
The precipitation during the event exceeded 75 mm in 24 h and turned into a flashflood
with a sudden rise and a short duration, which is an event that is typically difficult to
predict with conventional models in montane environments. The other simulated events
were a storm on dry preconditions from June 2018 and a series of convective storms in
July 2014.

For snowmelt floods, events from the springs of 2016 and 2020 were selected. The
flood from spring 2016 represented a complex event with multiple peaks. This situation
represents a common type of spring flood resulting from gradual snowmelt at the end
of the winter season. In such situations, snowmelt is driven by rising temperatures and
accelerated by liquid precipitation of low intensity. The period of high flows, used for the
scenario representing a snowmelt flood, lasted for 25 days. As another example of the flood
from spring snowmelt, the event from April 2020 was selected, when the snowmelt was
relatively fast and resulted in a single-peak flood.

Rain-on-snow floods were represented by the two events from the winters of 2015
and 2020. The most extreme event was the flood from December 2015, which was one
of the most intense winter floods in recent decades. The basin saturation by preceding
precipitation and the frozen surface layer of the soil profile set the conditions for extreme
runoff response to rapid snowmelt. The fresh snowpack of 20–30 cm depth was washed out
in 1 day by heavy rainfall and triggered a flood of a magnitude corresponding to a return
period of 20 years [62]. With climate warming, there is more liquid precipitation in winter,
which does not result in complete snowmelt in all cases. Such an event of a flood from
rainfall in the middle of winter, occurring on a snowpack layer that predated the event,
was represented by the event from February 2020.

2.6. Sensitivity Analysis and Model Parametrization

The accuracy of support vector regression (SVR) models is significantly affected by
parameterization, where three parameters—Cost, Nu, and Epsilon—have a principal effect.



Water 2023, 15, 2004 9 of 27

Cost (C) is the regularization parameter that controls the tradeoff between achieving a
low training error minimizing model complexity to avoid overfitting [53]. A large C value
means that the model will try to fit the training data as accurately as possible, which can
lead to overfitting [63]. Epsilon (ε) represents the width of the boundary between the
support vectors, which determines the error margin [64]. A smaller value of ε will result in
a narrower margin, which may cause the model to overfit, while a larger ε will provide a
more robust model but may be less accurate. A smaller value of Nu parameter allows the
model to be more flexible, potentially resulting in better generalization performance on
unseen data [65].

A sensitivity analysis was performed to find the optimum configuration of the three
parameters and to test the robustness of the model. In the initial configuration, the model
used the default parameter values, where C = 1, Nu = 0.5, and ε = 0.001. These parameter
values were proven to be robust in a previous pilot study (Langhammer & Cesak, 2016).
The sensitivity analysis used a matrix of variations of the C, Nu, and Epsilon values, while
each parameter was used in the initial state, with a variation of ±10% and ±25%. As a
result, a total of 125 scenarios with different parameter combinations were defined. For
each scenario, a model training based on the same 2 year long training period used in the
model run was performed. Then, a simulation of the hydrological year of 2015, covering
a complex set of runoff events and later used for validation, was conducted, and the
performance metrics of R2, NSE, KGE, and RMSE were calculated for each model variant
and simulation run.

3. Results
3.1. Sensitivity Analysis and Model Validation

The sensitivity analysis results indicated the general stability of performance param-
eters (Table A1). With some exceptions, most configurations of parameters resulted in
acceptable values of performance metrics. However, it is apparent that the metrics re-
sponded differently to parameter changes. Specifically, higher Cost values resulted in
decreasing R2 and NSE metrics but increasing KGE values (Figure 3a). On the other hand,
rising Nu values resulted in better model performance in R2 and NSE metrics but lower
performance in KGE (Figure 3b). Changes in Epsilon had only limited effects on model
performance (Figure 3c). Across the set of 125 model variations, there were only a limited
number of variants when all three key model performance parameters agreed and featured
high scores (Figure 3d).

There was no configuration in which all three metrics reached their highest scores
simultaneously, whether in absolute score values or according to their ranking (Table A1).
As the optimum configuration, Variant 61 was selected, featuring the values of parameters
C and N increased by 10% and E increased by 25% (C = 1.1, N = 0.55, and E = 0.00125). In
such a parameter configuration, all metrics featured above-average performance, while
NSE reached the best value across the variants (0.827). The R2 score (0.8345) belonged
among the 10 best values, while the KGE score (0.776) reached an above-average value
across the tested variants (Table A1). The C, N, and E parameter values from this variant
were, thus, used for model validation and simulations of all scenarios using both daily and
hourly timesteps.

Model validation was performed on the independent part of the time series, not
overlapping with the training period. This covered the hydrological years of 2012 and 2015,
both featuring a complex set of events but with different dynamics of hydrometeorological
processes. Model validation indicated a very close relationship fit of the simulated and
observed discharge values. All principal peak flow events were captured by the model,
while the simulation maintained the correct timing of the events, as well as the shape
of the simulated hydrograph. For the most extreme events, the forecasted peak flows
were below the observed values; in some cases, there was, in contrast, an apparent slight
overestimation of discharge values (Figure 4). Despite the heterogeneity of physiographic
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conditions, because of the source of variable contributions of individual headwater sub-
catchments during the events, the validation can be considered reliable.
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The model performance for the validation periods of hydrological years 2012 and 2015
was high, reaching daily discharge simulation values of NSE = 0.831 for 2012 and 0.904 for
2015. The values for simulation using an hourly timestep were lower, reaching NSEs of
0.758 for 2012 and 0.827 for 2015 (Table 3). As the model indicated the ability to reliably
reconstruct the complex set of hydrological events with satisfactory performance scores,
the trained network was used to simulate the selected scenarios of individual flood events.

Table 3. Model performance for training and validation periods using coefficient of determination
(R2), Nash–Sutcliffe efficiency (NSE), Kling–Gupta Efficiency (KGE), and root-mean-square error
(RMSE) metrics.

Daily Step Hourly Step

Period R2 NSE KGE RMSE R2 NSE KGE RMSE

Training 2014–2016 0.920 0.900 0.775 1.009 0.857 0.834 0.698 1.440
Validation 2012 0.840 0.831 0.773 1.352 0.765 0.758 0.712 1.758
Validation 2015 0.948 0.904 0.690 1.022 0.903 0.827 0.516 1.511
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3.2. Floods from Frontal Precipitation

In the study region, floods from regional-scale frontal systems present the most intense
type of flood risk, resulting in long-lasting events, often featuring multiple peaks. As
a reference example of this type, the flood from June 2013 was selected, resulting in a
20–50 year flood and a subsequent flood wave from recurrent precipitation. The whole
flood situation was simulated in a timespan of a month to capture the whole event.

Using the daily step, the SVM model was able to reliably simulate the key parameters
of the flood. The model correctly simulated the number of peak flows, the generalized
shape of the flood waves, and the peak flows (Figure 5a). The model performance for daily
values was very high at R2 = 0.983 and NSE = 0.944 (Table 4).

Simulations using an hourly step (Figure 5c) proved the ability to reliably reconstruct
all critical parameters of the flood. The number, timing, and shape of the flow peaks
corresponded to the observations. The discharge of the principal flood wave reached
slightly lower peak flows compared to the simulation using a daily step. However, the
overall model performance remained high, with R2 = 0.970 and NSE = 0.865 (Table 4).

The simulation of the single-peak flood in October 2017 showed that the SVM model
reliably predicted the shape and timing of the flood wave, with a partial underestimation
of the peak discharge (Figure 5e). The hourly model of the October 2017 flood produced
a small spurious peak flow in the simulation in response to the precipitation before the
main event but with no effect on the rest of the simulation. However, this illustrates a
typical feature of machine learning models, which tend to propagate fluctuations in the
input signal into the simulation. Such artefacts are not present in the observations due to
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the complexity of the basin conditions, which are not understood by the machine learning
model. However, this has no significant effect on the model performance, which is very
high, with R2 = 0.881 and NSE = 0.844 (Table 4) for the hourly step model.
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Table 4. Model performance for simulated parameters, using the metrics of R2, NSE, KGE, and RMSE.

Simulation Period Daily Step Hourly Step

Scenario From To R2 NSE KGE RMSE R2 NSE KGE RMSE

Convective storms 2014 18.07.2014 10.08.2014 0.848 0.825 0.784 0.695 0.838 0.819 0.766 0.953

Convective storm 2016 08.06.2016 08.07.2016 0.922 0.876 0.677 0.974 0.893 0.827 0.546 1.749

Convective storm 2018 05.06.2018 03.07.2018 0.986 0.860 0.521 1.485 0.888 0.880 0.863 1.688

Frontal precipitation 2013 21.05.2013 19.06.2013 0.982 0.944 0.743 1.715 0.970 0.865 0.511 2.902

Frontal precipitation 2017 25.10.2017 05.11.2017 0.990 0.921 0.694 1.268 0.881 0.844 0.705 2.289

Frontal precipitation 2020 26.10.2020 12.11.2020 0.983 0.965 0.850 0.642 0.899 0.592 0.586 2.123

Rain on snow 2015 13.11.2015 15.12.2015 0.958 0.913 0.693 2.475 0.902 0.870 0.701 3.229

Rain on snow 2016 15.02.2016 01.03.2016 0.996 0.880 0.540 2.676 0.979 0.878 0.541 3.176
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Table 4. Cont.

Simulation Period Daily Step Hourly Step

Scenario From To R2 NSE KGE RMSE R2 NSE KGE RMSE

Rain on snow 2020 25.01.2020 15.02.2020 0.979 0.878 0.583 2.763 0.933 0.920 0.823 2.398

Snowmelt 2012 09.04.2012 15.05.2012 0.972 0.694 0.228 3.031 0.946 0.594 0.041 3.768

Snowmelt 2016 15.03.2016 20.05.2016 0.953 0.941 0.841 0.583 0.867 0.855 0.774 0.951

Snowmelt 2020 05.03.2020 30.03.2020 0.981 0.868 0.514 2.027 0.960 0.899 0.648 1.995

Minimum 0.848 0.694 0.228 0.583 0.838 0.592 0.041 0.951

Maximum 0.996 0.965 0.850 3.031 0.979 0.920 0.863 3.768

Mean 0.963 0.880 0.639 1.694 0.913 0.820 0.625 2.268

Median 0.980 0.879 0.685 1.600 0.900 0.860 0.674 2.206

3.3. Convective Storms

Convective storm floods are the most frequent type of flooding in the study area, occur-
ring in the warm half of the year. For the simulations, events with different preconditions
and different courses were selected. The single-peak storm of June 2016 was a significant
storm that reached the basin saturated by the previous rainfall. The flood from August
2014 then represented a series of four consecutive storms that repeatedly reached the basin
within a 2 week period.

The SVM model of the flood from June 2016 using an hourly step displayed a very
good fit to the simulated values in all simulated cases. The shape and timing of the peak
flows were accurate with only negligible differences (Figure 6). The statistical performance
of the model using the hourly step was high, with R2 = 0.893 and NSE = 0.87 (Table 4). The
model running using a daily step indicated significant simplification of the hydrograph
(Figure 6a), but with even higher model performance, with R2 = 0.922 and NSE = 0.876
(Table 4).

The simulation results of other simulated convective storms, one in dry preconditions
and a series of recurrent storms, demonstrated good performance of the SVM model in
predicting key event parameters but also exhibited some limitations. For instance, in a
single-peak flood simulation from June 2016, the model failed to accurately reproduce the
first small runoff peak prior to the flood (Figure 6c). Additionally, in a simulation of a
series of floods occurring in August 2014, the model generated small runoff fluctuations
in direct response to precipitation that did not appear in the observed runoff (Figure 6e).
These phenomena can be attributed to the limited spatial impact of convective storms,
which only affect some sub-catchments within a basin. Precipitation monitoring, although
using sensors located in basin headwaters, cannot reflect the heterogeneity of precipitation
distribution. Therefore, the model, which lacked a physical basis and lacked input data
reflecting the spatial heterogeneity of precipitation, could not reproduce such phenomena
with adequate precision. Despite the above-discussed imperfections, the model perfor-
mance using an hourly timestep was higher, evidenced by R2 = 0.887 and NSE = 0.879 for
the convective storm in June 2016 and an NSE of 0.818 for the series of storms from July
2014 (Table 4). The model retained its reliable forecasting capability even throughout a
complex event involving four consecutive storms. Although the performance of the model
decreases slightly during such complex events, it remains robust, as evidenced by an NSE
of 0.875 for hourly timesteps.
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3.4. Snowmelt Floods

Spring snowmelt is the principal source of high flows in montane areas, while the
events feature different lengths and courses. Floods from spring 2016 represented a mul-
tipeak event with complex conditions. In every subpeak, the precipitation driving the
generation of surface runoff reached different conditions, from the existing snowpack
in March through the frozen and saturated soil surface causing a rapid response in the
beginning of April to the dry surface in May. The SVM model proved the ability to handle
such complex and changing conditions using both daily and hourly steps (Figure 7a,b).
The precipitation in April and May, which reached the same intensity and even slightly
higher totals, resulted in a lower discharge compared with the preceding events. The model
performance for snowmelt floods was very high using both daily and hourly timesteps.
For the spring 2016 snowmelt flood, this was demonstrated by values of R2 = 0.953 and
NSE = 0.941 using a daily step and R2 = 0.867 and NSE = 0.855 using an hourly step
(Table 4).

A close fit of snowmelt flooding simulations to the observations was repeated in other
scenarios (Table 4). A single-peak flood from a rapid snowmelt in March 2020 (Figure 7c)
was reproduced with only marginal differences and a very high fit of simulated to observed
values using the daily and hourly timesteps, as indicated by R2 values of 0.981 and 0.959,
respectively (Table 4).
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3.5. Rain-On-Snow Floods

Rain-on-snow events are frequent in mid-latitude montane catchments; in these
conditions, they have the potential to generate extreme runoff responses. As such, the
flood from December 2015 was included among the simulated floods to test the ability
of the SVM model to correctly simulate this type of event. This rain-on-snow flood from
1 December 2015 was of very high intensity and short duration.

The simulation using the SVM model from hourly data indicated a very close fit of
the simulated values to the observation in terms of the appropriate number of flow peaks,
good fit of shape, and good timing of peaks (Figure 8). In the simulation using a daily step,
the model showed a slight underestimation of the major peak, with a very solid fit of the
overall course of the event and very high statistical values of model performance (R2 = 0.958,
NSE = 0.913; Table 4). The simulation using an hourly step indicated an elevated sensitivity
to the inputs (Figure 8c). The initial peak flow values were slightly overestimated, while
the peak flow of the principal flood wave was underestimated, but with the correct timing
and shape of the wave.

Simulations of the event from February 2020, when the robust snow cover was not
completely washed out by the intense precipitation, resulted in reliable forecasts with real-
istic estimates of the shape and timing of the events (Figure 8e, Table 4). In the simulation,
there was an apparent fit of the flood shape and timing of the flood waves, with a partial
underestimation of peak flow values for the principal peak flow event.
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4. Discussion

The data-driven model based on the SVM algorithm model demonstrated robustness
and an ability to predict all types of flood events in the outlet of a complex basin, using
data from a wireless senor network, placed in basin headwaters.

Hydrological models are subject to uncertainty stemming from manifold sources and
affecting the quality and reliability of predictions. Hydrological systems are complex,
dynamic, and nonlinear, occurring in highly heterogeneous environments; despite progress
in monitoring, the available information on the processes is still incomplete and general-
ized [66]. For machine learning models, uncertainty is a critical aspect, as the noise in input
can propagate through the model and significantly affect the model results and quality. As
the principal sources of uncertainty in machine learning models, the following aspects are
considered critical: (i) data availability and quality, (ii) natural variability of the simulated
hydrological system, (iii) input data structure, (iv) model choice, and (iv) model calibration
and validation [7,67,68].

The choice of modeling approach should reflect the specific modeling objectives, the
structure, density, and quality of the data, and the constraints imposed by the specific
characteristics of the given environment. In hydrological forecasting, all principal ML
approaches have recently been used, ranging from artificial neural networks (ANNs) to
deep learning models, such as convolutional neural networks (CNNs), long short-term
memory (LSTM) networks, support vector machines (SVMs and SVRs), decision trees,
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and random forests [8,10,21,67]. Each of the approaches has its specific characteristics,
justifying its use for flood modeling in the given context [69,70]. The LSTM and ANN
models have proven their ability to capture temporal dependencies and flexibility and
provide simulation over long time periods; however, they typically require complex and
large datasets for training [7,68]. SVR models have proven their robustness to outliers
and noise and good performance with small datasets [14,17]. Compared to the other ML
methods, SVR models provide fast simulation estimates of the flood events [71].

In addition to the choice of model, the quantity, quality, and structure of input data
are the most critical aspects for the accuracy and reliability of the simulation [72,73].

The use of data from sensor network monitoring enables the gaps in data availability,
typically in remote areas, to be bridged and brings a new quality of monitoring by providing
data with high temporal resolution and near-real-time availability [15,74]. Expert-based
selection and curation of input variables, ensuring their physical meaning, as well as their
variability in space and time in the given environment, and checking for potential cross-
correlations among the parameters, are critical to reducing model uncertainty [20,75,76].

As for practical applications, it is important that, on the basis of the characteristics
of the basin, online available data from wireless sensor networks in the headwaters of
the basin can provide a similar lead time to radar estimates, which are typically used in
flood forecasting [18,75]. With the fast computation provided by the SVR model, such an
approach can provide readily available iterations of flood stage estimates according to
the progress of events in the headwater areas, which can contribute to more accurate and
timely flood risk management decisions.

4.1. Uncertainties Due to the Physiography

Data from sensor networks can be affected by noise or uncertainties due to various
factors, including the role of physiographic characteristics of the given environment. Re-
garding the effect of physiographic characteristics, the heterogeneity of natural conditions
in different parts of the watershed is particularly important.

One of the main causes of heterogeneity in runoff generation is the uneven spatial
distribution of precipitation [77–80]. In mountainous watersheds with variable topogra-
phy, convective storms may affect only a limited portion of the watershed, resulting in
uneven contributions from headwater sub-catchments [81]. Placing wireless monitoring
sensors in remote areas allows for a denser spatial network of both runoff and precipitation
measurements, resulting in more accurate forecasts.

A major source of uncertainty in hydrologic models is the inhomogeneity of simulated
environment physiographic properties [82,83]. A higher homogeneity of the environment
results in a higher ability of the model to accurately reproduce the processes occurring
within it [82,83].

In this study, this effect could be illustrated in the case of the ROK headwater sub-
catchment, which has a significantly higher proportion of peatlands compared to the
other sub-catchments. [30]. As a result, due to the faster runoff generation in a peatland-
dominated environment, ROK exhibited a more volatile response of discharge to precipita-
tion (Figure 9). Such volatility in one of the inputs was subsequently propagated into the
model and could lead to the generation of a false signal in the forecast in certain situations.
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Figure 9. Effect of peatbogs on the volatility of runoff signal. Different response of three sub-
catchments to summer storms in June/July 2016, indicating a significantly higher volatility of water
levels in the peatland-dominated ROK catchment.

4.2. Limitations of Sensor Network Monitoring

The local aspects of the sensor network setup can also contribute to the occurrence of
irregularities in the monitoring data [15,16]. An example of such an effect is the clogging
of the outflow at the PTA monitoring station during high flows (Figure 10). During high
flows, the bridge culvert where the ultrasonic sensor is mounted can become clogged with
woody debris, causing the sensor beam to detect the debris instead of the water level. The
gradual disintegration of the barrier is then reflected as water level fluctuations. A similar
effect occurs during summer droughts, when the shallow streambed is overgrown with
vegetation that can interfere with the sensor’s measurements. Such measurement artefacts,
when used as model input, can cause false signals to propagate into the model.
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4.3. Effect of Timestep Aggregation

The water level fluctuations discussed above result from the effects of stochastic
hydrometeorological situations in catchments with complex physiography. Under such
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conditions, random irregularities and fluctuations occur in the signal. However, the
resulting noise in the data is not of a systematic nature, which makes its reduction difficult.

Aggregating data into longer timesteps is an effective way to reduce such irregularities
and noise while preserving the signal and improving model performance [84]. In our study,
we tested different data granularities by comparing simulations conducted using daily
and hourly timesteps. The higher generalization of the timestep resulted in a very high
model agreement for all metrics. The average values of the performance metrics for all
12 scenarios reached average values of R2 = 0.963 and NSE = 0.880 using the daily timestep
and average values of R2 = 0.913 and NSE = 0.820 using the hourly timestep (Table 4).

However, data aggregation not only modifies records containing noise but also affects
the accurate signal. Therefore, a balance must be struck to ensure that the information
value is not compromised [76]. In dynamic mountain streams, as observed in this study,
the hourly timestep seemed to provide an optimal balance between level of detail and
aggregation. Aggregation to longer timesteps reduces the advantages of using sensor
network data, such as high-frequency monitoring and timely availability. While model
performance may be high, simulations using a daily timestep oversimplify the flood
hydrograph, including flood shape, flood crest timing, and lag. In addition, the delay
in data delivery caused by the aggregation of daily timesteps can significantly affect the
timeliness of forecasts.

4.4. Impact of Sensitivity Analysis on Model Performance

Support vector regression (SVR) models require proper parameterization for accuracy,
which is primarily influenced by the Cost, Nu, and Epsilon parameters. A sensitivity
analysis was performed to identify the optimal parameter configuration and to assess the
robustness of the model.

The sensitivity analysis based on 125 variants of parameter combinations showed the
robustness of the model, as all tested model variants showed generally acceptable results
in terms of model performance metrics (Table A1).

Specifically, for the simulation of hydrological year 2015, R2 values ranged from 0.792
to 0.836, and NSE values ranged from 0.791 to 0.8727 (Table A1). The low variance of all
performance metrics values indicated a robust performance of the model setup.

Comparing the results for the variant selected as optimal (Var61: C = 1.1, Nu = 0.55,
and ε = 0.00125) with the results for the default parameter values (C = 1, Nu = 0.5, and
ε = 0.001), there was a slight but clear improvement in all metrics. R2 increased from 0.827 to
0.835, NSE increased from 0.817 to 0.827, and KGE increased from 0.752 to 0.776 (Table A1).
In addition to the increase in metric values, there was a significant improvement in the fit of
the simulation of the peak flows of the flood events. This effect can be seen in the example
of the flood caused by frontal precipitation in June 2013, where the optimization resulted
in a much better fit only in the peak values, while the good fit in the other aspects of the
flood hydrograph, such as its shape or the timing of the peak flows, remained unaffected
(Figure 11). The results, thus, indicate that parameter optimization based on sensitivity
analysis was crucial for both overall model performance, particularly for a more accurate
simulation of flood peak flows.
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5. Conclusions

This study tested the potential of coupling the support vector machine (SVM) model
with data from a hydrometeorological wireless sensor network in a montane headwater
basin to predict different types of flood events.

The model was tested in the mid-latitude montane basin of Vydra in the Šumava
Mountains, Central Europe, which is characterized by complex physiography, high dynam-
ics of hydrometeorological processes, and the occurrence of different types of floods. As
input, the model uses a sensor network located in three catchments in the upper reaches
of the basin. Long-term monitoring at the basin outlet serves as the reference station and
model target. Automated hydrological stations in the headwaters operated in the study
area from 2011 to 2021, recording water levels at 10 min intervals with online access to the
data. Meteorological stations monitor air temperature, precipitation, and snow depth using
the same timestep. The observed data were supplemented with calculated indices such
as BFI, PET and API. The input data were aggregated at two levels of granularity using
hourly and daily timesteps to verify the effect of data aggregation on model performance.

Model training was based on a 2 year period (2013–2014) covering all major types of
hydrological situations, and model validation then covered two independent hydrological
years. The simulated scenarios covered the main types of flood events that occurred in the
region, such as flooding from regional-scale frontal precipitation, convective storms, spring
snowmelt, and rain-on-snow events. Model performance was evaluated using metrics such
as R2, NSE, KGE, and RMSE. The model was run using both hourly and daily timesteps to
evaluate the effect of timestep aggregation. Model construction and deployment utilized
the KNIME software platform, the LibSVM library, and Python programming.

Sensitivity analysis was performed to determine the optimal configuration of the main
SVR model parameters (C, N, and E). Among 125 simulated parameter combinations, an
optimal variant was identified with parameter values of C = 1.1, N = 0.55, and E = 0.00125.
The optimization resulted in improved values of the model performance metrics compared
to the default values, and a better fit of the simulations to the observations in terms of
peak flows. Sensitivity analysis demonstrated the robustness of the SVR model, while
simulations for a complex hydrologic year achieved solid performance for all variations of
the C, N, and E parameters, with R2 values ranging from 0.793 to 0.867, and NSE values
ranging from 0.791 to 0.873.

Testing the effect of timestep aggregation showed the positive effect of a longer
timestep on model performance. The values of the performance metrics were generally
higher using a daily timestep, with mean metric values of R2 = 0.963 and NSE = 0.880,
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compared to mean values of R2 = 0.913 and NSE = 0.820 achieved using an hourly timestep,
for all 12 flood scenarios. However, despite better performance, aggregation to longer
timesteps reduces the advantages of using sensor network data, such as high-frequency
monitoring and timely availability. Thus, the hourly timestep seemingly provides an
optimal balance between performance and level of detail.

The model demonstrated the robustness and good performance of the data-driven
SVM model to simulate hydrological time series. The very good performance even for
complex flood events such as rain-on-snow floods combined with the fast computation
makes this a promising approach to provide reliable and timely forecasts.
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Appendix A

Table A1. Model performance for variants of sensitivity analysis, varying the C, N, and E parameters
of the SVR model.

SVR Parameter Values Performance Metrics Values

Variant C N E R2 NSE KGE RMSE

Var0 1.00 0.500 0.00100 0.827 0.818 0.752 1.624

Var1 1.00 0.500 0.00125 0.830 0.821 0.756 1.610

Var2 1.00 0.500 0.00110 0.830 0.822 0.763 1.605

Var3 1.00 0.500 0.00090 0.831 0.821 0.753 1.609

Var4 1.00 0.500 0.00075 0.831 0.822 0.758 1.606

Var5 1.00 0.625 0.00100 0.830 0.818 0.735 1.624

Var6 1.00 0.625 0.00125 0.835 0.824 0.747 1.597

Var7 1.00 0.625 0.00110 0.834 0.823 0.748 1.601

Var8 1.00 0.625 0.00090 0.834 0.822 0.745 1.602

Var9 1.00 0.625 0.00075 0.834 0.824 0.751 1.596

Var10 1.00 0.550 0.00100 0.832 0.823 0.755 1.602

Var11 1.00 0.550 0.00125 0.834 0.823 0.752 1.598

Var12 1.00 0.550 0.00110 0.833 0.825 0.766 1.592

Var13 1.00 0.550 0.00090 0.832 0.823 0.755 1.601

Var14 1.00 0.550 0.00075 0.833 0.823 0.757 1.599

Var15 1.00 0.450 0.00100 0.819 0.812 0.765 1.647

Var16 1.00 0.450 0.00125 0.819 0.812 0.765 1.647

Var17 1.00 0.450 0.00110 0.819 0.812 0.765 1.647

Var18 1.00 0.450 0.00090 0.819 0.812 0.765 1.647

Var19 1.00 0.450 0.00075 0.819 0.812 0.765 1.647

Var20 1.00 0.375 0.00100 0.808 0.804 0.785 1.684

Var21 1.00 0.375 0.00125 0.803 0.799 0.783 1.705

Var22 1.00 0.375 0.00110 0.805 0.801 0.777 1.698

Var23 1.00 0.375 0.00090 0.804 0.800 0.779 1.700
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Table A1. Cont.

SVR Parameter Values Performance Metrics Values

Variant C N E R2 NSE KGE RMSE

Var24 1.00 0.375 0.00075 0.804 0.800 0.782 1.701

Var25 1.25 0.500 0.00100 0.815 0.811 0.791 1.653

Var26 1.25 0.500 0.00125 0.814 0.810 0.779 1.658

Var27 1.25 0.500 0.00110 0.814 0.810 0.779 1.658

Var28 1.25 0.500 0.00090 0.818 0.813 0.786 1.643

Var29 1.25 0.500 0.00075 0.816 0.812 0.790 1.648

Var30 1.25 0.625 0.00100 0.822 0.816 0.781 1.629

Var31 1.25 0.625 0.00125 0.823 0.818 0.787 1.620

Var32 1.25 0.625 0.00110 0.824 0.819 0.782 1.617

Var33 1.25 0.625 0.00090 0.819 0.814 0.784 1.638

Var34 1.25 0.625 0.00075 0.820 0.815 0.781 1.637

Var35 1.25 0.550 0.00100 0.827 0.821 0.784 1.608

Var36 1.25 0.550 0.00125 0.824 0.820 0.791 1.614

Var37 1.25 0.550 0.00110 0.829 0.823 0.778 1.601

Var38 1.25 0.550 0.00090 0.827 0.821 0.780 1.606

Var39 1.25 0.550 0.00075 0.827 0.821 0.785 1.608

Var40 1.25 0.450 0.00100 0.811 0.808 0.800 1.664

Var41 1.25 0.450 0.00125 0.811 0.808 0.801 1.667

Var42 1.25 0.450 0.00110 0.810 0.807 0.800 1.668

Var43 1.25 0.450 0.00090 0.811 0.808 0.800 1.664

Var44 1.25 0.450 0.00075 0.811 0.809 0.809 1.662

Var45 1.25 0.375 0.00100 0.798 0.796 0.815 1.715

Var46 1.25 0.375 0.00125 0.798 0.796 0.814 1.718

Var47 1.25 0.375 0.00110 0.798 0.796 0.812 1.718

Var48 1.25 0.375 0.00090 0.792 0.791 0.809 1.740

Var49 1.25 0.375 0.00075 0.798 0.796 0.810 1.715

Var50 1.10 0.500 0.00100 0.827 0.820 0.777 1.611

Var51 1.10 0.500 0.00125 0.826 0.820 0.775 1.614

Var52 1.10 0.500 0.00110 0.827 0.820 0.771 1.613

Var53 1.10 0.500 0.00090 0.822 0.815 0.766 1.636

Var54 1.10 0.500 0.00075 0.829 0.823 0.781 1.601

Var55 1.10 0.625 0.00100 0.830 0.821 0.761 1.608

Var56 1.10 0.625 0.00125 0.826 0.819 0.768 1.618

Var57 1.10 0.625 0.00110 0.829 0.821 0.762 1.610

Var58 1.10 0.625 0.00090 0.824 0.816 0.758 1.630

Var59 1.10 0.625 0.00075 0.832 0.822 0.755 1.603

Var60 1.10 0.550 0.00100 0.826 0.820 0.777 1.612

Var61 1.10 0.550 0.00125 0.834 0.827 0.776 1.580

Var62 1.10 0.550 0.00110 0.828 0.821 0.773 1.608

Var63 1.10 0.550 0.00090 0.826 0.820 0.772 1.615
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Table A1. Cont.

SVR Parameter Values Performance Metrics Values

Variant C N E R2 NSE KGE RMSE

Var64 1.10 0.550 0.00075 0.827 0.821 0.778 1.608

Var65 1.10 0.450 0.00100 0.820 0.815 0.789 1.635

Var66 1.10 0.450 0.00125 0.817 0.812 0.777 1.648

Var67 1.10 0.450 0.00110 0.821 0.816 0.787 1.632

Var68 1.10 0.450 0.00090 0.825 0.820 0.788 1.613

Var69 1.10 0.450 0.00075 0.818 0.812 0.777 1.647

Var70 1.10 0.375 0.00100 0.803 0.800 0.799 1.700

Var71 1.10 0.375 0.00125 0.799 0.797 0.797 1.714

Var72 1.10 0.375 0.00110 0.801 0.798 0.794 1.710

Var73 1.10 0.375 0.00090 0.801 0.799 0.799 1.705

Var74 1.10 0.375 0.00075 0.798 0.795 0.795 1.721

Var75 0.90 0.500 0.00100 0.834 0.824 0.751 1.596

Var76 0.90 0.500 0.00125 0.832 0.822 0.751 1.605

Var77 0.90 0.500 0.00110 0.833 0.823 0.754 1.601

Var78 0.90 0.500 0.00090 0.835 0.825 0.754 1.592

Var79 0.90 0.500 0.00075 0.835 0.824 0.754 1.593

Var80 0.90 0.625 0.00100 0.828 0.818 0.748 1.620

Var81 0.90 0.625 0.00125 0.828 0.817 0.745 1.625

Var82 0.90 0.625 0.00110 0.828 0.817 0.745 1.625

Var83 0.90 0.625 0.00090 0.828 0.817 0.745 1.625

Var84 0.90 0.625 0.00075 0.828 0.816 0.735 1.631

Var85 0.90 0.550 0.00100 0.832 0.820 0.739 1.612

Var86 0.90 0.550 0.00125 0.834 0.823 0.747 1.599

Var87 0.90 0.550 0.00110 0.833 0.821 0.742 1.608

Var88 0.90 0.550 0.00090 0.832 0.820 0.742 1.611

Var89 0.90 0.550 0.00075 0.833 0.822 0.748 1.603

Var90 0.90 0.450 0.00100 0.825 0.816 0.751 1.631

Var91 0.90 0.450 0.00125 0.827 0.818 0.754 1.622

Var92 0.90 0.450 0.00110 0.823 0.814 0.755 1.639

Var93 0.90 0.450 0.00090 0.826 0.816 0.748 1.632

Var94 0.90 0.450 0.00075 0.823 0.814 0.754 1.638

Var95 0.90 0.375 0.00100 0.812 0.806 0.769 1.675

Var96 0.90 0.375 0.00125 0.812 0.806 0.769 1.675

Var97 0.90 0.375 0.00110 0.816 0.810 0.770 1.659

Var98 0.90 0.375 0.00090 0.813 0.807 0.769 1.672

Var99 0.90 0.375 0.00075 0.808 0.802 0.764 1.691

Var100 0.75 0.500 0.00100 0.827 0.816 0.741 1.630

Var101 0.75 0.500 0.00125 0.827 0.815 0.737 1.633

Var102 0.75 0.500 0.00110 0.825 0.814 0.735 1.642

Var103 0.75 0.500 0.00090 0.827 0.816 0.742 1.629
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Table A1. Cont.

SVR Parameter Values Performance Metrics Values

Variant C N E R2 NSE KGE RMSE

Var104 0.75 0.500 0.00075 0.828 0.817 0.740 1.626

Var105 0.75 0.625 0.00100 0.835 0.818 0.711 1.620

Var106 0.75 0.625 0.00125 0.837 0.821 0.720 1.609

Var107 0.75 0.625 0.00110 0.835 0.818 0.711 1.620

Var108 0.75 0.625 0.00090 0.837 0.821 0.718 1.610

Var109 0.75 0.625 0.00075 0.835 0.819 0.717 1.618

Var110 0.75 0.550 0.00100 0.834 0.821 0.735 1.609

Var111 0.75 0.550 0.00125 0.833 0.821 0.735 1.610

Var112 0.75 0.550 0.00110 0.833 0.821 0.736 1.610

Var113 0.75 0.550 0.00090 0.833 0.820 0.730 1.615

Var114 0.75 0.550 0.00075 0.834 0.821 0.735 1.609

Var115 0.75 0.450 0.00100 0.831 0.818 0.735 1.620

Var116 0.75 0.450 0.00125 0.828 0.817 0.739 1.628

Var117 0.75 0.450 0.00110 0.830 0.819 0.746 1.616

Var118 0.75 0.450 0.00090 0.830 0.818 0.739 1.622

Var119 0.75 0.450 0.00075 0.831 0.819 0.736 1.618

Var120 0.75 0.375 0.00100 0.819 0.809 0.741 1.661

Var121 0.75 0.375 0.00125 0.820 0.810 0.742 1.659

Var122 0.75 0.375 0.00110 0.820 0.809 0.741 1.660

Var123 0.75 0.375 0.00090 0.820 0.809 0.737 1.661

Var124 0.75 0.375 0.00075 0.820 0.809 0.738 1.660
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20. Langhammer, J.; Česák, J. Applicability of a Nu-Support Vector Regression Model for the Completion of Missing Data in

Hydrological Time Series. Water 2016, 8, 560. [CrossRef]
21. Nearing, G.S.; Kratzert, F.; Sampson, A.K. What Role Does Hydrological Science Play in the Age of Machine Learning? Water

Resour. 2021, 57, e2020WR028091. [CrossRef]
22. Piotrowski, A.P.; Napiorkowski, J.J. A Comparison of Methods to Avoid Overfitting in Neural Networks Training in the Case of

Catchment Runoff Modelling. J. Hydrol. 2013, 476, 97–111. [CrossRef]
23. Cruz, K.M.S.D.; Ella, V.B.; Suministrado, D.C.; Pereira, G.S.; Agulto, E.S. A Low-Cost Wireless Sensor for Real-Time Monitoring of

Water Level in Lowland Rice Field under Alternate Wetting and Drying Irrigation. Water 2022, 14, 4128. [CrossRef]
24. Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a Low-Cost Soil Water Content Sensor for Wireless

Network Applications. J. Hydrol. 2007, 344, 32–42. [CrossRef]
25. Shahmirnoori, A.; Saadatpour, M.; Rasekh, A. Using Mobile and Fixed Sensors for Optimal Monitoring of Water Distribution

Network under Dynamic Water Quality Simulations. Sustain. Cities Soc. 2022, 82, 103875. [CrossRef]
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