
Citation: Rodríguez‑López, L.;

Bustos Usta, D.; Bravo Alvarez, L.;

Duran‑Llacer, I.; Lami, A.;

Martínez‑Retureta, R.; Urrutia, R.

Machine Learning Algorithms for the

Estimation of Water Quality

Parameters in Lake Llanquihue in

Southern Chile. Water 2023, 15, 1994.

https://doi.org/10.3390/w15111994

Academic Editor: Il‑Moon Chung

Received: 14 April 2023

Revised: 16 May 2023

Accepted: 20 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Machine Learning Algorithms for the Estimation of Water
Quality Parameters in Lake Llanquihue in Southern Chile
Lien Rodríguez‑López 1,*, David Bustos Usta 2, Lisandra Bravo Alvarez 3, Iongel Duran‑Llacer 4 , Andrea Lami 5 ,
Rebeca Martínez‑Retureta 6 and Roberto Urrutia 6

1 Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457,
Concepción 4030000, Chile

2 Facultad de Oceanografía, Univesidad de Concepción, Concepción 4030000, Chile; davidbustos@udec.cl
3 Department of Electrical Engineering, Universidad de Concepción, Edmundo Larenas 219,

Concepción 4030000, Chile; lisanbravo@udec.cl
4 Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Ingeniería y Tecnología,

Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile;
iongel.duran@umayor.cl

5 Institute of Water Research IRSA, Sezione di Verbania, 1000015 Verbania, CP, Italy; andrea.lami@cnr.it
6 Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción 4030000, Chile;

rebecmartinez@udec.cl (R.M.‑R.); rurrutia@udec.cl (R.U.)
* Correspondence: lien.rodriguez@uss.cl; Tel.: +56‑999‑168‑115

Abstract: The world’s water ecosystems have been affected by various human activities. Artificial
intelligence techniques, especially machine learning, have become an important tool for predicting
the water quality of inland aquatic ecosystems. As an excellent biological indicator, chlorophyll‑a
was studied to determine the state of water quality in Lake Llanquihue, located in southern Chile.
A 31‑year time series (1989 to 2020) of data collected in situ was used to determine the evolution
of limnological parameters at eight spaced stations covering all of the main points of the lake, and
the year, month, day, and hour time intervals were selected. Using machine learning techniques,
out of eight estimation algorithms that were applied with real data to estimate chlorophyll‑a, three
models showed better performance (XGBoost, LightGBM, and AdaBoost). The results for the best
models show excellent performance, with a coefficient of determination between 0.81 and 0.99, a
root‑mean‑square error of between 0.03 ug/L and 0.46 ug/L, and a mean bias error of between 0.01
and 0.27 ug/L. Thesemodels are scalable and applicable to other lake systems of interest that present
similar conditions and can support decision making related to water resources.

Keywords: machine learning algorithms; chlorophyll‑a; lake

1. Introduction
Most of the world’s inland aquatic ecosystems have been affected in some way by

various human activities [1,2]. Population growth and the exponentially increasing use of
freshwater are indispensable components of any analysis of inland aquatic systems [3–5].
Among the main impacts of anthropogenic activity on the biodiversity of inland aquatic
ecosystems, including those in Chile, are habitat loss and degradation [6], caused mainly
by transformations by agriculture [7–9], afforestation [10], and direct transformations of
aquatic systems caused by various types of civil projects, such as irrigation [8,11,12], hy‑
droelectricity [13], tourism [14,15], transportation infrastructure, land‑use changes [9,16],
the introduction of invasive and exotic species [17,18], the consequences of cascading pro‑
cesses of native species losses [19], and point and diffuse chemical pollution (from indus‑
trial projects and livestock activity, among other sources) [20]. The characterization of lakes
in southern Chile has focused mainly on their trophic states. One of the main objectives of
limnological research is to help preserve trophic states. All efforts are aimed at minimiz‑
ing, as much as possible, the eutrophication processes that some of the lakes are suffering
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recently due to aquaculture activities [21]. The lack of management of production and res‑
idential activities in lake drainage basins requires special attention from the scientific com‑
munity, public services, and local communities. It is necessary to generate basic knowledge
and decide on environmental protection actions that will allow the control of the trophic
states of lakes and their sustainable use [15,22]. Due to the gradual accumulation of nutri‑
ents in aquatic systems, degradation gradually occurs, characterized by increases in algal
biomass, loss of biodiversity, algal blooms, and the generation or establishment of hypoxic
and/or anoxic conditions in the water column and sediments, which are all consequences
of the eutrophication process [23]. Many lakes in the world are suffering degradation due
to this phenomenon. In [24,25], studies were carried out using remote sensing of the pol‑
lution of the Caspian Sea due to anthropogenic pressures. In [26], the occurrence of algal
blooms in the Laurentian Great Lakes, a phenomenon characteristic of eutrophic lakes, is
investigated. On the other hand, ref. [27] focuses on Lake Murten in Switzerland and the
process of cultural eutrophication that it undergoes. All of the above research shows that
large lakes in the world are suffering from effects due to the eutrophication process.

Artificial intelligence techniques, especially machine learning, have been increasingly
used in recent environmental research in both oceanic and inland aquatic ecosystems [28].
The prediction of water quality is important for the preparation and regulation of water
quality, and different artificial intelligencemodels can contribute to this purpose [29]. They
provide tools for solving supervised, unsupervised, and semi‑supervised learning prob‑
lems in water quality sensing, specifically for lakes [30]. In the case of supervised learning,
there are two types of problems: regression and classification. There are different tools for
regression, from the simplest, such as basic linear models [31], to the most sophisticated,
such as ensemble models or neural networks [32–34]. Different modeling strategies are
used because there is no single solution for highly complex problems such as chlorophyll
prediction; therefore, having a wide range of available modeling tools can provide greater
clarity aboutwhich strategyworks best. Machine learning has primarily been used in stud‑
ies on chlorophyll‑a [35,36], suspended sediments [37,38], and light attenuation [39,40]. Al‑
though there have been numerous investigations that relate deep learning algorithms to
water quality parameter detection, the vast majority are focused on lakes in the northern
hemisphere, leaving southern lake systems less studied [41–43].

In Chile, the Dirección General de Aguas (DGA), the agency in charge of monitoring
the country’s lake ecosystems, includes, in its network, only 20 of the country’s 175 lakes,
indicating an insufficient effort to monitor these ecosystems and the evolution of their
trophic states [15]. Thus, the monitoring and study of lakes in Chile pose a challenge, and
the need has arisen to implement, for the first time in a Chilean lake, artificial intelligence
algorithms as an alternative to the detection of biomass increases using the chlorophyll‑a
bioindicator. Therefore, the objectives of this research are (i) to describe the behavior of
limnological variables in the last thirty years at the monitoring points of Lake Llanquihue,
(ii) to predict the chlorophyll‑a variable for the studied lake system using machine learn‑
ing models, and (iii) to describe the main algal groups of Lake Llanquihue for the period
(1989–2020).

2. Materials and Methods
2.1. Study Area

Lake Llanquihue is part of an important tourist lake district area called “Lagos Arau‑
canos”, which includes 12 glacial lakes between 30◦–42◦ S and 71◦–72◦ W, at altitudes
between 117 to 590 m above sea level [44]. Lake Llanquihue is the region’s largest lake
and the country’s second‑largest lake [45]. It has a shoreline of 196.5 km and a surface
area of 870.5 km2. Its mean depth has been estimated to be 187 m, and it stores a volume
of 158.6 km3 [46]. The watershed area is very small compared to the lake’s surface area,
which directly affects the water renewal period by 74 years [47].
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2.2. In Situ Monitoring Data
Water quality parameters were selected through monitoring campaigns carried out

by the Dirección General de Aguas (DGA) from 1989 to 2020 (31 years). These campaigns
are carried out four times a year, in each season, with samples taken at different sites (see
Table 1), covering a large spatial area of the lake. The locations were georeferenced in
the field considering the following criteria: lake or river morphology, the presence of trib‑
utaries (the distance from their influence), the presence of industrial effluents or urban
discharges, depth, and accessibility (in the case of tributaries). The in situ parameters se‑
lected for this studywere Secchi disk depth (SD), chlorophyll‑a (Chl‑a) (StandardMethods
N◦10200HDGALGOCL1/2009), turbidity (NTU) (StandardMethodsN◦2130 B), total nitro‑
gen (Nt) (Standard Methods N◦4500‑N C), and total phosphorus (Pt) (Standard Methods
N◦4500‑P E). Field data were collected at eight sampling stations (Ll1‑Ll8), (see Figure 1)
at depths of 0, 15, and 30 m.

Table 1. Sampling stations at Lake Llanquihue.

N◦ COD_BNA STATION CODE Latitude Longitude Samples Train Test

1 10410006‑6 PUERTO OCTAY 1 Ll‑1 −40.9765244 −72.8631503 139 111 28
2 10410012‑0 PUERTO OCTAY 2 Ll‑2 −41.0137713 −72.8482236 20 16 4
3 10410007‑4 FRUTILLAR 1 Ll‑3 −41.1318026 −72.9892806 135 108 27
4 10410013‑9 FRUTILLAR 2 Ll‑4 −41.1304389 −72.9482228 30 24 6
5 10410008‑2 PUERTO VARAS 1 Ll‑5 −41.3115347 −72.9623349 134 107 27
6 10410014‑7 PUERTO VARAS 2 Ll‑6 −41.2637797 −72.9315548 56 44 12
7 10410009‑0 ENSENADA Ll‑7 −41.1962615 −72.593688 178 142 36
8 10410011‑2 Z MAX Ll‑8 −41.1009927 −72.6648749 25 20 5
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2.3. Data Wrangling and Features Engineering
Rowswithmore than 80%of featureswith null valueswere removed from thedatabase.

Therefore, the data wrangling process started with outlier treatment, data integrity analy‑
sis, and the imputation of missing values. Several biogeochemical and physical variables
including chlorophyll‑a (Chl), total nitrogen (N), total phosphorus (P), Silica (si), DQO, dis‑
solved oxygen (O_D), oxygen saturation % (O_D_sat), PH, temperature (Temp), relative
humidity (Hum), wind velocity (Wind), conductivity (Conduct), and transparency Secchi
depth (Trans) were selected for the analysis.

Additionally, location variables, latitude and longitude, and times in terms of year,
month, day, and hour were selected. Finally, dummy variables were created to associate
the respective measurement with its sampling station. In total, 26 covariates (independent
variables) were used for the prediction of chlorophyll (dependent variable).

Data cleaningwas carried out according to each sampling station (Ensenada, Frutillar,
Puerto Octay, Puerto Varas, Frutillar 2, Puerto Varas 2, Puerto Octay 2, and Zmax).

The cleaning steps were as follows:
1. Remove non‑numerical values from each of the selected variables and replace them

with null values.
2. Extract the year,month, andday for eachmeasurement, verifying consistency and integrity.
3. Apply sensible imputation for the null values of each column using a robust central

tendency measurement, the median.
4. Split data for training and test validation. In total, for all measurements, the first

80% collected at each sampling station over time were selected for training, and the
remaining 20% were used for testing (Table 1).

5. Standardize numerical variables (N, P, Si, DQO, O_D, O_D_sat, PH, Temp, Wind,
Hum, Conduct, Trans, and Chl) using the PowerTransformer method, a technique
for transforming numerical input or output variables to have a uniform or a Gaussian
probability distribution. A power transformwill make the probability distribution of
a variable more Gaussian [48].

2.4. Machine and Deep Learning Algorithms
This section describes the different modelingmethodologies used for chlorophyll pre‑

diction. It is important to bear in mind that there is no perfect model, but having different
modeling perspectives allows provides a better idea of how feasible learning is for a given
task, which is why different models are selected to identify which ones perform better at
forecasting chlorophyll values. The analysis covers ensemble methods, including bagging
(i.e., random forest) and boosting (XGBoost, AdaBoost, GradientBoosting, and LightGBM)
strategies, support vector machines (SVMs), and neural networks (i.e., MLP and ANN).
For each algorithm, a brief description is provided.

Random Forest
Random forest is a bagging algorithm introduced by [49] as an adaptation of the algo‑

rithm proposed by [50]. The mathematical foundations of random forest were described
by Breiman at the end of the 20th century [51], and it has been among the most innova‑
tive machine learning techniques. Along with the boosting technique, random forests can
be used for either classification (categorical response) or regression problems (continuous
response) for supervised learning [49].

The random forest regressor alternative was selected to predict chlorophyll‑a using
a different number of decision trees in various subsamples from bootstrapped datasets
constructed from the original dataset to improve the predictive accuracy by avoiding over‑
fitting [49,51].

The idea in bagging is to reduce variance by constructing many noisy, approximate,
unbiasedmodels (i.e., decision trees). Trees are ideal candidates for bagging since they are
designed to provide an understanding of complex interaction structures from data, and if
they are grown with enough depth, bias can be reduced. The algorithm is described in the
following steps:
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Random Forest Algorithm

1. For b = 1 to B:
(a) Draw a bootstrap sample Z* of size N from the training data.
(b) Grow a random forest tree Tb to the bootstrapped data by recursively repeating the

following steps for each terminal node of the tree until the minimum node size
nmin is reached:
i. Select m variables at random from the p variables,
ii. Pick the best variable/split point among the m,
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B
1 .

3. To predict at a new point x:
Regression: f̂r f (x) = 1

B ∑B
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random forest tree. Then
Ĉr f (x) = majority vote

{
Ĉb(x)

}B
1 .

Multiple parameters were evaluated to identify the best configuration [52], including
the maximum depth (15, 20, 25, 30), the number of trees (100, 120, 140, 150), the number
of features considered for the best split (square root, log2), and the minimum number of
samples needed to split an internal node (2, 3, 4, 5). In addition, default parameters such
as the function to measure the quality of a split (squared error) were selected.

AdaBoost
AdaBoost is a machine learning algorithm created from the boosting technique using

several weak estimators to reduce bias. The idea was proposed by Freund and Schapire
and is one of the most common algorithms with applications in numerous fields [53].

The AdaBoost regressor alternative (Ying et al., 2013) was selected to predict chlorophyll‑a.
The algorithm is described by the following steps:

AdaBoost Algorithm

1. Initialization: Given training data from the instance space S = {(x1, y1), . . . , (xm, ym)}
where xiϵχ and yiϵY.

2. Initialize the distribution D1(i) = 1
m .

3. For t = 1, . . . , T:
(a) Train a weak learner ht : χ → R using the distribution Dt,
(b) Determine weight αt of ht,
(c) Update the distribution throughout the training set:

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt

where Zt is a normalization factor chosen so that Dt+1 will be a distribution.
4. Calculate the final score:

f (x) = ∑T
t=0 αtht(x).

Several parameters were assessed to identify the best configuration [53,54] including
several estimators (120, 140, 160, 180) and learning rates to control overfitting, with a higher
learning rate increasing the contribution of each regressor (0.01, 0.1, 0.5) and the loss func‑
tion to update weights (linear, square, exponential).

Gradient Boosting
The gradient boosting regressor alternativewas selected to predict chlorophyll‑a. This

is an ensemble learning technique constructed from the boostingmethodology [55,56]. The
algorithm was created with the idea of learning from a functional mapping function de‑
fined as y = F(x,B), where B is the set of parameters of F such that some cost function C is
minimized [57].
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Gradient Boosting Algorithm

1. Define Input: Dataset D, loss function L, base learner LΦ, number of iterations M, and the
learning rate η.

2. Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = argmin
θ

∑n
i=1 L(yi, θ).

3. For m = 1, 2, . . . , M:

(a) ĝm(xi) =
[

∂L(yi , f (xi))
∂ f (xi)

]
,

(b) θ̂m = arg min
ϕϵΦ,β

∑n
i=1[(−ĝm(xi))− βϕ(xi)]

2,

(c) ρ̂m = argmin
ρ

∑n
i=1 L(yi , f̂ (m−1)(xi) + ρϕ̂m(xi)),

(d) f̂m(x) = ηρ̂mϕ̂m(x),
(e) f̂ (m)(x) = f̂ (m−1)(x) + f̂ (m)(x).

4. Calculate the output:
f̂ (x) ≡ f̂ (M)(x) = ∑M

m=0 f̂m(x).

Several parameters were assessed to identify the best configuration [53,54], including
learning rate (0.01, 0.1), maximum depth (25, 30, 35), number of trees (70, 100, 120, 140),
and the number of features for the best split (square root and log2). Furthermore, other
hyperparameters were set, such as the loss function to be optimized (squared error) and
the function to measure the quality of a split (friedman_mse).

XGBoost
XGBoost is a scalable machine learning algorithm based on the boosting methodol‑

ogy, which in recent decades has been widely recognized as a very proficient approxima‑
tion in several machine learning and data mining challenges with some advantages such
as training execution time, scalability, error reduction, simplified calculations, and lower
computational cost [58] for the prediction of chlorophyll‑a.

The XGBoost regression alternative was selected for the regression task. XGBoost
minimizes an objective function using regularization (L1 and L2) to penalize unnecessary
complexity in the model. The training task is an iterative process, with new trees added
and the error reduced using a serial process to improve the final prediction. It is similar
to the gradient boosting algorithm since the gradient descent algorithm is implemented to
minimize the loss when the complexity increases [58,59]. A description of the algorithm is
presented in Figure 2.

For the XGBoost algorithm, four types of parameters were tuned. General parameters
are related to the booster type, which is gbtree (gradient boosting). Booster parameters
such as maximum depth (15, 20, 25, 30), learning rate (0.01, 0.1), and an L1 regularization
term on weight (0, 0.3, 0.5) were considered. Finally, the learning task parameters and the
command line parameters were set to default.

LightGBM
A LightGBM regression alternative was selected for predicting chlorophyll‑a. This al‑

ternative is known as gradient boosting decision tree (GBDT), which is a popular machine
learning algorithm such as XGBoost. It is a novel technique to address themultidimension‑
ality problem with high efficiency and scalability using two techniques: gradient‑based
one‑sided sampling (GOSS), which excludes a significant proportion of data instances us‑
ing information gain criteria and exclusive feature bundling (EFB) as an effective method
to reduce the number of features.
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GBDThas been shown to speedup the trainingprocess of conventional gradient boost‑
ing decision trees by more than 20 times while achieving almost the same accuracy. It can
be considered a similar alternative to the XGBoost algorithm [60]. The algorithm is de‑
scribed in the following steps:

LightGBM Algorithm

1. Define Input: Dataset D, loss function L, base learner LΦ, number of iterations M, the
sampling ratio of large gradient data (a), and the sampling ratio of small gradient data (b).

2. Merge mutually exclusive features using the exclusive feature bundling (EFB) method.
3. Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = argmin

θ
∑n

i=1 L(yi, θ).

4. For m = 1, 2, . . . , M

(a) Compute the absolute values of gradients:

ri = [
∂L(yi, f (xi))

∂ f (xi)
],

(b) Resample dataset using Gradient‑based One‑side Sampling (GOSS) method,
(c) Compute the information gains,
(d) Get a new decision tree θm(X) = θm−1(X) + θm(X)′.

5. Return: θm(X).

Several parameters were assessed to identify the best configuration [60], including
boosting type (gbdt = traditional gradient boosting decision tree, dart = dropouts meet
multiple additive regression trees, goss = gradient‑based one‑sided sampling), learning
rate (0.01, 0.1), maximum depth (20, 30, 35), and several estimators (70, 100, 120, 140). Sup‑
port vector machine (SVM), the support vector regression (SVR) algorithm, was developed
by [61]. SVR finds a function that estimates the difference between the input and output
variable [62] using the following equation:

Si = s(Chli) = ∑T
i=1 wiΦ(Zi) + b (1)
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where Si is the network output, Zi is the input data, which is diagramed into a higher‑
dimensional feature using a nonlinear mapping function Φ(Zi), and wi and b are coeffi‑
cients determined by minimizing the regularized risk function based on the network out‑
put and real value [63].

We evaluated several kernel functions to select the optimum performance, including
the linear function given by <x,x^’>, the polynomial one (degrees 3 and 4), which is repre‑
sented by the similarity of the vectors in the training dataset in a feature space over polyno‑
mials of the original variables involved in the kernel defined by (γ<x, x^′> + r)^d, where d
denotes the degree and r a constant, andRBF (radial basis function), which adds a radial ba‑
sis method to improve the transformation given by exp(〖−γ|(|x − x^′ |)|〗^2), where
γ is a parameter defined by the algorithm that sets the “sparsity” of the kernel, usually
under a scaling pattern.

Multilayer Perceptron (MLP)
The multilayer perceptron (MLP) is an artificial neural network created by Frank

Rosenblatt in 1957 that generates a set of outputs from the inputs using multiple hidden
layers of connected nodes as a directed graph between input and output layers using the
backpropagation algorithm for training.

A few combinations of hidden layers (32,16,8), (32,16), and (16,8,4) were considered.
Furthermore, we evaluated several activation functions for the hidden layers (tanh and
relu), different types of solvers (sgd and Adam) for weight optimization, an L2 regulariza‑
tion term (0.001, 0.05), and two different learning rates (constant and adaptive).

Artificial Neural Network (ANN)
This is a deep learning algorithm for classification and regression tasks frommultiple in‑

puts with the ability to handle complex environmental interactions between variables [64–66].
ANNs are usually designed with more than one input layer, several hidden layers, and an
output layer [67]. The general formula is given by: Y = f (X, W) + ϵ, where Y is the vector
of model outputs, X is the vector of inputs, W represents the weights, and the function f
represents the relationship between outputs, inputs, and parameters of the model [68]. In
this case, the relu activation function was selected, and two hidden layers, the first with
32 neurons and the second with 16 neurons, define the geometric configuration to avoid
bottlenecks in the learning task. The Adam optimizer and 100 epochs were selected for the
training process.

2.5. K‑Fold Cross‑Validation
After creating the models described in Section 2.3, we had to determine the perfor‑

mance of each model. To this end, we applied the k‑fold cross‑validation (CV) method
described by [69], which is considered a statistical method to evaluate and compare al‑
gorithm performance by dividing data into two segments: one used for learning and the
other to validate results without overlapping data instances between groups. We used the
most applied alternative, known as k‑fold, using cross‑validation with k = 5 folds [70,71].

2.6. Hyperparameter Tuning
There are different alternatives to determine the best hyperparameter configuration in

each model including GridSearchCV and RandomizedSearchCV as defined by [72]. How‑
ever, for this study, the GridSearchCV alternative was selected because it is more exhaus‑
tive and provides good results when the hyperparameter space is correctly defined.

2.7. Performance Metrics
2.7.1. Mean Absolute Error

Mean absolute error (MAE) is defined as the average of the difference between the
observed and predicted values. The lower the MAE, the better the model [63,73]. The
MAE can be calculated using the following equation:

MAE =
1
N ∑N

i=1|yi − ŷi| (2)
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2.7.2. Root‑Mean‑Square Error
The root‑mean‑square error (RMSE) is often used as ameasure of statistical error. The

lower its value, the better the model [63]. The RMSE is defined by the following equation:

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (3)

2.7.3. Coefficient of Determination
The coefficient of determination is defined as the proportion of the variation in the

dependent variable explained by the independent variables. It represents the squared cor‑
relation between the observed and predicted values [73]. The higher the R2, the better the
model. It is defined by the following equation:

R2 = 1 − SSR
SST

(4)

where SSR is defined as the residual sum of squares and SST is the total sum of squares,
given by:

SSR = ∑n
i=1(yi − f (xi))

2 (5)

SST = ∑n
i=1(yi − ȳ)2 (6)

The SSR is defined as the sum of deviations and is a measure of discrepancy between
the data and the estimations from themodel. A small SSR indicates worse performance. In
addition, the SST represents the total error concerning themean value of the target variable.

2.8. Collection and Treatment of Samples for the Identification of Algal Groups
La Dirección General de Aguas carried out phytoplankton monitoring in the field for

which quantitative phytoplankton samples were collected in 500 mL Van Dorn bottles at
different depths from the surface in some of the system’s effluents and tributaries at the
Lake Llanquihue stations [72]. Qualitative sampling was performed, which consisted of a
50‑micron phytoplankton net drag at each sampling station in the lake. Each sample was
stored in 500 mL plastic bottles, duly labeled, and kept fresh at 4 ◦C, then, preserved with
1% Lugol’s solution until observation. A total of 25 samples were taken.

3. Results
3.1. Water Quality Parameters Summary

Figure 3 shows the in situ limnological parameters chosen for this study for which a
time series from 1989 to 2020 was used.

The Chl‑a values ranged between maximum values in winter of 1.60 ug/L at the Ll‑
5 sampling point and 0.99 ug/L at the Ll‑2 station, having an average of 1.23 ug/L and
0.486 ug/L, respectively. However, Chl‑a presents high values for all sampling stations
and seasons of the year. The turbidity variable presents its highest values in autumn and
winter, an expected situation due to the higher precipitation during these periods, with
values between 7.5–5.4 NTU (stations Ll‑1 and Ll‑3). As for the nutrients nitrogen and
phosphorus, which have been reported in previous studies as limiting the productivity
of Chl‑a in Lake Llanquihue [47], their values are highest in summer and spring, which
coincide with the high Chl‑a values attributed to the increase in productivity in these sea‑
sons. Total phosphorus reached a maximum value of 35 mg/L during spring at station
Ll‑4, and total nitrogen reached a maximum of 0.200 mg/L in summer at Ll‑5. The Secchi
disk measurements, meanwhile, as a parameter indicative of transparency, reflect the high
transparency of Lake Llanquihue in its oligotrophic state, despite the impacts andmultiple
uses in its surrounding basin. The values ranged from an average of 16 m in summer to
8.7 m in winter.
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Random forest: criterion = squared error, max depth = 25, max features = square root,
min_samples_split = 2, and the number of estimators = 150. The results for each sampling
station are presented in Figure 4.
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Figure 4. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the AdaBoost model (AD model) in green. Real data are represented by the
blue lines. Regions with gray backgrounds represent periods for validation purposes.

AdaBoost regressor: number of estimators = 180, learning rate = 0.5, and lossmethod = square.
The results for each sampling station are presented in Figure 5.

XGBoost: alpha = 0.01, learning rate = 0.1,max depth = 15, and the number of estimators = 140.
The results for each sampling station are presented in Figure 6.

Gradient boosting: learning rate = 0.1, loss = squared error, max depth =30, max fea‑
tures = sqrt, and the number of estimators = 140. The results for each sampling station are
presented in Figure 7.

LightGBM: boosting type = gradient boosting decision trees (gbdt), learning rate = 0.1,
max depth = 30, and the number of estimators = 100. The results for each sampling station
are presented in Figure 8.

SVM regressor: kernel = linear, gamma = scale method. The results for each sampling
station are presented in Figure 9.

MLP regressor: activation function = rectified linear unit (relu), alpha = 0.0001, hid‑
den layer sizes (32, 16), learning rate = constant, and solver = Adam. The results for each
sampling station are presented in Figure 10.

Artificial neural network (ANN): The input layer consists of 29 variables; two hidden
layers with 32 and 16 neurons and then an output layer was selected. The results for each
sampling station (not shown) are similar to those of the MLP regressor.
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Figure 5. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the random forest regressor model (RF model) in green. Real data are repre‑
sented by the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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Figure 6. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the XGBoost regressormodel (XGmodel) in green. Real data are represented
by the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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Figure 7. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the Gradient boostingmodel (GBmodel) in green. Real data are represented
by the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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Figure 8. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the LightGBMmodel (LGBMmodel) in green. Real data are represented by
the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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Figure 9. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the SVM regressor model (SVM model) in green. Real data are represented
by the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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Figure 10. Chlorophyll‑a time series plot based on observed data for (a) Ensenada, (b) Frutillar,
(c) Puerto Octay, (d) Puerto Varas, (e) Frutillar 2, (f) Puerto Varas 2, (g) Puerto Octay 2, and (h) Zmax
sampling stations using the MLP regressor model (MLP model) in green. Real data are represented
by the blue lines. Regions with gray backgrounds represent periods for validation purposes.
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3.3. Statistical Analysis
The results show very good performance, with a coefficient of determination between

0.81 and 0.99, a root‑mean‑square error between 0.03 ug/L and 0.46 ug/L, and a mean abso‑
lute error between 0.01 and 0.27 (see Figure S1 and Table 2). The worst performance is ob‑
served for the ANN, probably because the number of layers chosen is not complex enough
to establish the appropriate relationships between the inputs and the output. Meanwhile,
the best‑performing models are XGBoost, LightGBM, and AdaBoost, demonstrating that
in this case, the boosting technique gives better results compared to the bagging technique
(random forest).

Table 2. Model performance metrics for chlorophyll‑a prediction based on RF, AD, XG, GB, LGBM,
SVM, MLP, and ANN.

Model R2 RMSE (ug/L) MAE

Random forest 0.81 0.46 0.14
AdaBoost regressor 0.99 0.07 0.03
XGBoost regressor 0.99 0.03 0.01
Gradient boosting 0.81 0.46 0.16

LightGBM 0.99 0.06 0.01
SVM regressor 0.99 0.05 0.03
MLP regressor 0.97 0.19 0.10

ANN 0.85 0.41 0.27

When evaluating machine learning models, it is important to analyze the tradeoff
between bias and variance to avoid overfitting and underfitting (see Figure 11). A lack of
high variance in each of the algorithms is guaranteed as cross‑validation strategies (K‑fold)
and hypertuning methodologies (GridSearCV) have been implemented to find optimal,
robust, and scalable solutions, ensuring equilibrium points in the predictions, with low
bias and variance.

3.4. Specific Composition and Relative Abundance
The phytoplankton community in Lake Llanquihue is composed of 12 classes, 36 genera,

and 52 species, including 30 diatoms (22Bacillariophyceae, 5Coscinodiscophyceae and 3Medio‑
phyceae), 10 green algae (5 Chlorophyceae, 2 Klebsormidiophyceae, 2 Trebouxiophyceae, and
1 Conjugatophyceae), 5 dinoflagellates, 3 cyanobacteria, 2 Cryptophyceae, 1 Chrysophyceae, and
1 Xanthophyceae. Centric diatoms of the class Coscinodiscophyceae accounted for 72% of the
abundance of taxa in the community (Figure 12), mainly the diatom species Aulacoseira
granulata, Aulacoseira distans, and Fragilaria crotonensis, as well as the Chlorophyceae Westella
botryoides [72].

The phytoplankton community presented similar taxa richness (52 in 2018), with the
diatoms Alaucoseira granulata and Alaucoseira distans predominating. It should be noted
that the chrysophycean D. divergens decreased in abundance in 2018 and the chlorophycean
W. botryoides increased. That same year, the dinoflagellateCeratium hirundinellawas recorded
in 12 of the 25 analyzed samples, with a maximum abundance of 1570 cel/L at station Ll‑3
during the summer at a depth of 30 m. This dinoflagellate was also reported in 2017 in
similar abundances [72].
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4. Discussion
Chlorophyll‑a is an importantwater quality parameter for characterizing the eutrophi‑

cation status of lake water bodies [73]. Our results indicate that the physical and biological
characteristics of the aquatic system of Lake Llanquihue vary seasonally and that these
changes influence chlorophyll‑a. It is important to study the behavior of physical, chem‑
ical, and biological parameters and how they vary spatially according to the distinctive
characteristics of freshwater aquatic systems to understand their structure and function‑
ing. The behavior of the Chl‑a variable in Lake Llanquihue can be derived from different
parameters that determine algal productivity, such as temperature, transparency, and ra‑
diation, and chemical factors such as the nutrients nitrogen and total phosphorus, which
is why these model input variables, as well as other lake system characteristics, were ob‑
tained over a 30‑year period. On the other hand, the amount of inland water is very small
relative to oceanic water, but it has much faster renewal periods [3]. Lake Llanquihue, due
to its morphological and physical‑geographical characteristics, has a prolonged renewal
period for this aquatic ecosystem, where this stage of water renewal occurs every 74 years.
Any disturbance in its quality would have ecological consequences for the organisms that
inhabit the system, as well as economic and social consequences because it is a lake with
multiple uses, including aquaculture and tourism.

In Chile, the traditional in situ monitoring carried out by the Dirección General de
Aguas (DGA) is performed twice a year, in the summer and spring; however, it is not
enough to monitor an aquatic systemwith randommonitoring days to maintain a continu‑
ous system that reflects the real functioning of the physical–chemical or biological phenom‑
ena. In this work, for the first time in a Chilean lake, models based on deep learning were
used to determine environmental variables according to an extensive input dataset from
1989 to 2020. A comparison of nine different machine learning algorithms was performed
to estimate the levels of chlorophyll‑a to obtain the best performance for the chlorophyll‑a
model for Lake Llanquihue during the study period.

It is important to consider that there is no perfect model, but having different model‑
ing perspectives allows awider scope in the feasibility of machine learning for a given task,
that is why different models were selected to identify which performs better at predicting
chlorophyll values. The analysis covered ensemble methods, including bagging (e.g., ran‑
dom forest) and boosting (XGBoost, AdaBoost, GradientBoosting, and LightGBM) strate‑
gies, support vector machines (SVM), and neural networks (e.g., MLP and ANN). Other
works have used these algorithms in the detection of chlorophyll‑a. For example, [73] used
the XGBoost algorithm and obtained coefficient of determination values lower than those
obtained in our study (0.88–0.90). This result may be a consequence of the smaller amount
of total data used as a training set. The authors of [41] used a larger training set (n = 225)
and a larger number of lakes, along with the boosting tree algorithm. They obtained an R2
of 0.79, which was exceeded by that obtained using our algorithm (AdaBoost, R2 = 0.99).
Other authors have used various satellite sources such as multispectral images from the
Landsat and Sentinel missions [34,36,43]. These investigations have used the neural net‑
works model to estimate Chl‑a and turbidity, obtaining coefficients of 0.89 and 0.71 for
Landsat‑9 and Sentinel‑2, respectively. When the same model (ANN) was used in this
study, the coefficient values were lower compared to the other models used; however, it
exceeds them with respect to other metrics. In this first stage of research, it was decided
to omit remote sensing data to evaluate the performance of the algorithms for the studied
lake. In future work, the intention is to conduct near‑real‑time monitoring by combining
these algorithms with data from different bands of satellite images.

5. Conclusions
Chlorophyll is a biological variable that has been reported as a good indicator of the

algal communities in different aquatic systems. In this study, a series of in situ data from
1989 to 2020 recorded at eight monitoring stations spatially distributed in Lake Llanquihue
was used to study the behavior of limnological variables at different points in the lake.
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Nine artificial intelligence models were used combining the most important parameters in
the determination of chlorophyll concentration, which determined this variable with high
accuracy, with gradient boosting, LightGBM, support vector machine, andMLP obtaining
the best resultswith respect to the real variable. Deep learning techniqueswere used for the
first time to monitor the evolution of algal groups in Lake Llanquihue, located in southern
Chile, with Chl‑a as a bioindicator.

In future work, we intend to use the models that proved to be the best predictors of
Chl‑a for this lake system and include other satellite parameters to remotely detect events
such as algal blooms. Due to climate conditions, it is difficult to monitor inland aquatic
systems such as lakes in southernChile in autumnandwinter, making the use of estimation
algorithms for this part of the year a novel and effective tool for monitoring events such as
algal blooms identifiable by the chlorophyll variable.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15111994/s1, Figure S1: Correlation matrix between features.
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