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Abstract: The permeability of the natural geology plays a crucial role in accurately analyzing seepage
behavior in the project area. This study presents a novel approach for the inverse analysis of the
permeability coefficient. The finite element model (FEM) combined with orthogonal experimental
design is used to construct a sample set of permeability coefficient inversion. The established random
forest (RF) algorithm surrogate model is applied to determine the optimal values of permeability
parameters in the project area using the Harris hawk optimization (HHO) algorithm. This method
was used to explore and verify the distribution of natural seepage fields for the P hydropower station.
The results showed that the RF model outperformed the classical CART and BP models at each
borehole regarding performance evaluation indices. Furthermore, the water head prediction results
were more accurate, and the RF model performed admirably in terms of prediction, anti-interference,
and generalization. The HHO algorithm effectively searched for the optimal permeability coefficient
of the geology. The maximum value of the relative error of the borehole water head inverted was
1.11%, and the accuracy met engineering standards. The initial seepage field distribution pattern
calculated followed the basic distribution pattern of the mountain seepage field.

Keywords: permeability coefficient; inversion analysis; orthogonal experimental design; RF; HHO

1. Introduction

In recent years, China has built a considerable number of new high dams and large
reservoirs, pumped storage power plants, water transfer projects, and other large-scale
water conservancy projects, encouraging the sustainable and healthy growth of the econ-
omy and society. To ensure the safe construction and normal operation of the project,
it is vitally necessary to master the seepage distribution in the project area. As a result,
numerical simulation methods are commonly employed to judge the seepage properties.
However, this procedure is based on the determination of the permeability coefficient
of the natural stratum [1]. The inversion analysis based on onsite observation data can
more accurately obtain permeability parameters than indoor and in situ experiments [2],
making it one of the most effective ways to determine the permeability coefficients of
materials [3]. Many inversion methods [4–7] have been proposed. However, these classic
methods necessitate many calls to the seepage analysis forward model, which is computa-
tionally time-consuming and inefficient. Therefore, practical approaches must be adopted
to improve the calculation efficiency of inversion methods.

As a method to improve the efficiency of the inversion, surrogate models based
on machine learning algorithms have been widely used in recent years. The response
surface technique [8], radial basis function (RBF) [9], extreme learning machine (ELM) [10],
backpropagation (BP) neural network [11], support vector regression (SVR) [12], multiple
adaptive regression splines (MARS) [13], and others are commonly used as surrogate
models. These models generate learning samples using FEM. Then, the mathematical
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model is used to build the relationship between the permeability coefficient (i.e., input
variable) and the water head (i.e., output variable). This can then be used to replace the
seepage forward model to solve the problem quickly.

Applying the surrogate model can enhance the computational efficiency of the inver-
sion, but its essence remains the standard inversion method of “forward problem inverse
calculation”. The parameters inverted are not optimal and have low accuracy; hence, fur-
ther research into novel seepage inversion theories and methods is required. Chi et al. [9]
studied the inversion of permeability coefficients of the high-core rockfill dam using the
RBF model and the particle swarm optimization (PSO) algorithm. Ni et al. [14] established
a surrogate model based on SVR. They searched for the optimal permeability coefficients of
the partition inverted for the Nuozhadu high-core rockfill dam using the PSO algorithm.
Li et al. [15] established an inversion analysis model based on the relevance vector machine
model and cuckoo search algorithm. They determined the permeability coefficient of each
stratum in the study area. Shu et al. [16] used ELM and an optimization algorithm to
perform a back study on the permeability coefficient of the dam anti-seepage curtain and
determined its optimal value. These studies showed that it is feasible to invert the optimal
values of seepage parameters using an optimization algorithm combined with the surrogate
model, whereby the inversion accuracy is improved.

In the process of nonlinear modeling of the permeability coefficient, the above model
exhibits several problems, including low prediction accuracy, poor robustness, slow con-
vergence speed, limited generalization ability, and quickly falling into a local minimum.
Additionally, the model assumes the medium to be isotropic during inversion, disregarding
the impact of its anisotropy on seepage behavior. Given this, this study introduces the
random forest (RF) algorithm, considers the anisotropic characteristics of the medium, and
constructs a surrogate model for seepage analysis. Then, Harris hawk optimization (HHO)
is introduced to establish a new inversion model that can intelligently optimize the stratum
permeability coefficient and lay the foundation for safety analysis of seepage properties
in the project area. Lastly, the rationality and validity of the model proposed are verified
using an engineering example.

2. Methodology
2.1. Random Forest (RF)

RF [17] is an ensemble learning algorithm widely used for nonlinear regression prob-
lems [18,19]. The algorithm’s core is to use the ensemble learning method (i.e., bootstrap
aggregating) to model the decision tree for each sample set extracted using the bootstrap
method. A single decision tree with overfitting and local convergence problems becomes
multiple “forests”, improving the model’s performance. The implementation steps are
as follows:

Step 1: T training sets S1, S2, . . . , ST are randomly generated using the bootstrap
method. Let the set of samples be S = {x1, x2, · · · , xn}; there is putback from the set of
samples S to draw n times, forming a new set of samples Si (i = 1, 2, . . . , T). The total
samples of Si are the same, but it contains only about 62.3% of samples in the original set.

Step 2: According to each training set Si (i = 1, 2, . . . , T), the corresponding decision
tree models C1, C2, . . . , CT are generated.

Step 3: The corresponding result C1 (X), C2 (X), . . . , CT (X) is obtained for the test set
of samples X using each of the generated decision tree models.

Step 4: The output results of T decision trees are averaged as the result of the
X calculation.

The RF model contains three critical parameters: the number of decision trees Ntree,
the number of random characteristics of node splitting Mtry, and the minimum number
of samples of leaf nodes Nodesize. Generally, compared with Ntree and Mtry, Nodesize has
less impact on the performance and efficiency of the RF model, and the default value is
generally chosen.
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2.2. Harris Hawk Optimization (HHO)

The HHO algorithm is a novel global search algorithm constructed by Heidari et al. [20]
on the basis of the predation patterns of the Harris hawk group and Levy flight charac-
teristics. This algorithm has the characteristics of few adjustment parameters, an optimal
random search path, easy implementation, and high calculation accuracy [21]. It has been
widely applied to mechanical multi-objective optimization [22], dam deformation predic-
tion [23], environmental drought index prediction [24], landslide prediction [25,26], and
other fields. This paper introduces the HHO algorithm to search for the optimal perme-
ability coefficient value. The optimization process consists of the exploration phase, the
transition from exploration to exploitation, and the exploitation phase. The specific process
is described below.

(1) Exploration phase

In this phase, HHO simulates the Harris hawks’ behavior of tracking prey. Their
positions are updated according to Equation (1).

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

, (1)

where X (t) and X (t + 1) are the positions of hawks in the t-th iteration and t + 1-th iteration,
Xrand (t) is a randomly selected Harris hawk individual, Xrabbit (t) is the current location of
the prey, and r1, r2, r3, r4, and q are random numbers in the range [0, 1]. UB and LB are the
upper and lower bounds of the search space. Xm (t) is the average position of hawks and is
computed as shown in Equation (2).

Xm(t) =
1
N
(

N

∑
i=1

Xi(t)), (2)

where N is the number of Harris hawks, and Xi (t) is the location of each hawk in the
t-th iteration.

(2) Transition from exploration to exploitation

HHO conducts the transition from exploration to exploitation according to the escape
energy of the prey. It is defined as shown in Equation (3).

E = 2E0(1−
t
T
), (3)

where E is the escape energy of the prey, E0 is a random initial energy between (−1, 1), t is
the number of iterations, and T is the maximum number of iterations.

When |E| ≥ 1, the hawks track the prey in different regions, and HHO executes the
exploration phase; when |E| < 1, HHO executes the exploitation phase in the neighborhood
of the solution, and hawks encircle, approach, and attack the prey.

(3) Exploitation phase

In this phase, when |E| ≥ 0.5, the hawks conduct a soft besiege on the prey; when
|E| < 0.5, the hawks conduct a hard besiege on the prey. In addition, the chance of the
prey escaping is measured using r. When r ≥ 0.5, the prey has enough energy to escape;
when r < 0.5, the prey does not have enough energy to escape. Therefore, the hawks have
the following four strategies to catch the prey.

When r ≥ 0.5 and |E| ≥ 0.5, the hawks execute the soft besiege strategy and update
their positions according to Equation (4).

X(t + 1) = Xrabbit(t)− X(t)− E|JXrabbit(t)− X(t)|, (4)

where J is the random jumping strength of the prey in the process of escape, when
J = 2(1− r5), and r5 is a random number in the range (0,1).
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When r ≥ 0.5 and |E| < 0.5, the hawks execute the hard besiege strategy, and their
positions are updated as represented by Equation (5).

X(t + 1) = Xrabbit(t)− E|Xrabbit(t)− X(t)|. (5)

When |E| ≥ 0.5 and r < 0.5, the hawks execute the soft besiege strategy of progressive
rapid dives and update their positions using Equation (6).

X(t + 1) =
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

, (6)

where f is the fitness function. Y and Z are obtained using Equations (7) and (8).

Y(t) = Xrabbit(t)− E|J · Xrabbit(t)− X(t)|, (7)

Z = Y + S× LF(D), (8)

where D is the problem dimension, S is a D-dimension random variable, with its elements
being random numbers in the range [0, 1], and LF is the Levy flight function [19].

When |E| < 0.5 and r < 0.5, the hawks execute the hard besiege strategy of progressive
rapid dives, and their positions are updated as described in Equations (9) and (10).

X(t + 1) =
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

, (9)

where Y and Z are calculated using Equations (10) and (8).

Y(t) = Xrabbit(t)− E

∣∣∣∣∣J · Xrabbit(t)−
1
N
(

N

∑
i=1

Xi(t))

∣∣∣∣∣. (10)

2.3. Calculation Principle of the Three-Dimensional Stable Seepage Field

According to the continuity equation of water flow, the primary differential Equa-
tion [3] of steady seepage is expressed as shown in Equation (11).

∂

∂x

(
kx

∂H
∂x

)
+

∂

∂y

(
ky

∂H
∂y

)
+

∂

∂z

(
kz

∂H
∂z

)
= 0, (11)

where H is the water head function, and kx, ky, and kz are the permeability coefficients in x-,
y-, and z-directions, respectively.

According to the common boundary conditions [3] and the variational principle,
Equation (11) can be solved using Equation (12).

I(H) =
y

Ω

1
2

kx

(
∂H
∂x

)2
+ ky

(
∂H
∂y

)2
+ kz

(
∂H
∂z

)2
]

dxdydz−
x

S2

qHds⇒ min, (12)

where Ω is the calculation area.
By discretizing the seepage calculation area, the basic finite element equation for

solving a three-dimensional seepage field can be obtained [27] from Equation (12) as shown
in Equation (13).

[K] · {H} = {F}, (13)

where [K] is the overall penetration matrix, {H} is node head array, and {F} is the corre-
sponding flow matrix.
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2.4. The Fitness Function of the RF–HHO Model

The essential purpose of seepage field inversion is to find the optimal combination of
permeability coefficients within a given range. Therefore, the essence of the permeability
coefficient inversion is an optimization problem. This study used HHO to find the optimal
permeability coefficient for the geology, and an inversion model based on RF–HHO was
established. The model’s fitness function was the minimum mean square error (MSE)
between the measured and calculated water head of boreholes, as shown in Equation (14).
The pseudo-code of the RF–HHO model is shown in Algorithm 1.

f = minMSE = min

[
1
q

q

∑
k=1

(Hk − H′k)
2
]

, (14)

where Hk is the measured water head value of the k-th borehole, H′k is the calculated water
head of the k-th borehole, and q is the number of boreholes.

The constraints of the objective function are shown in Equation (15).

s.t. xd
m ≤ xm ≤ xu

m (m = 1, 2, . . . , M), (15)

where xm is the permeability coefficient inverted, xu
m and xd

m are its upper and lower limits,
respectively, and M is the total number of permeability coefficients inverted.

Algorithm 1: Pseudo-code for RF–HHO implementation.

Input: training examples and range of permeability coefficient values
Output: Optimal combination of permeability coefficients for the geology of the project area

Initialize N and T, generate the initial population XN×D, and calculate the fitness value f ;
While t < T

Set Xrabbit as the prey (best location), and update E0, E, and r for each hawk (Xi)
If |E| ≥ 1

Use Equation (1) to update the population;
if |E| < 1

if r ≥ 0.5 and |E| ≥ 0.5
Use Equation (4) to update the population;

if r ≥ 0.5 and |E| < 0.5
Use Equation (5) to update the population;

if r < 0.5 and |E| ≥ 0.5
Use Equation (6) to update the population;

if r < 0.5 and |E| < 0.5
Use Equation (9) to update the population;

end
end

Calculate the fitness value of the new individual, and update their positions and optimal
fitness value;

t = t + 1;
end

2.5. Establishment of a Permeability Coefficient Inversion Model for the Dam Site Area

Using the RF and HHO algorithms, this paper established an inverse model of geology
permeability coefficients. It can intelligently search for the optimal permeability coefficients
of the dam foundation. Figure 1 shows the modeling procedure. The main steps are
as follows:

Step 1: The orthogonal test design method is used to construct the combination
of permeability coefficients. Then, the borehole water head under the corresponding
combination is obtained by FEM. Finally, the inversion sample set is established.
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Step 2: The permeability coefficient is selected as the input variable of the RF model,
and the corresponding borehole head calculation value is selected as the output variable of
the model.
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Step 3: The sample set is split into 80% for training and 20% for testing. Simultaneously,
to eliminate the impact of variable magnitude on the RF model, the sample data are
preprocessed using the normalization Equation (16) to limit the data to [0, 1].

x′m =
xm − xd

m
xu

m − xd
m

, (16)

where x′m is the normalized permeability coefficient value.
Step 4: Tenfold cross-validation is used to determine the optimal parameters Mtry and

Ntree of the RF model. Then, the inversion surrogate model is trained.
Step 5: It is verified whether the accuracy of the surrogate model obtained in Step 4

meets the error threshold. If it meets the standards, the procedure proceeds to the next step.
Otherwise, steps 4 and 5 are repeated.

Step 6: After denormalizing the output results, the surrogate model established is
evaluated using the following statistical indices [18,19,28–30]: mean absolute error (MAE),
mean absolute percentage error (MAPE), root-mean-square error (RMSE), and goodness of
fit (R2). The calculated expressions are shown in Equations (17)–(20), respectively.

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (17)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (18)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (19)
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R2= 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

, (20)

where yi and ŷi are the measured and predicted values, respectively, y and ŷi are the
averages of the measured and predicted values, respectively, and n is the number of
measured values.

Step 7: When employing HHO to find the optimal permeability coefficients, a new
combination of permeability coefficients is constructed. Their corresponding borehole
head is calculated using the established RF model. If the fitness under this combination
is less than the existing optimal fitness, the existing combination and fitness are update.
Otherwise, the procedure proceeds to step 8.

Step 8: If HHO does not reach the maximum number of iterations, step 7 is repeated.
Otherwise, the current combination and its fitness are updated, along with the final inver-
sion result.

3. Case Study
3.1. Basic Information on the Project Area

The reservoir of P hydropower station is a class III medium-sized reservoir. The
pivotal project is composed of left and right bank water-retaining dam sections, riverbed
overflow dam sections, bottom outlets, and water-intake dam sections. The dam is a
roller-compacted concrete gravity dam with a maximum height of 59.50 m, a crest length
of 217.00 m, and a crest width of 8 m. The normal storage and the design flood level of
the reservoir are 946.5 m, the check flood level is 946.95 m, the total storage capacity is
15.81 × 106 m3, and the backwater length is 6.082 km. The dam is a grade III structure,
the design flood standard is a 50 year return period, and the corresponding peak flow is
808 m3/s; the check flood standard is a 500 year return period, and the corresponding peak
discharge is 2110 m3/s. The seismic design intensity is VII.

The project area is located in a low hill and gully landscape with a high north and
low south terrain; the river valley gully is relatively developed, and its cross-section is
“U”-shaped. The main stratum of the project area is the Triassic Ermaying Formation.
The lithology is mainly gray-green coarse-grained feldspathic sandstone, sandstone mud-
stone interbedding, siltstone, and silty mudstone. The rock stratum is stable and about
200 m thick. The stratum in the project area is divided into a strongly weathered, weakly
weathered, and slightly new strata. The stratum is weakly permeable with good bottom
sealing. The groundwater is mainly bedrock fissure phreatic water and quaternary pore
phreatic water. Both reservoir banks are relatively wide and thick, without a thin watershed
distribution, large structure, and fault distribution. Two groups of conjugate high-angle
shear joints, NWW and NNE, are common, with a fracture spacing of 0.5~2.0 m.

3.2. Establishment of the Finite Element Model

According to the geological survey report and relevant hydrogeological data, a three-
dimensional finite element seepage model in the engineering area was established. The
model’s boundary was determined by the seepage field and the site’s terrain. The sur-
rounding was taken from the mountain watershed, and the thickness of the rock around
the reservoir was not less than 3–5 times the dam height or the excavation span [31,32].
When the distance from the surface was less than five times the excavation span, it was
calculated to the surface to ensure the rationality of the model calculation boundary. The
upstream and downstream boundaries of the established model were 7.90 and 10.01 times
the dam height from the dam site, respectively; the left and right boundaries were 3.79 and
9.29 times the dam height from the midpoint of the dam axis, respectively. Moreover, the
left boundary was along the channel on the left bank of the downstream. Figure 2 shows
the model’s scope, measuring 1284.67 m in length and 1183.87 m in width.
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In order to make the calculation model consistent with the actual hydrogeological
conditions in the project area, a detailed simulation of the strata located on both banks
and the river valley was conducted on the basis of the geological profile of the dam axis,
as illustrated in Figure 3. The thickness of the strongly and weakly weathered strata was
13.5 m and 24.2 m on the left bank, 3.9 m and 26.1 m on the river valley, and 3.8 m and
20.6 m on the right bank, respectively. Furthermore, the survey of adits on both banks
revealed the presence of a wide fissure, measuring approximately 8 cm in width, and a
long fissure, roughly 1.0 cm in width, on the right bank. On the left bank, a weak rock belt
composed of sandy mudstone was observed, with a maximum thickness of 5 cm. These
findings were simulated in the study.
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In conclusion, the calculation model built using ABAQUS is shown in Figure 4. The
bottom elevation of the model was 507.1 m, and the top elevation was the corresponding
surface elevation. The four-node isoparametric element (C3D4P) was used to mesh the
model. The numbers of nodes and units were 54,552 and 300,618, respectively. In the
calculations, the right boundary, the left boundary, and the middle channel of the model
used the measured groundwater level, the corresponding ditch bottom water level, and
the natural river valley level as their constant water head boundaries, respectively; the
upstream, downstream, and bottom were impermeable boundaries.



Water 2023, 15, 1993 9 of 17

Water 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. Engineering geological profile of dam axis at dam site. 

In conclusion, the calculation model built using ABAQUS is shown in Figure 4. The 
bottom elevation of the model was 507.1 m, and the top elevation was the corresponding 
surface elevation. The four-node isoparametric element (C3D4P) was used to mesh the 
model. The numbers of nodes and units were 54,552 and 300,618, respectively. In the 
calculations, the right boundary, the left boundary, and the middle channel of the model 
used the measured groundwater level, the corresponding ditch bottom water level, and 
the natural river valley level as their constant water head boundaries, respectively; the 
upstream, downstream, and bottom were impermeable boundaries. 

 
Figure 4. The inversion calculation model of the seepage field. 

The study used the proposed inversion model to invert the dam foundation 
permeability coefficients of the P hydropower station using the measured water levels 
from seven boreholes (i.e., CZK1, CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7) in the 
natural seepage field. 

3.3. Sample Construction Based on Orthogonal Design 
The permeability coefficient of various strata and fractures was an independent 

variable in the inversion. Since each stratum was mostly sandstone and mudstone 
interbedded with uneven lithology, their permeability coefficients were considered 
anisotropic. According to the geological survey data and combined with general 
engineering experience, the range of permeability coefficients was determined, as shown 
in Table 1, where k1 and k2 are the tangential permeability coefficient values, and k3 is the 
normal permeability coefficient value. 

Figure 4. The inversion calculation model of the seepage field.

The study used the proposed inversion model to invert the dam foundation perme-
ability coefficients of the P hydropower station using the measured water levels from
seven boreholes (i.e., CZK1, CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7) in the natural
seepage field.

3.3. Sample Construction Based on Orthogonal Design

The permeability coefficient of various strata and fractures was an independent vari-
able in the inversion. Since each stratum was mostly sandstone and mudstone interbedded
with uneven lithology, their permeability coefficients were considered anisotropic. Ac-
cording to the geological survey data and combined with general engineering experience,
the range of permeability coefficients was determined, as shown in Table 1, where k1 and
k2 are the tangential permeability coefficient values, and k3 is the normal permeability
coefficient value.

Table 1. Value range of permeability coefficients for each stratum and fracture.

Rock Stratum Measured Range of k1 and k2 (m/s) Measured Range of k3 (m/s)

Strongly weathered stratum [4.32, 9.86] × 10−5 [1.12, 6.57] × 10−5

Weakly weathered stratum [3.57, 9.25] × 10−6 [1.63, 7.49] × 10−6

Bedrock [5.61, 8.94] × 10−7 [1.38, 4.67] × 10−7

Fracture [5.35, 8.58] × 10−6 [1.24, 4.27] × 10−6

Constructing a reasonable permeability coefficient sample is crucial for developing a
surrogate model. To ensure the RF model precision without increasing the workload of finite
element forward analysis, this study adopted the orthogonal design method [33] to arrange
a representative combination scheme of permeability coefficients. Orthogonal tables are
essential to orthogonal test sample preparation. The scheme is generally expressed as Ln
(tc), where L is the orthogonal table, n is the total number of tests, t is the level number of
factors, and c is the maximum number of factors arranged. The four factors of the test were
the permeability coefficients of strongly weathered stratum, weakly weathered stratum,
bedrock, and fracture. Table 2 shows each factor’s nine level numbers. The 81 permeability
coefficient combination schemes were generated by SPSS using the orthogonal table L81
(94). Subsequently, the corresponding water head was determined through finite element
forward analysis, and 81 sets of inversion samples were constructed. A total of 65 groups of
samples (the first 80% of the data) were chosen for training the RF model, while 16 groups
of samples (the remaining 20%) were used for verifying the model.
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Table 2. Values of parameters at different levels based on orthogonal design.

Level

Strongly Weathered
Layer (×10−5 m/s)

Weakly Weathered
Layer (×10−6 m/s)

Bedrock
(×10−7 m/s)

Fissure
(×10−6 m/s)

k1 = k2 k3 k1 = k2 k3 k1 = k2 k3 k1 = k2 k3

1 4.32 1.12 3.57 1.63 5.61 1.38 5.35 1.24
2 5.01 1.80 4.28 2.36 6.03 1.79 5.75 1.62
3 5.71 2.48 4.99 3.10 6.44 2.20 6.16 2.00
4 6.40 3.16 5.70 3.83 6.86 2.61 6.56 2.38
5 7.09 3.85 6.41 4.56 7.28 3.03 6.97 2.76
6 7.78 4.53 7.12 5.29 7.69 3.44 7.37 3.13
7 8.48 5.21 7.83 6.03 8.11 3.85 7.77 3.51
8 9.17 5.89 8.54 6.76 8.52 4.26 8.18 3.89
9 9.86 6.57 9.25 7.49 8.94 4.67 8.58 4.27

3.4. Determination of the RF Model Parameters

The establishment of the RF model relies heavily on setting the optimal Mtry and
Ntree values, as demonstrated in Section 2.1. The variable control method was applied to
analyze and determine RF parameter settings using the sample data from Section 3.3. The
ideal RF parameters were selected using a tenfold cross-validation based on the model’s
least MSE, effectively reducing model unpredictability.

To examine the model’s generalization ability under different Ntree, Mtry was set to
the default value (i.e., one-third of the number of variables), and the Ntree range was
set to [50, 1000] with a step size of 50. Figure 5a depicts the model’s MSE change curve
for different Ntree. It is evident that the model’s MSE stabilized when Ntree reached 400,
indicating that increasing the number of model trees did not significantly affect the model
error when Mtry was fixed. Therefore, to enhance the computational efficiency and ensure
the accuracy of the RF model, this study selected Ntree = 400. Subsequently, the model’s
generalization ability was evaluated under different Mtry levels, with Ntree set to 400 and
Mtry set to [1, 20] with a step size of 1. Figure 5a depicts the model’s MSE change curve for
different Mtry. It shows that the model’s MSE increased gradually with an increase in Mtry,
with the smallest MSE observed at Mtry = 4. Accordingly, Ntree = 150 and Mtry = 4 were
identified as the optimal parameters for the RF model, leading to improved performance
and computational efficiency.

Water 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

with a step size of 1. Figure 5a depicts the model’s MSE change curve for different Mtry. It 
shows that the model’s MSE increased gradually with an increase in Mtry, with the smallest 
MSE observed at Mtry = 4. Accordingly, Ntree = 150 and Mtry = 4 were identified as the optimal 
parameters for the RF model, leading to improved performance and computational 
efficiency. 

  
Figure 5. The effect of the parameters on RF model performance: (a) Ntree, and (b) Mtry. 

4. Results and Analysis 
4.1. Performance Validation of the RF Model 

The study evaluated the ability of the RF model to invert permeability parameters at 
borehole CZK1, comparing it to the CART model [18] and BP neural network model [19]. 
The RF model was configured with parameters Ntree and Mtry set to 400 and 4, respectively; 
the CART model was configured with parameters minLeafSize and smoothingK set to 6 
and 20, respectively; the BP model’s hidden layer consisted of seven neurons, and the 
maximum number of iterations was set to 200. Figure 6 displays the prediction results of 
the RF, CART, and BP models for the borehole water level. Table 3 presents the 
generalization ability and forecast accuracy of the three models according to different 
evaluation indices. 

Table 3. Evaluation indices of prediction results of RF, CART, and BP models at borehole CZK1. 

Models 
Model Training Model Verification 
MAE (m) MAPE (%) RMSE (m) R2 MAE (m) MAPE (%) RMSE (m) R2 

RF 0.290 0.031 0.353 0.962 0.255 0.055 0.589 0.879 
CART 0.357 0.039 0.416 0.948 0.325 0.070 0.764 0.797 
BP 0.385 0.042 0.457 0.937 0.695 0.075 0.827 0.762 
  

Figure 5. The effect of the parameters on RF model performance: (a) Ntree, and (b) Mtry.

4. Results and Analysis
4.1. Performance Validation of the RF Model

The study evaluated the ability of the RF model to invert permeability parameters at
borehole CZK1, comparing it to the CART model [18] and BP neural network model [19].
The RF model was configured with parameters Ntree and Mtry set to 400 and 4, respectively;
the CART model was configured with parameters minLeafSize and smoothingK set to
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6 and 20, respectively; the BP model’s hidden layer consisted of seven neurons, and the
maximum number of iterations was set to 200. Figure 6 displays the prediction results of the
RF, CART, and BP models for the borehole water level. Table 3 presents the generalization
ability and forecast accuracy of the three models according to different evaluation indices.
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Table 3. Evaluation indices of prediction results of RF, CART, and BP models at borehole CZK1.

Models
Model Training Model Verification

MAE (m) MAPE (%) RMSE (m) R2 MAE (m) MAPE (%) RMSE (m) R2

RF 0.290 0.031 0.353 0.962 0.255 0.055 0.589 0.879
CART 0.357 0.039 0.416 0.948 0.325 0.070 0.764 0.797
BP 0.385 0.042 0.457 0.937 0.695 0.075 0.827 0.762

Figure 6a shows that the prediction curves of the three models were close to the finite
element calculation curves, and the prediction errors were negligible. However, Figure 6b
illustrates that the overall prediction residuals of the RF model were smaller than those of
the CART and BP models. Table 3 proves that the RF model outperformed the CART and
BP models in all evaluation indices. Notably, the R2 values for the training and test sets
were 0.962 and 0.879, respectively, and other indices also achieved low values, indicating
that the RF model fit was highly significant. Consequently, the prediction accuracy of the
RF model was higher, and the proxy model based on the RF model accurately predicted
the water head of borehole CZK1.

The water heads of boreholes CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7 were
utilized to assess the generalization ability of the RF model. Figure 7 illustrates the water
head prediction results of the RF, CART, and BP models at these boreholes. Table 4 presents
a quantitative evaluation of the prediction results.

Figure 7 indicates that the RF model outperformed the other two models regarding
anti-interference and generalization. Specifically, the RF model’s R2 values at boreholes
CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7 were 0.864, 0.898, 0.896, 0.922, 0.909, and
0.922, respectively, which were superior to those of the CART (R2 = 0.797, 0.818, 0.860, 0.871,
0.869, and 0.903) and BP (R2 = 0.675, 0.802, 0.807, 0.836, 0.844, and 0.868) models, as reported
in Table 4. Moreover, the other statistical indices of the RF model outperformed those of the
CART and BP models, indicating its excellent generalization ability. Overall, the RF model
accurately predicted the water head at all seven boreholes, making it a suitable surrogate
model for inverting engineering seepage parameters with high accuracy and robustness.
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Table 4. Evaluation indices of prediction results of RF, CART, and BP models at different boreholes.

Measuring Points Models
Model Training Model Verification

MAE (m) MAPE (%) RMSE (m) R2 MAE (m) MAPE (%) RMSE (m) R2

CZK2
RF 0.304 0.034 0.366 0.960 0.262 0.058 0.626 0.864
CART 0.366 0.041 0.430 0.944 0.341 0.075 0.764 0.797
BP 0.385 0.043 0.457 0.937 0.844 0.093 0.967 0.675

CZK3
RF 0.339 0.038 0.413 0.948 0.241 0.054 0.543 0.898
CART 0.373 0.042 0.437 0.942 0.338 0.075 0.724 0.818
BP 0.388 0.043 0.449 0.939 0.687 0.077 0.755 0.802

CZK4
RF 0.326 0.035 0.377 0.957 0.252 0.055 0.548 0.896
CART 0.362 0.039 0.405 0.951 0.294 0.064 0.635 0.860
BP 0.419 0.046 0.477 0.931 0.672 0.073 0.745 0.807

CZK5
RF 0.339 0.038 0.379 0.957 0.221 0.049 0.473 0.922
CART 0.362 0.040 0.407 0.950 0.280 0.062 0.609 0.871
BP 0.422 0.047 0.453 0.938 0.633 0.070 0.688 0.836

CZK6
RF 0.350 0.039 0.384 0.955 0.242 0.054 0.510 0.909
CART 0.426 0.047 0.449 0.939 0.285 0.063 0.610 0.869
BP 0.482 0.054 0.516 0.920 0.626 0.070 0.669 0.844

CZK7
RF 0.403 0.044 0.452 0.938 0.224 0.049 0.475 0.922
CART 0.406 0.044 0.424 0.946 0.250 0.054 0.527 0.903
BP 0.471 0.051 0.490 0.927 0.587 0.064 0.617 0.868

4.2. Inversion of Permeability Coefficients Based on the HHO Algorithm

Section 4.1 verified that the constructed surrogate model predicted borehole water
heads well. Utilizing this model, the HHO algorithm was employed in global optimization
within the range of permeability coefficients (i.e., Table 1). The initial number of hawks
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was set to N = 50, the maximum number of iterations was T = 200, and the fitness value
was calculated using the trained RF in Section 4.1. To validate the HHO algorithm’s opti-
mization capacity, classic optimization algorithms such as the genetic algorithm (GA) [34]
and PSO [35] were introduced for comparison. During calculation, the PSO algorithm’s
parameters were set to 100 for the number of particle swarms, 1.5 for the individual learning
factor, 2 for the social learning factor, 1 for the maximum inertia factor, 0.8 for the mini-
mum inertia factor, and 200 for the maximum number of iterations. The GA algorithm’s
parameters were set to 100 for the population size, 0.85 for the generation gap, 0.6 for the
crossover probability, 0.01 for the mutation probability, and 200 for the maximum genetic
algebra. Figure 8 illustrates the convergence process of the HHO, PSO, and GA algorithms
in searching for the optimal solution.
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Figure 8 illustrates that the HHO algorithm exhibited a smoother convergence curve,
a superior initial optimization result, and a faster convergence rate than the PSO and
GA algorithms. The HHO, PSO, and GA algorithms achieved optimal results at the 66th,
96th, and 105th generations, respectively. The convergence rates of all three algorithms
were relatively flat, indicating their strong global search capabilities. However, the HHO
algorithm required fewer initial parameters, with only N and T needing to be determined,
thus simplifying programming. Table 5 presents the optimal permeability coefficient for
each stratum and fracture.

Table 5. Inversion results of permeability coefficient of each stratum and fracture.

Rock Stratum Calculated Value of k1 and k2 (m/s) Calculated Value of k3 (m/s)

Strongly weathered stratum 8.43 × 10−5 5.47 × 10−5

Weakly weathered stratum 7.81 × 10−6 6.14 × 10−6

Bedrock 7.46 × 10−7 3.69 × 10−7

Fracture 7.29 × 10−6 2.87 × 10−6

To confirm the validity of the permeability coefficient obtained, we applied the inverted
permeability coefficients of each stratum and fracture to the FEM. This allowed us to
calculate the water head of each borehole and compare it with the measured water level.
The results are presented in Table 6. The calculation formulas for absolute error e and
relative error er are presented in Equations (21) and (22), respectively:

e = H′ − H, (21)

er =
[
(H′ − H)/H

]
× 100%, (22)

where H′ and H are the calculated and measured water levels of the borehole, respectively.



Water 2023, 15, 1993 14 of 17

Table 6. Comparison of measured and inverted water levels at each borehole.

Borehole Calculated Water Level (m) Measured Water Level (m) Absolute Error (m) Relative Error (%)

CZK1 920.83 928.74 −7.91 0.85
CZK2 905.67 902.24 3.43 0.38
CZK3 899.83 895.97 3.86 0.43
CZK4 922.75 912.62 10.13 1.11
CZK5 904.56 899.64 4.92 0.55
CZK6 898.32 895.84 2.48 0.28
CZK7 921.41 913.51 7.90 0.87

Several studies [3,31,32] suggested that the inverted permeability coefficient is suitable
when e < 10 m and er < 5% at each borehole. Table 6 shows that CZK4 had the highest
absolute error of 10.13 m and the highest relative error of 1.11%, while the remaining
boreholes had minor absolute and relative errors that met the accuracy control requirements.
The disparity between the calculated and measured water level at CZK4 was due to a
decline in the groundwater level caused by the construction of the exploration adit near
the borehole, which resulted in a significant difference between the measured and true
water level for the borehole. Therefore, in future research, the borehole water level must
be corrected near the adit, or one should avoid using similar borehole information before
inversion. However, the disparity between the calculated and measured water level in
the remaining boreholes was slight, indicating that the geological permeability coefficient
inverted was close to its true value, and the seepage properties of the project area calculated
could be used as its natural seepage field distribution. In conclusion, the permeability
coefficients obtained using the RF–HHO model met the project’s requirements for accuracy.
They can be applied to analyze and calculate seepage properties under different situations
during the construction and operation of the project area.

For seepage calculation analysis, X = 591.935 m and Y = 642.335 m in the calculation
model were used as typical profiles, as shown in Figure 2. Figures 9 and 10 show the total
water head and pressure water head distribution calculated for the two profiles. The left
and right banks of the X profile are the upstream and downstream, respectively; the left
and right of the Y profile are the right and left banks, respectively.
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The results indicated that the upstream reservoir area of the initial seepage field
exhibited a higher water head than the downstream area, validating the principle of
seepage supplement from upstream to downstream. The upstream water head line was
distributed more densely, and the hydraulic gradient was relatively large. Similarly, the
water head on the right side of the initial seepage field model was higher than the left side,
indicating the law of seepage supplement from the mountain to the river valley. The water
head line was distributed more densely on the right side, and the hydraulic gradient was
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relatively large. The distribution pattern of the initial seepage field computed aligned with
the pattern revealed by the borehole, which was consistent with the distribution law of
the general mountain seepage field. Moreover, the distribution of the total head and pore
water pressure was essentially reasonable.
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5. Conclusions

The geological permeability coefficient is a critical parameter in hydraulic engineering
for analyzing the safety of three-dimensional seepage fields. However, estimating its actual
value is a challenge due to the interaction of various elements. Therefore, it is crucial
to establish a high-precision model to quickly obtain the permeability coefficient’s “true
value”. In this study, we applied an RF–HHO-based model for permeability coefficient
inversion to the dam foundation of the P hydropower station, which revealed the overall
distribution characteristics of its natural seepage field. On the basis of our research, we can
draw the following conclusions:

(1) The RF model showed promising potential for engineering seepage parameter in-
version. Compared to other models, the RF model’s water level prediction at all
boreholes was closer to the calculated value of the FEM, with its evaluation index
being the smallest, indicating its greater prediction accuracy and generalization ability.
The RF-based surrogate model can replace the FEM for seepage calculation, avoiding
the time-consuming process of FEM seepage calculation and improving the efficiency
of the inversion process.

(2) The HHO algorithm demonstrated remarkable proficiency in conducting global
searches. As evidenced by the convergence curve of parameter optimization, the
HHO method surpassed the PSO and GA algorithms regarding optimization effi-
ciency and initial setting parameters. It could rapidly identify the optimal solution by
determining the population and maximum iterations.

(3) The inversion model constructed provided a solid foundation for the numerical study
of the natural seepage field in the project area. The RF–HHO model successfully
determined the optimal permeability coefficient of the geology for the P hydropower
station, and then calculated the water head for each borehole using FEM. The absolute
and relative errors between the calculated and measured water levels in the borehole
were small. Additionally, the calculated distribution pattern of the initial seepage
field was consistent with the distribution law of the mountain seepage field. These
results indicate that the inversion model was reasonable and met the engineering
requirements for accuracy.

However, it is a deficiency that the study only used single-borehole data modeling
to invert the optimum permeability coefficient for the geology without considering the
linkage between different boreholes. Boreholes are frequently situated near one another and
possess interrelated characteristics that can be utilized for parametric inversion modeling.



Water 2023, 15, 1993 16 of 17

As such, our forthcoming research endeavors will maximize the linkages between the
different boreholes to enhance the current model.
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