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Abstract: The accurate simulation of the dynamics of the anaerobic–anoxic–oxic (A2O) process in the
biochemical reactions in wastewater treatment plants (WWTPs) is important for system prediction
and optimization. Previous studies have used real-time monitoring data of WWTPs to develop
data-driven predictive models, but these models cannot be used to provide mathematical analysis
of A2O dynamic properties. In this study, we developed a new simulation and analysis method for
determining A2O dynamics in biochemical reactions using deep learning and the Koopman operator
to address the above problems. This method was validated through data from a real-world WWTP
in east China and compared it with the traditional deep learning model. According to the results,
the new method achieved high-accuracy prediction. Meanwhile, with the help of the Koopman
operator, the new method was able to analyze the asymptotical stability and convergence behavior
of the A2O process, which provides a brand-new perspective for the in-depth study of biochemical
reactor dynamics.

Keywords: WWTP; A2O dynamics; deep learning; Koopman operator; dynamic system

1. Introduction

The anaerobic–anoxic–oxic (A2O) process in biochemical reactors of wastewater treat-
ment (WWT) is important in urban water systems [1]. Mechanism models of A2O have
been developed for dynamic prediction and control [2–5]. However, they are built on
fixed parameters, equations, and model assumptions, which lack the flexibility and adapt-
ability to respond to external environmental changes and stochastic perturbation in real-
world conditions. With the widespread adoption of intelligent devices, data monitoring
systems, and SCADA, a large amount of dynamic data for the A2O process has gradu-
ally accumulated. As a result, the construction of A2O dynamic models based on data-
driven methods has gradually emerged, e.g., linear models [6], machine learning [7],
artificial neural networks [8,9], and deep learning models [10]. These methods establish
simulation and prediction models based on measured data that records various random
events and perturbation factors. Therefore, they are more generalizable and adaptable to
real-world situations.

However, existing data-driven models, especially deep learning models, are black-box
models that lack interpretability and cannot be used to analyze the dynamic properties of
the A2O process in a biochemical reactor. This is consistent with existing research on the
dynamic properties based on deep learning and some data-driven methods [11–14]. There-
fore, finding the intersection point between data-driven methods and dynamic analysis
through appropriate modeling for A2O dynamics is necessary.

The Koopman operator provides a solution to the above problem. For a given nonlinear
dynamic system, obtaining its Koopman operator can help us find its eigenvalues, thereby
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revealing its linear structure and analyzing its dynamic properties mathematically [15–21].
The theory and correlated methods have been widely used in model prediction [22], data
fusion [23], fluid dynamics [24,25], and system control [26–28]. The methods used to find
the Koopman operator of a given system include purely mathematical methods [29] and
data-driven methods [30,31]. In recent years, deep learning has also been used to find the
Koopman operator of a given nonlinear dynamic system, providing a new direction for
mathematical analysis and system simulation [32–34].

This study constructed a new data-driven simulation model of A2O process in WWTP
to solve the above problem. This model provides accuracy prediction and mathematical
analysis for A2O dynamics using Koopman operator and deep learning. Based on this, a
deep learning model that takes into account both dynamic properties analysis and accurate
predictions is built for A2O to provide new insight into the dynamics of A2O from a
mathematical perspective.

2. Materials and Methods

Deep learning and the Koopman operator were applied to establish a new simulation
method and a dynamic analysis method for the A2O process in this study. First, the data
for an A2O process in a WWTP in eastern China were collected and cleaned. Based on the
cleaned dataset, a traditional deep-learning method was used to construct a simulation
model as a baseline model for A2O dynamic prediction. Then, a new simulation model
based on the combination of deep learning and the Koopman operator was designed
and used to provide a mathematical analysis method for A2O dynamic properties. The
following sections provide details on the methods.

2.1. Case Study and Data

The case study is a real-world WWTP located in eastern China. The WWTP adopts
the A2O process, with a design flow rate of 800,000 m3/d and 8 groups of bioreactors,
each with a capacity of 100,000 m3/d and can operate independently. The A2O process
uses microorganisms to remove organic pollutants, ammonia, and phosphorus in water
through anaerobic, anoxic, and aerobic treatment processes, so as to meet the discharge
standards [35]. The aerobic section of the biochemical reactor uses blowers at the bottom
of the reactor to provide oxygen for microorganisms to grow, consume organic pollutants,
and prevent activated sludge from settling. This study only focuses on bioreactor no. 1,
which has an online data monitoring system. It has three parts, anaerobic, anoxic, and oxic;
their volumes are 55,696 m3, 133,670 m3, and 321,680 m3, respectively.

This study collected the data for the bioreactor no.1 in the WWTP from 1 May 2020,
at 00:00 to 21 October 2020, at 14:40. The monitoring sample frequency was 5 min. Four
types of data (state, control, inflow, and outflow) were collected. Their information is given
in Table 1. The state data represent the water quality data inside the bioreactor, which
included dissolved oxygen (DO) in the aerobic section, oxidation–reduction potential (ORP)
of the anaerobic and anoxic sections, nitrate nitrogen (NO−3 ) of the aerobic section, and
mixed liquor suspended solids concentration (MLSS) of the anaerobic, anoxic, and aerobic
sections. The control data represent the data related to aeration (aeration volume), internal
recirculation flow rate (Qr), and sludge internal recycle flow rate (Qsr). The inflow data
represent the data of inflow water, which includes chemical oxygen demand (COD), total
nitrogen (TN), total phosphorus (TP), water temperature (T), suspended substance (SS),
and flow rate (flow). The outflow data represent the data of outflow water, which includes
chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), ammonia
nitrogen (NH+

4 − N), nitrate nitrogen (NO−3 ). The original COD, TP, and TN data were
measured every two hours and their time series data comprised the same values every two
hours, resulting in the original data being shown in a stepwise manner.
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Table 1. Statistic information of A2O process data.

Data Name and Unit Type Maximum Minimum Average Median

Aerobic MLSS (g/L)

State

5.733 2.515 3.878 3.975
Anaerobic MLSS (g/L) 6.111 0.774 3.455 3.505

Anoxic MLSS (g/L) 6.405 2.861 3.966 3.873
Anaerobic ORP −226.223 −480.649 −421.539 −447.093

Anoxic ORP −20.668 −244.451 −98.212 −93.690
Aerobic NO−3 (mg/L) 32.873 1.546 9.287 3.348
Aerobic DO (mg/L) 7.150 0.803 3.109 3.015

Aeration volume (m3/min)
Control

29.755 18.277 23.892 23.961
Qr (m3/s) 2.332 0.906 1.915 1.962
Qsr (m3/s) 5.534 4.399 4.834 4.815

COD (mg/L)

Influent/
Inflow

650.329 49.315 270.051 229.321
TN (mg/L) 44.354 3.579 26.233 26.345
TP (mg/L) 7.950 0.185 3.514 3.448

T (◦C) 30.922 21.351 26.054 26.386
SS (mg/L) 67.341 0.000 7.506 3.789

Flow (m3/s) 3.203 1.144 2.587 2.628

COD (mg/L)

Effluent/
Outflow

53.355 18.252 27.431 22.983
TN (mg/L) 13.011 4.428 6.909 6.594
TP (mg/L) 0.437 0.285 0.354 0.353

NH+
4 − N (mg/L) 0.179 0.054 0.100 0.091

NO−3 (mg/L) 12.286 3.898 6.232 5.904

Due to the presence of outliers in the original data, data cleaning was performed. Based
on the PauTa Criterion, extreme outlier data were removed and data were supplemented
using interpolation. Firstly, the time interval for data cleaning was determined based on
the hydraulic retention time (HRT) of the bio-reactor, and the mean and variance of various
state data of the bio-reactor within the time interval were calculated. Then, according to
the hypothesis testing PauTa Criterion, extreme outlier data within the time interval was
deleted and supplemented using interpolation data. The criterion can be described by
Equation (1), and the interpolation is shown in Equation (2), where N represents the time
steps in the time interval, datai represents the i-th data point in the time interval, and datai
represents the supplementing data.

|Vi| > 3σ, σ =

√√√√√√ 1
N

N

∑
i=1

(
datai − data

)2 (1)

datai =
1
N

i+N
2

∑
j=i−N

2

dataj (2)

After deleting the abnormal data, the moving average method was used to eliminate
the small disturbances caused by the anomalies (Equation (3), where d̂atat represented the
data that have been corrected, n was the time span of the moving average and was 100 in
this study). After being processed, the data relieved the impact of abnormal and disruptive
values, providing a foundation for subsequent analysis and modeling. In addition, all the
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data were smoothed through this process. The specific details and statistical results of the
cleansed dataset are shown in the table below.

d̂atat =
1
n

t+ n
2

∑
j=t− n

2

datai (3)

2.2. Deep Learning for A2O Process Simulation and Prediction

The above data contain information on the influent, anaerobic, anoxic, and aerobic
reaction processes, and effluent quality, covering the elements of carbon, nitrogen, and
phosphorus, all of which have an impact on the dynamic of A2O process. Therefore, this
study used the above data to construct a deep learning-based simulation model that focused
on the inflow–state–control–outflow of A2O process. The inflow, state data, and control
data were used as inputs for the simulation model, and the outflow data were used as the
outputs of the simulation model. All input data were time series data for a period of time
with a time span of hydraulic retention time (HRT), which was 7 h in this study. The model
predicted the outflow data for the next half hour.

Accordingly, the deep learning-based model (called DNN in this study) can be de-
scribed as Equation (4), where Statet, Controlt, In f lowt are the state, control, and inflow
in previous HRT, Out f lowt+1 is the outflow in next half hour and is the output of the
model. The training process of DNN is to minimize the loss function based on pre-
diction error Equation (5), where Out f lowt+1 is the output of model. All the data for
inputs and outputs were normalized to avoid the influence of differences in data magni-
tude, and the results of the simulation were obtained by renormalization. The formula
is shown in Equations (6) and (7), where DATA, DATAmin, and DATAmax are the origi-
nal data and its minimum and maximum, data is the normalized data, and DATA is the
renormalized data.

Out f lowt+1 = DNN(Statet, Controlt, In f lowt|θ) (4)

min
θ

1
2

∥∥∥Out f lowt+1 − DNN(Statet, Controlt, In f lowt|θ)
∥∥∥2

+ λ‖θ‖2 (5)

data = 2
DATA− DATAmin

DATAmax− DATAmin
− 1 (6)

DATA = DATAmin +
DATAmax− DATAmin

2
(data + 1) (7)

DNN is trained using the standard Adam training algorithm [36], with 0.001 initial
learning rate and 500 iterations. After training, the model performs prediction by inputting
the corresponding state, control, and inflow variables. The structure and parameters of
DNN are shown in Figure 1 and Table 2, respectively.

Table 2. Architecture and parameters of deep neural network in DNN.

Architecture Activation Function

Part1 (State) HRT × 7-50-50-50

tanh(x) = ex−e−x

ex+e−x

Part2 (Control) HRT × 3-50-50-50
Part3 (Inflow) HRT × 6-50-50-50

Part4 (Encoding) 50-50-50-50
Part5 (Outflow) 50-50-5

2.3. Koopman Operator and Deep Learning for A2O Process Simulation and Prediction

Due to the lack of interpretability in deep learning methods, it is difficult for DNN
to perform in-depth analysis of the A2O process dynamics. In this study, a new A2O
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dynamic simulation model was constructed by combining Koopman operators and deep
learning methods.
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Figure 1. Architecture of DNN. The input of the DNN consists of Statet, Controlt, In f lowt. Then,
it goes through three separate deep neural networks and a combined layer for embedding and
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simulation and prediction purposes.

2.3.1. Dynamic System and the Koopman Operator

The definition of the Koopman operator and its approximation theory can be found in
previous works [32,33]. We only provide a step-by-step introduction in this section. The
dynamic of A2O can be described by a nonlinear dynamic system Equation (8), which has a
corresponding Koopman operator to describe the evolution of a given observable through a
linear system (Equation (9)), where κ is Koopman operator and f is observable represented
by functions in a Hilbert space [31].

Out f lowt+1 = F(Statet, Controlt, In f lowt), (8)

E
[
Out f lowt+1

]
= E[ f (F(Statet, Controlt, In f lowt))]
= κE[ f (Statet, Controlt, In f lowt)]

(9)

However, this linear system has an infinite dimension [23,30] and cannot be used
for simulation and prediction directly. Thus, its finite dimensional approximation is re-
quired. Given a set of dictionary functions Ψ = [ψ1, ψ2, . . . , ψL], the observable can be
written as f (x(n)) = ΞΨ(x(n)), where Ξ = [ξ1, ξ2, . . . , ξL]

T is corresponding weights.
Then Equation (10) can be obtained, where K, called Koopman matrix, is the representa-
tion of the Koopman operator κ and r is the residual term. By minimizing r, we obtain
the corresponding Ψ and KΞ to formulate a finite dimensional linear system [37]. This
system (Equation (11)) is a finite dimensional linear system that can be used for simulation
and prediction.

κ f = (Ψ ◦ F)Ξ = ΨKΞ + r (10)

Out f lowt+1 = κ f (Statet, Controlt, In f lowt)

≈ Ψ(Statet, Controlt, In f lowt)KΞ.
(11)
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2.3.2. Dictionary Learning-Based Extended Dynamic Mode Decomposition

An approximation method is required to obtain Equation (11). Regression-based
approximation methods use the regression model [29,38], or even deep learning
model [33,34] to find a linear system, and is mainly considered in this study. One
of the methods based on deep learning, called dictionary learning extended dy-
namic mode decomposition (DLEDMD) [31,33] is used as the approximation al-
gorithm in this study to identify the dictionary functions and Koopman matrix.
First, N pairs of data [Statet1 , Statet2 , . . . , StatetN ], [Controlt1 , Controlt2 , . . . , ControltN ],
[In f lowt1

, In f lowt2
, . . . , In f lowtN

], and [Out f lowt1
, Out f lowt2

, . . . , Out f lowtN
] are col-

lected. Then, a deep neural network, φ, is defined to represent the dictionary
functions. It is trained through Equation (12), where w1 is the trainable param-
eter, K is the Koopman matrix, and λ(K, w1) is a suitable regularizer. The trained K,
φ are used to obtain a model for simulation and prediction. This trained model is
called DLEDMD in the rest of this paper. Its architecture and parameters are given
in Figure 2 and Table 3. Considering the stable and convergence of the training
process for general initializations, the emulator is trained through the iterating
method [33] combined with the Adam algorithm [36,39] with 0.001 initial learning
rate and 500 iterations. The K is computed by Equation (13) during applications.

Min
K,w1,w2

N

∑
i=1
‖Kφ (Stateti , Controlti , In f lowti

; w )−Out f lowti
‖2 + λ(K, w) (12)

K = G† A

A = 1
N ∑N

t=1 φ(Xt−1, At−1; w1)
Tφ(Xt−1, At−1; w1),

G = 1
N

N

∑
t=1

φ(Xt−1, At−1; w1)
TXt

(13)
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Figure 2. Architecture of DLEDMD. The input of the DLEDMD consists of Statet, Controlt, In f lowt.
Then, it goes through three separate deep neural networks and a combined layer for embedding
and combination. This part is the φ in Equations (12)–(14). All the inputs and their combination are
used to obtain the Koopman matrix. This is the only difference between DNN and DLEDMD. The
final output or result Out f lowt+1 is calculated by the final deep neural network for simulation and
prediction purposes.
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Table 3. Architecture and parameters of deep neural network in DLEDMD.

Architecture Activation Function

Part1 (State) HRT × 7-50-50-50

tanh(x) = ex−e−x

ex+e−x

Part2 (Control) HRT × 3-50-50-50
Part3 (Inflow) HRT × 6-50-50-50

Part4 (Encoding) 50-50-50-50
Part5 (Outflow) 50-50-5

2.4. Dynamic Properties Analysis Based on Koopman Operator

The linear structure of DLEDMD can be easily obtained through Equation (14), where
W is the matrix of eigenvectors, Σ is the diagonal matrix containing the eigenvalues,
and K = WΣW−1. Wi

−1
ψ(X, a, rain; w1), i = 1, 2, . . . , L are the eigenfunctions of the

Koopman emulator.

W−1Out f lowti
= ΣW−1

φ
(
Stateti , Controlti , In f lowti

; w1
)

(14)

If the eigenvalues and eigenvectors of the Koopman matrix cannot be obtained, the
linear structure can also be given through the singular values and singular vectors of the
matrix K [40]. Through the eigenvalues, the dynamic properties of A2O process can be
directly analyzed and evaluated using the theorems of existing dynamic system and linear
system, including the Lyapunov stability and convergence of the dynamics [16]. This can
determine the ability of a biochemical reactor to withstand external disturbances and its
long-term behavioral characteristics during operation.

3. Results and Discussion

DNN and DLEDMD were trained using the method provided in Sections 2.2 and 2.3.
Then, all the trained models were used to predict and simulate the dynamic of A2O in the
case study area. After that, an analysis of A2O’s dynamic properties was provided based
on the Koopman matrix of DLEDMD. The results and discussion are given as follows.

3.1. Training Process of DNN and DLEDMD

The loss function curves of DNN and DLEDMD during training process are shown in
Figure 3. The training data consisted of randomly selected 1000 input–output pairs in the
given time spans, and the validation data consisted of randomly selected 500 input–output
pairs in the given time span. Each pair consisted of Statet, Controlt, In f lowt, and Out f lowt+1.
The training method and parameters were those provided in Sections 2.2 and 2.3. From the
training results, it is seen that both models progressively reduce their errors on the training
set, demonstrating good training performance. They also show improvement on the testing
set during the training process, indicating an increase in their generalization ability through
training. However, DNN exhibits faster and better improvement on the testing set, suggesting
that it has relatively better generalization ability compared to DLEDMD.

3.2. Simulation Performance

All the trained models were used to predict and simulate the outflow dynamic of A2O
in the case study area. The predicted time ranged from 1 May 2020 at 0:00 to 21 October
2020 at 14:40. The models predicted the outflow in half an hour every 5 min, i.e., the time
interval of prediction was half hourly and the frequency of prediction was 5 min, and there
were a total of 49,901 predictions. The mean square error (MSE, Equation (15), where Yt is
the output of models, Yt+1 is the true output values, Num is the number of prediction, and
is 49,901 in this study) and Nash–Sutcliffe efficiency coefficient (NSE, Equation (16), where
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E
[
Yt+1

]
is the mean value of true output values) were used to measure the performance of

the two models.

MSE =
1

Num

Num

∑
t=1

∥∥Yt+1 −Yt+1
∥∥2 (15)

NSE = 1− ∑Num
t=1

∥∥Yt+1 −Yt+1
∥∥2

∑Num
t=1

∥∥Yt+1 −E
[
Yt+1

]∥∥2 (16)

The comparison between the predicted results of the two models and the actual values,
as well as the MSE and NSE results, are shown in Figure 4. It can be seen from the figure that
both data-driven models capture minor system disturbances and achieve good predictions
with NSE reaching 0.99. At the same time, the comparison shows that the prediction
performance of DLEDMD is slightly worse than that of DNN, which is consistent with the
generalization performance in the training process of the two models.
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3.3. Eigenvalues of Koopman Matrix and Asymptotically Stablility of A2O Dynamic

Based on DLEDMD, we can directly obtain its corresponding Koopman matrix and
use its eigenvalues to obtain the linearized description of the A2O nonlinear dynamical
system through Equation (14). The eigenvalues of DLEDMD’s Koopman operator are
shown in Figure 5. From the figure, it can be seen that the eigenvalues of the simulated
dynamic of A2O process in this case study are all less than 1.

According to the Lyapunov stability theorem, a discrete time system such as DLEDMD
in Equation (11) is asymptotically stable if and only if all its eigenvalues are inside the unit
circle [16]. Therefore, the dynamic of the A2O in this case is asymptotically stable, and its
output variables will gradually converge as the system runs without external influences.
This means that the biochemical reactor in this case is capable of resisting fluctuations in
influent water quality and control variables within a certain range. That is, the water quality
of the effluent of the system will converge to a certain value and maintain stability when
there is no continuous change in the influent water quality. Such a mathematical analysis
can never be provided by DNN because the eigenvalues cannot be obtained from it.
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4. Conclusions

Although data-driven methods have shown promise in the prediction of A2O dynamic
in WWTPs, they cannot be helpful in the analysis of A2O dynamic properties. This study
designed a data-driven prediction model using Koopman operators and deep learning
methods to solve this problem. The method was validated using data from a real WWTP
and compared to traditional deep learning methods. On the one hand, with the help of
abundant data, this model accurately predicted the dynamics of the A2O process and
captures small disturbances in practical situations. On the other hand, the Koopman
operator was used to provide an analysis method for the dynamic properties of the A2O
process from the perspective of mathematics.

Both DNN and DLEDMD learned the dynamics of the data through training and
made relatively accurate predictions with NSE exceeding 0.99. However, according to the
testing set error during the training process and the MSE and NSE values in the prediction,
DNN had better generalization ability than DLEDMD because of its higher non-linearity.
DLEDMD can be used to analyze the dynamic properties of the A2O process by utilizing
its Koopman operator. In the case of this study, the trained DLEDMD directly obtained the
Koopman matrix and its corresponding eigenvalues. The obtained eigenvalues indicates
that the nonlinear dynamic system of A2O process in this study was Lyapunov asymptotic
stable. This proves that the state and the effluent of the system will not undergo significant
changes within a certain range of influent water quality disturbance in this case study.
Moreover, when there is no sustained change in the influent water quality, the effluent
quality of the A2O process will converge to a certain value and remain stable.

Author Contributions: Conceptualization: W.T., K.X.; Methodology: W.T.; Visualization: W.T.,
Y.L., Writing—original draft: W.T., Y.L.; Writing—review and editing: W.T., K.X., W.C.; Project
administration: K.X., T.T., J.X., W.H.; Supervision: K.X., T.T., J.X., W.H. All authors have read and
agreed to the published version of the manuscript.

Funding: Key Technologies and Demonstration of Intelligent Treatment for Convergent Large-scale
Wastewater Treatment Plants—Research on key technologies to enhance the effectiveness of intelligent
treatment and system resilience of large wastewater treatment plants (grant no. 20dz1204602);
National Natural Science Foundation of China (grant no. 51978493); National Natural Science
Foundation of China (grant no. 52270093).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the code and data can be found on Github (https://github.com/
DantEzio/Koopman_AAO_Dynamic (accessed on 9 April 2023)).

Acknowledgments: This study was financially supported by the Key Technologies and Demonstra-
tion of Intelligent Treatment for Convergent Large-scale Wastewater Treatment Plants—Research
on key technologies to enhance the effectiveness of intelligent treatment and system resilience of
large wastewater treatment plants (grant no. 20dz1204602) and National Natural Science Foundation
of China (grant no. 51978493, grant no. 52270093). All the code and data can be found on Github
(https://github.com/DantEzio/Koopman_AAO_Dynamic (accessed on 9 April 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal control towards sustainable wastewater treatment

plants based on multi-agent reinforcement learning. Chemosphere 2021, 279, 130498. [CrossRef] [PubMed]
2. Holenda, B.; Domokos, E.; Rédey, A.; Fazakas, J. Dissolved oxygen control of the activated sludge wastewater treatment process

using model predictive control. Comput. Chem. Eng. 2008, 32, 1270–1278. [CrossRef]
3. Liu, X.; Jing, Y.; Xu, J.; Zhang, S. Ammonia Control of a Wastewater Treatment Process Using Model Predictive Control.

In Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014;
pp. 494–498.

https://github.com/DantEzio/Koopman_AAO_Dynamic
https://github.com/DantEzio/Koopman_AAO_Dynamic
https://github.com/DantEzio/Koopman_AAO_Dynamic
https://doi.org/10.1016/j.chemosphere.2021.130498
https://www.ncbi.nlm.nih.gov/pubmed/33892457
https://doi.org/10.1016/j.compchemeng.2007.06.008


Water 2023, 15, 1960 11 of 12

4. Elawwad, A.; Zaghloul, M.; Abdel-Halim, H. Simulation of municipal-industrial full scale WWTP in an arid climate by application
of ASM3. J. Water Reuse Desalin. 2016, 7, 37–44. [CrossRef]

5. Henze, M.; Gujer, W.; Mino, T.; van Loosdrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing:
London, UK, 2000.

6. Mulas, M.; Tronci, S.; Corona, F.; Haimi, H.; Lindell, P.; Heinonen, M.; Vahala, R.; Baratti, R. Predictive control of an activated
sludge process: An application to the Viikinmäki wastewater treatment plant. J. Process. Control. 2015, 35, 89–100. [CrossRef]

7. Guo, H.; Jeong, K.; Lim, J.; Jo, J.; Kim, Y.M.; Park, J.-P.; Kim, J.H.; Cho, K.H. Prediction of effluent concentration in a wastewater
treatment plant using machine learning models. J. Environ. Sci. 2015, 32, 90–101. [CrossRef] [PubMed]

8. Antwi, P.; Zhang, D.; Xiao, L.; Kabutey, F.T.; Quashie, F.K.; Luo, W.; Meng, J.; Li, J. Modeling the performance of Single-stage
Nitrogen removal using Anammox and Partial nitritation (SNAP) process with backpropagation neural network and response
surface methodology. Sci. Total. Environ. 2019, 690, 108–120. [CrossRef]

9. Khatri, N.; Khatri, K.K.; Sharma, A. Prediction of effluent quality in ICEAS-sequential batch reactor using feedforward artificial
neural network. Water Sci. Technol. 2019, 80, 213–222. [CrossRef]

10. Hansen, L.D.; Stokholm-Bjerregaard, M.; Durdevic, P. Modeling phosphorous dynamics in a wastewater treatment process using
Bayesian optimized LSTM. Comput. Chem. Eng. 2022, 160, 107738. [CrossRef]

11. Liu, H.; Wang, Y.; Fan, W.; Liu, X.; Li, Y.; Jain, S.; Liu, Y.; Jain, A.K.; Tang, J. Trustworthy AI: A Computational Perspective. ACM
Trans. Intell. Syst. Technol. 2022, 14, 4. [CrossRef]

12. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Muller, K.-R. Explaining Deep Neural Networks and Beyond: A Review
of Methods and Applications. Proc. IEEE 2021, 109, 247–278. [CrossRef]

13. Anders, C.J.; Weber, L.; Neumann, D.; Samek, W.; Müller, K.-R.; Lapuschkin, S. Finding and removing Clever Hans: Using
explanation methods to debug and improve deep models. Inf. Fusion 2022, 77, 261–295. [CrossRef]

14. Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The role of deep learning in urban water management: A critical review. Water Res.
2022, 223, 118973. [CrossRef]

15. Kozlov, V.; Furta, S. Lyapunov’s first method for strongly non-linear systems. J. Appl. Math. Mech. 1996, 60, 7–18. [CrossRef]
16. Datta, B.N. Chapter 7—Stability, inertia, and robust stability. In Numerical Methods for Linear Control Systems; Datta, B.N., Ed.;

Academic Press: Cambridge, MA, USA, 2004; pp. 201–243.
17. De Santis, E.; Di Benedetto, M.; Pola, G. Stabilizability of linear switching systems. Nonlinear Anal. Hybrid Syst. 2008, 2, 750–764.

[CrossRef]
18. Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications.

J. Comput. Dyn. 2014, 1, 391–421. [CrossRef]
19. Mardt, A.; Pasquali, L.; Wu, H.; Noé, F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 2018, 9, 5. [CrossRef]

[PubMed]
20. Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; Müller, K.-R. Explaining nonlinear classification decisions with deep Taylor

decomposition. Pattern Recognit. 2017, 65, 211–222. [CrossRef]
21. Zhang, Y.; Tino, P.; Leonardis, A.; Tang, K. A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell.

2021, 5, 726–742. [CrossRef]
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